Universität des Saarlandes

FACHRICHTUNG 6.1 — MATHEMATIK

Prof. Dr. Gerd Wittstock

Benedikt Betz

4. Übung Funktionalanalysis WS 2003/04

Aufgabe 13 schwach beschränkt = normbeschränkt

Es sei \mathscr{H} ein Hilbertraum. Eine Teilmenge $M \subseteq \mathscr{H}$ heißt *schwach beschränkt*, falls für alle $x \in \mathscr{H}$ die Menge $\{\langle x,y \rangle \mid y \in M\}$ komplexer Zahlen beschränkt ist. M heißt *normbeschränkt*, falls $\{\|x\| \mid x \in M\}$ beschränkt ist.

Jede normbeschränkte Teilmenge eines Hilbertraumes ist offenbar schwach beschränkt. (Warum?) Überraschenderweise gilt auch die Umkehrung:

Jede schwach beschränkte Teilmenge eines Hilbertraumes ist normbeschränkt.

Führe die Beweisskizze in HALMOS, »A Hilbert space problem book«, Seite 184, aus.

Aufgabe 14 Es sei $(y_n)_n$ eine Folge komplexer Zahlen, und für alle Folgen $(x_n)_n \in l_2$ konvergiere die Reihe $\sum_n x_n y_n$.

Zeige: Dann ist auch $(y_n)_n \in l_2$.

Hinweis: Benutze die *abgeschnittenen Folgen* $(y_1, \ldots, y_k, 0, \ldots)$ und Aufgabe 13.

Aufgabe 15 Wir betrachten C([0,1]) mit der Norm $|| \cdot ||_2$, die durch das Skalarprodukt

$$\langle f, g \rangle = \int_0^1 \overline{f(t)} g(t) dt$$

gegeben ist.

Zeige: C([0,1]) ist mit dieser Norm nicht vollständig.

Hinweis: Eine geeignete Funktionenfolge zu finden sollte nach unseren bisherigen Übungen nicht mehr schwer sein. Hilfsbehauptung: Konvergiert eine Folge stetiger Funktionen bezüglich $\| \ \|_2$, so konvergiert die Folge der Stammfunktionen gleichmäßig.

Aufgabe 16 Zur Vervollständigung eines Prähilbertraumes

Es sei X ein normierter Raum, $Y \subseteq X$ ein dichter Teilraum, und auf Y sei ein Skalarprodukt gegeben, so dass für alle $y \in Y$ gilt:

$$||y||^2 = \langle y, y \rangle.$$

Zeige: Dieses Skalarprodukt lässt sich eindeutig auf ganz X fortsetzen, so dass diese Normformel auf ganz X gilt.

Hinweis: Definiere das Skalarprodukt durch die in der Vorlesung angegebene Polarisationsformel:

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2}$$

Abgabe: Montag, 24. 11. 2003, vor der Vorlesung.