
Technische Universität Dresden

Fachrichtung Mathematik

Institut für Mathematische Stochastik

Intrinsic Ultracontractivity and Uniform
Conditional Ergodicity

Diplomarbeit
zur Erlangung des ersten akademischen Grades

Diplommathematiker

vorgelegt von

Name: Knobloch Vorname: Robert

geboren am: 12. August 1981 in: Sangerhausen

Tag der Einreichung: 24. Mai 2007

Betreuer: Dr. rer. nat. Lothar Partzsch

Prof. Dr. rer. nat. habil. Rolf Kühne



II



Preface

This Diplom thesis was written at the Institut für Mathematische Stochastik at the Technische
Universität Dresden under the supervision of Dr. Lothar Partzsch and Professor Rolf Kühne.

This thesis deals with certain properties of multidimensional diffusion semigroups. We intro-
duce some underlying concepts of multidimensional diffusion processes, and we develop some
new results related to this field. Our main result states that under suitable assumptions on
the diffusion and drift coefficients of a non–symmetric second–order differential operator in
nondivergence form the associated diffusion semigroup is intrinsically ultracontractive on a
C2,1–domain. Furthermore, we give a stochastic motivation for dealing with intrinsic ultra-
contractivity by showing that as a consequence of that property the corresponding diffusion
semigroup is uniformly conditionally ergodic and has a unique quasi–stationary distribution.

What sets this work apart from the literature is that criteria as well as equivalent character-
isations for intrinsic ultracontractivity of non–symmetric diffusion semigroups are developed
without relying on the results concerning intrinsic ultracontractivity for symmetric diffu-
sions. So far, it seems that the interrelation between intrinsic ultracontractivity and uniform
conditional ergodicity has not yet been studied, and thus the present thesis adds yet another
example of the prolific connection between analysis and stochastics.

I would like to use this occassion to express my deepest gratitude towards my thesis supervi-
sor, Dr. Lothar Partzsch, for his constant support and valuable ideas, especially those related
to the stochastic interpretation of intrinsic ultracontractivity, without which the thesis in
the present form would not have been possible. In particular, his extraordinary commitment
deserves to be mentioned here. He was always available when I needed his advice, indeed
he was a true partner in the elaboration on this thesis. I really enjoyed this collaboration,
and I’m also deeply grateful for the many informative discussions, which provided me with
a vast number of important insights, many of them do not appear in this thesis but have
been indispensable in the process of developing it.

Robert Knobloch

Dresden, May 2007
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Introduction

The aim of this thesis is to study certain analytical and ergodic properties of multidimen-
sional diffusion processes, which constitute a particular class of Markov processes. Markov
processes and diffusion processes are well studied objects in mathematical stochastics, but
yet there are many things that require clarification. To begin with, the question arises
“What is a diffusion process?” Well, most people working in that field will have an answer
to this question, but these answers may differ. Analysts may construct diffusion processes
via semigroup theory and utilising the Hille–Yosida theorem as well as the theory of partial
differential equations, or they may take the approach via Dirichlet forms. Probabilists may
use for instance the approach by Dynkin (cf. 5.26 in [Dyn65I]) or the approach via stochastic
differential equations, or they may apply the martingale problem. Even though all these ap-
proaches lead to similar objects, it may often be difficult to see the similarities. We therefore
give two approaches to construct diffusion processes. Firstly, in order to properly define
these processes for our further proceeding, and secondly in order to show the similarities and
the differences between the two approaches.

The consideration of problems related to the questions with which we are concerned has quite
a long history. In his dissertation (cf. [Par72]) the supervisor of this thesis, L. Partzsch, was,
among other things, dealing with similar questions in the one–dimensional case. For some of
the problems considered in [Par72] we present an approach in the multidimensional situation,
and in some ways relations between results in [Par72] and the results in the present thesis
become obvious, even though the methods in [Par72] differ profoundly from our approach.

For some problems similar to the underlying questions of the present thesis solutions can
be found in the literature, where the theory of multidimensional diffusions has been studied
extensively.

We consider some bounded domain U ⊆ Rd and an operator T : C2
K(U) → CK(U) in

nondivergence form given by

∀ f ∈ C2
K(U) : Tf =

1

2

d∑
i,j=1

aij
∂2

∂xi∂xj

f +
d∑

i=1

bi
∂

∂xi

f . (1)

Moreover, assume that for all x ∈ U and t > 0 the corresponding transition measure pos-
sesses a positive λd–density pt(x, ·), and that for T and its formal adjoint T ∗ the normalised
eigenfunctions ϕ and ψ corresponding to the principal eigenvalue are positive. The stochas-
tically motivated question with which we are concerned is related to a convergence property
of diffusion semigroups, namely the so–called uniform conditional ergodicity. The diffusion
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semigroup (Pt)t∈R+
0

associated with T is referred to as uniformly conditionally ergodic if there

exists a probability measure µ on (U,B(U)) such that

Pt(x,B)

Pt(x, U)
→ µ(B) uniformly in x ∈ U and B ∈ B(U) as t→∞.

Here B(U) denotes the Borel σ–algebra on U .

One purpose of this thesis is to give criteria such that a diffusion semigroup is uniformly con-
ditionally ergodic. Our method to tackle this problem is based upon the notion of intrinisic
ultracontractivity, which is one of the basic concepts of this thesis. We give conditions on the
coefficients of T , given by (1), such that the corresponding diffusion semigroup is intrinsically
ultracontractive, and we show that intrinisic ultracontractivity implies uniform conditional
ergodicity. In fact, the latter point motivates our interest in intrinisic ultracontractivity.

Intrinsic ultracontractivity is a primarily functional analytical property, which at first sight
seems to have little relation to our problem, since its original definition (cf. Section 3 in
[DS84]) bears little obvious relation to the situation which we want to study. However, that
relation becomes more obvious if one realises that the original definition, in the context of
symmetric diffusions, is equivalent to the following property:

∀ t > 0∃αt > 0∀x, y ∈ U :
pt(x, y)

ϕ(x)ϕ(y)
≤ αt,

where pt and ϕ = ψ are as above. We use the non–symmetric analogue of the above property
as the definition of intrinsic ultracontractivity. The interpretation of intrinsic ultracontrac-
tivity certainly depends on the point of view, and an analyst will probably see it from a
different perspective than a probabilist. For interpretations and equivalent characterisations
of intrinsic ultracontractivity see Chapter 3. Our main work is to find criteria under which
that property holds. The purpose being to examine when diffusion semigroups are intrin-
sically ultracontractive, in order to derive conclusion relating to the ergodic behaviour of
these diffusions. In the literature most authors have concerned themselves with intrinsic
ultracontractivity in the context of symmetric diffusions, and by now that context has been
studied quite extensively. In contrast, in the context of non–symmetric diffusions astonish-
ingly only very little has been done so far. In fact, with the exception of [KS06a] by Kim
and Song it seems that this situation has not been studied at all. A possible reason may be
that it is easier to deal with intrinsic ultracontractivity in the symmetric case. If one has a
self–adjoint operator which admits a series expansion via its eigenvalues and corresponding
normalised eigenfunctions, then one obtains quite nice criteria for intrinsic ultracontractivity
to hold. Moreover, having a symmetric Lebesgue density for the transition measure turns
out to be of great avail.

Well, in the non–symmetric situation we generally do not have any of these properties at
hand, and the criteria for intrinsic ultracontractivity in the symmetric case do not work
in the non–symmetric situation. The only paper in respect of intrinsic ultracontractivity
of non–symmetric diffusion semigroups seems to be [KS06a], which gives conditions on the
coefficients of a second–order differential operator such that the corresponding diffusion
semigroup is intrinsically ultracontractive. The method used by Kim and Song in [KS06a]
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is to utilise that under certain assumptions on the diffusion and drift coefficients of the
generator of a symmetric diffusion the corresponding diffusion semigroup is intrinsically
ultracontractive on a bounded Lipschitz domain. They were concerned with non–symmetric
diffusion semigroups in bounded Lipschitz domains, whose coefficients satisfy sufficiently
strong conditions. The idea by Kim and Song is to consider the symmetric semigroup
corresponding to the arithmetic average of the generator of a non-symmetric diffusion and
its formal adjoint.

However, in the present thesis we do not take the same approach for two reasons. Firstly, Kim
and Song considered the Hilbert space context, i.e., their transition operators are defined on
L 2, whereas our transition operators are defined on C0. Moreover, their method rests on
utilising Dirichlet forms and logarithmic Sobolev inequalities. Our aim is to develop a more
stochastic approach by utilising the martingale problem. Secondly, the proceeding in [KS06a]
relies on the fact that the corresponding symmetric diffusions are intrinsically ultracontrac-
tive on bounded Lipschitz domains, whereas our aim is to develop an integrated concept from
scratch of showing that intrinsic ultracontractivity holds. Our criteria for non–symmetric
diffusion semigroups to be intrinsically ultracontractive are presented in Chapter 3.

Now we would like to give a brief outline of the particular chapters. This thesis is divided
into two parts. Our intention for the first part, which comprises Chapter 1 and Chapter 2,
is to introduce the notion of multidimensional diffusion processes in a domain in Rd and
to present ways to construct them, as well as to derive a few properties of these processes.
These diffusions are the main objects of our interest in Part II, which consists of Chapter 3
and Chapter 4. There we study certain analytical and ergodic properties of the associated
diffusion semigroups. Therefore, Part I can be understood as a kind of preparation for the
second part. Part II is the main part of this thesis, and in this part we develop and present
our main results. However, even though the intention for Part I is to provide the background
for Part II, in particular the results in Chapter 2 are more comprehensive than necessary
for that purpose. In fact, we include the approach to obtain diffusions via the martingale
problem, because it may also provide a basis for dealing with further questions which are
related to the problem that we consider here, but are not covered by the present thesis.

In the first section of Chapter 1 we introduce the Markov property, and we are concerned
with some general theory related to Markov processes with values in some locally compact
Polish space. That section is about canonical Markov processes generated via Kolmogorov’s
extension theorem by starting with a Markov semigroup of transition kernels. The resulting
class of canonical Markov processes is far too large to be useful, since the processes do not
need to have any regularity properties, i.e., there are no constraints regarding continuity
of the trajectories. This shortcoming is partly evaded in Section 1.2, which restricts the
processes under consideration to Feller processes. Roughly speaking, Feller processes are
canonical Markov processes whose corresponding semigroup of transition operators is a Feller
semigroup. In particular, Feller processes are right–continuous processes with left–hand
limits (so–called rcll processes). In Section 1.3 we give a first definition of diffusion processes,
for that we introduce the notion of Feller diffusions in Rd. A Feller diffusion in Rd is a
continuous Rd–valued Feller process. Subsequently, we consider a domain U ⊆ Rd and the
corresponding process which is killed upon reaching the boundary of U . This killed process
is referred to as a Feller diffusion in U . The construction of such Feller diffusions in U is
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the main purpose of Chapter 1. Our considerations concerning Feller processes are mainly
based upon [Kal01] by Kallenberg.

Chapter 2 is devoted to pretty much the same intention as Chapter 1, namely to clarify the
notion of a diffusion process in a domain in Rd. The approach in this chapter is very different
from the one in Chapter 1, but nonetheless it turns out that the resulting diffusions have
many basic properties in common with the Feller diffusions as constructed in Chapter 1.
In Section 2.1 we are concerned with the martingale problem on Rd. This section intends
to provide the basic ideas for Section 2.2, in which we consider a localisation of the theory
compiled in Section 2.1 to some domain U ⊆ Rd. The purpose of Section 2.2 is to obtain
a unique family of probability measures associated with a certain second–order differential
operator on C2

K(U). This family of probability measures then defines a diffusion process with
values in some domain U ⊆ Rd. The uniqueness of the solution yields that the family of
probability measures satisfies the Feller property as well as the strong Markov property. We
give the definition of diffusions as well as a discussion about its relation to Feller diffusions
in U in Section 2.3. The concept of the martingale problem was developed by Stroock and
Varadhan (cf. [SV79]). Moreover, our proceeding is strongly influenced by [Pin95], where
Pinsky develops a generalisation of the martingale problem by Stroock and Varadhan. The
results of this chapter are not entirely exploited in the present thesis. One advantage of
the martingale problem over the approach in Chapter 1 is that the boundedness assumption
on the coefficients can be relaxed to require locally bounded coefficients. This advantage
becomes important if one considers diffusions conditional on not leaving U , because the drift
terms of those conditional processes, which may also be referred to as Doob’s h–processes,
are locally bounded, but not bounded. These conditional processes are also diffusions in U ,
and thus one can take full advantage of what is known about diffusions when dealing with
conditional processes. As mentioned before, we do not consider such conditional processes
in this thesis, but Chapter 2 provides the basis to deal with these processes in the context
of diffusion processes. This may be an interesting starting point for further considerations
based on our work, because these conditional diffusions are closely realted to the concepts
with which we are concerned in the present thesis. Another virtue of the approach via the
martingale problem is that the diffusion matrix does not have to be uniformly elliptic.

Recapitulating, in Part I we present two different ways of constructing multidimensional
diffusion processes in a domain in Rd. In Part II we study some properties of those diffusions,
but the first part has a meaning in its own right, because, idependent of the second part, it
can be considered as an introduction to the notion of multidimensional diffusion processes.
Therefore, it may be justified that we consider those diffusions in more generality than we
need for Part II. Now let us explain what we do in Part II.

In Chapter 3 we consider a C2,1–domain U ⊆ Rd and a diffusion corresponding to a second–
order differential operator T , where we impose some pretty restrictive conditions on the
coefficients of T . Almost all of these conditions on the coefficients as well as the restriction
on the domain turn out to be necessary for our considerations in Section 3.1, where we derive
the basic properties of the diffusions corresponding to T . In particular the results regarding
a Lebesgue density for the transition measure as well as spectral theoretical considerations
are indispensable for our further proceeding. In this section we establish the main tools
which we utilise in the course of our considerations. In particular, we show that under
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our conditions on the coefficients we have a positive continuous transition density with
respect to the Lebesgue measure, and that for T and its formal adjoint T ∗ the normalised
eigenfunctions corresponding to the principal eigenvalue are positive. Section 3.2 is devoted
to the main concept of the whole chapter, namely intrinsic ultracontractivity. The notion
of intrinsic ultracontractivity for symmetric processes was introduced by Davies and Simon
in [DS84]. They considered a functional analytical approach, as have done most authors
dealing with that property. Most papers relating to that property deal with the question
under which assumptions intrinsic ultracontractivity holds. Yet, there are several approaches
to that problem. The most common approach seems to be that authors consider a “nice”
diffusion, and then they try to find criteria on how “bad” the underlying domain can be,
i.e., how irregular its boundary can be, such that the diffusion in this domain is intrinsically
ultracontractive. Another approach, which was considered by Cipriani (cf. [Cip94]) as well
as by Ouhabaz and Wang (cf. [OW07]) is to examine under which assumptions on the
normalised eigenfunction, corresponding to the principal eigenvalue, the diffusion semigroup
is intrinsically ultracontractive. A third approach, which was employed by Kim and Song in
[KS06a], is to fix a domain and to try to find conditions on the coefficients of the generating
operator such that intrinsic ultracontractivity holds. For the present thesis we have chosen
the latter approach. As mentioned above, almost exclusively self–adjoint operators have
been studied in the literature. The only exception which we managed to find is [KS06a] by
Kim and Song. Although the methods employed by Kim and Song differ profoundly from
our considerations, the main result and some underlying questions in [KS06a] are closely
related to the purpose of Section 3.2. Bearing this in mind, we briefly compare our main
result with [KS06a] at the end of Chapter 3.

In Chapter 4 we give a stochastic motivation for dealing with intrinsic ultracontractivity. We
show that intrinsic ultracontractivity implies that the corresponding diffusion semigroup is
uniformly conditionally ergodic, which results in a unique quasi–stationary distribution. This
is not obvious by the definition of intrinsic ultracontractivity, and we apply results about
intrinsic ultracontractivity which we have developed in Chapter 3. A further interesting
question may be whether the converse holds true, i.e., whether uniform conditional ergodicity
implies intrinsic ultracontractivity. As far as we know this is still an open problem. In
our opinion it seems to be likely that the converse does not hold true, because uniform
conditional ergodicity does not give any information about “small” t > 0, whereas intrinsic
ultracontractivity is a property that concerns all t > 0. To the best of our knowledge the
interrelation between intrinsic ultracontractivity and uniform conditional ergodicity has not
yet been considered in the literature.

In conclusion we would like to point out that some definitions as well as some results,
which are well known or have only minor relevance for our considerations, are left for the
appendices. This applies in particular to some Markov process theory, which aims to provide
a background for Chapter 1.
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Chapter 1

Feller Diffusions

This chapter is devoted to the construction of Feller diffusions in a domain in Rd. To begin
with, we will briefly introduce some concepts and notions related to Markov process theory.
The theory of Markov processes is relevant, because diffusion processes, which are the main
mathematical objects in the present thesis, are examples of Markov processes. In Section 1.1
we will be concerned with canonical Markov processes corresponding to a Markov semigroup,
i.e., with processes obtained by Kolmogorov’s extension theorem. Later on, in Section 1.2, we
will introduce Feller processes, which roughly speaking are rcll Markov processes associated
with a Feller semigroup of transition operators. Finally, in Section 1.3 we will define Feller
diffusions. At first we will construct Feller diffusions in Rd, which are continuous Rd–valued
Feller processes. However, we are interested in diffusions in a domain U ⊆ Rd, and hence
we will consider the killed processes corresponding to Feller diffusions in Rd, killed upon
reaching ∂U . These killed processes will be called Feller diffusions in U .

In order to keep this chapter reasonably concise we will focus on the main ideas with respect
to the notion of Feller diffusions, and some well known Markov process theory is left for
Appendix B. Occasionally this may be inconvenient, but we believe that it enables the
reader to proceed more quickly to the relevant concepts of this thesis.

For any stochastic process X := (Xt)t∈R+
0

on some probability space (Ω,F , P ) we denote

the finite dimensional distributions of X under P by P(Xt1 ,...,Xtn ) := P ◦ (Xt1 , . . . , Xtn)−1

for all n ∈ N, t1, . . . , tn ∈ R+
0 . Moreover, let us denote the distribution of X under P by

PX := P ◦X−1.

Let (A,A ) and (G,G ) be some measurable spaces, and let µ be a kernel on (G,G ). In
addition, let ϕ : A → G be an A –G –measurable function and let B ∈ G . Then we denote
µ(·, B) ◦ ϕ by µ(ϕ,B). Similar terms are to be interpreted in this spirit.

Even though later on we will restrict our considerations to stochastic processes with values
in Rd or subdomains thereof, we will start by considering more general spaces, namely Polish
spaces:

Definition 1.1 A topological space (E, T ) is called a Polish space if T is induced by a
metric ρ such that (E, ρ) is a complete, separable metric space.

3



4 CHAPTER 1. FELLER DIFFUSIONS

Throughout this chapter let (E,B(E)) be a measurable space, where (E, T ) is a locally
compact Polish space and B(E) := σ(T ). Furthermore, let ρE denote a metric which
induces T .

A sequence (νn)n∈N in P(E), the set of all probability measures on (E,B(E)), is said to
converge weakly to some ν ∈ P(E) if

∀ f ∈ Cb(E) :

∫
E

f dνn →
∫

E

f dν as n→∞,

and we say that (νn)n∈N converges vaguely to ν if

∀ f ∈ C0(E) :

∫
E

f dνn →
∫

E

f dν as n→∞.

Since (E, T ) is a locally compact Polish space, we obtain by 4.4 Proposition in Chapter 3 in
[EK86] that a sequence (νn)n∈N in P(E) converges weakly to some ν ∈ P(E) iff it converges
vaguely to ν, i.e., on P(E) the concepts of weak convergence and vague convergence to some
probability measure coincide. The weak convergence in P(E) induces the weak topology Tw

on P(E), i.e., Tw is the smallest topology on P(E) for which the maps ϕf : P(E) → R,
f ∈ Cb(E), given by ϕ(µ) =

∫
E
f dµ for all µ ∈ P(E), are continuous. Moreover, since E is

separable, Tw is induced by the Prohorov metric ρP (cf. e.g. Remark 13.14 (ii) in [Kle06] or
Section 1 of Chapter 3 in [EK86]). In particular, this means that we can apply the results of
Chapter 3 in [EK86], which are acquired for the metric space (P(E), ρP ), to the topological
space (P(E), Tw).

Throughout the whole thesis we adopt the convention inf ∅ := ∞.

1.1 Canonical Markov Processes

To begin with, we make a few definition which introduce some basic notions relevant for our
considerations.

Definition 1.2 Let X := (Xt)t∈R+
0

be a family of E–valued random variables on some mea-

surable space (Ω,F ). For any t ∈ R+
0 we define

F≥t := σ(Xs : s ∈ [t,∞)} and Ft := σ(Xs : s ∈ [0, t]}

and obtain
FX

≥ := (F≥t)t∈R+
0

and FX := (Ft)t∈R+
0
,

where the latter is called the natural filtration with respect to X.

Definition 1.3 Let (Xt)t∈R+
0

be a family of E–valued random variables on some measurable

space (Ω,F ) which permits the following definition. We call a family (θt)t∈R+
0

of operators
θt : Ω → Ω satisfying

∀ s, t ∈ R+
0 : Xs ◦ θt = Xs+t (1.1)
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a family of shift operators. Note that on an arbitrary Ω such shift operators do not
necessarily exist. From now on we postulate their existence, i.e., we will only consider
probability spaces on which those shift operators exist.

Since

θ−1
t (X−1

s (B)) = θ−1
t ◦X−1

s (B) = (Xs ◦ θt)
−1(B) = X−1

s+t(B) ∈ FX
≥t

for all s, t ∈ R+
0 and B ∈ B(E), and because σ(X) = σ(X−1

t (B) : t ∈ R+
0 , B ∈ B(E)), we

deduce that θt is F≥t–σ(X)–measurable.

In case that Ω = ER+
0 and Xt = πt : Ω → E (cf. Definition B.5), t ∈ R+

0 , (1.1) is equivalent
to

∀ω ∈ Ω ∀ s, t ∈ R+
0 : (θtω)s = ωs+t.

Definition 1.4 Let X := (Xt)t∈R+
0

be a family of E–valued random variables on some mea-

surable space (Ω,F ) and let Ξ := (ξν)ν∈P(E) be a family of probability measures on (Ω,F )
such that ξν

X0
= ν for all ν ∈ P(E) and ξ(·)(A) is B(E)–B([0, 1])–measurable for each

A ∈ σ(X), where ξx := ξδx for all x ∈ E. In addition, let (Gt)t∈R+
0

be a filtration on (Ω,F ).

Then we say that (Ξ, X) satisfies the Markov property with respect to (Gt)t∈R+
0

if

∀ ν ∈ P(E)∀Y ∈ B(Ω, σ(X))∀ t ∈ R+
0 : Eν(Y ◦ θt|Gt) = EXt(Y ) ξν–a.s., (1.2)

where Eν denotes the expectation with respect to ξν for any ν ∈ P(E), Ex := Eδx for every

x ∈ E, and EXt(Y ) := E(·)(Y )◦Xt for every t ∈ R+
0 and each Y ∈ B(Ω, σ(X)). If Ω = ER+

0 ,
Xt = πt : Ω → E (cf. Definition B.5) for all t ∈ R+

0 , (Gt)t∈R+
0

= FX and if (1.2) holds true,
then we may simply say Ξ satisfies the Markov property.

Using the denotations of the previous definition we obtain that E(·)(Y ) is B(E)–B(R)–
measurable for all Y ∈ B(Ω, σ(X)). Moreover, for any t ∈ R+

0 we deduce that ξXt(A) is
Gt–B([0, 1])–measurable for each A ∈ σ(X), which implicates that EXt(Y ) is Gt–B(R)–
measurable for all Y ∈ B(Ω, σ(X)).

Definition 1.5 We call a semigroup (Pt)t∈R+
0

of (sub–) Markov kernels on (E,B(E)) a

(sub–) Markov semigroup on (E,B(E)).

Let (Pt)t∈R+
0

be a Markov semigroup on (E,B(E)), let ν ∈ P(E) and let πt : ER+
0 → E,

t ∈ R+
0 , be the projection as in Definition B.5. Furthermore, put (Ω,F ) := (ER+

0 ,Z (ER+
0 )),

where Z (ER+
0 ) denotes the σ–algebra generated by the family of all cylinder sets in ER+

0 .
According to Theorem B.9 there exists a uniquely defined probability measure P ν on (Ω,F )
such that the finite dimensional distributions of the coordinate mapping process (Xt)t∈R+

0
on

(Ω,F , P ν), defined by Xt := πt, are given by

P ν
(Xt1 ,...,Xtn ) = ν ⊗ Pt1 ⊗ Pt2−t1 ⊗ . . .⊗ Ptn−tn−1

for each (t1, . . . , tn) ∈ H(R+
0 ). By Theorem B.10 we have that X is a Markov process with

respect to P ν (cf. Definition B.4), which motivates the following definition:
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Definition 1.6 Let (Pt)t∈R+
0

be a semigroup of Markov kernels on (E,B(E)), let ν ∈ P(E)

and let (Ω,F , P ν) as well as X := (Xt)t∈R+
0

be as above. We call (X,P ν) the canonical

Markov process with respect to (Pt)t∈R+
0

and with initial distribution ν. Furthermore, for

any t ∈ R+
0 we call Pt transition kernel. Moreover, we denote the expectation with respect

to P ν by Eν, and we set P x := P δx as well as Ex := Eδx for all x ∈ E. In addition, for any
t ∈ R+

0 we define PXt and EXt by

∀A ∈ F : PXt(A) = P (·)(A) ◦Xt and ∀Y ∈ B(Ω,F ) : EXt(Y ) = E(·)(Y ) ◦Xt.

Recall that P x
Xt

, x ∈ E, t ∈ R+
0 , denotes the distribution ofXt under P x, i.e., P x

Xt
:= P x◦X−1

t .

In the following let (Pt)t∈R+
0

be a Markov semigroup on (E,B(E)), and for any ν ∈ P(E)

let (X,P ν) be the canonical Markov process on (Ω,F ) := (ER+
0 ,Z (ER+

0 )) with respect to
(Pt)t∈R+

0
and with initial distribution ν.

For any t ∈ R+
0 we define

G := {{Xt1 ∈ B1, . . . , Xtn ∈ Bn} : n ∈ N, 0 ≤ t1 < . . . < tn, Bj ∈ B(E), j = 1, . . . , n}.
Lemma 1.7 The mapping P (·)(A) : E → R is B(E)–B([0, 1])–measurable for all A ∈ σ(X).

Proof Since

P (·)(A) = P
(·)
(Xt1 ,...,Xtn )(B1 × . . .×Bn) = Pt1 ⊗ . . .⊗ Ptn−tn−1(·, B1 × . . .×Bn)

for all A = (Xt1 , . . . , Xtn)−1(B1 × . . .×Bn) ∈ G, we deduce that P (·)(A) is B(E)–B([0, 1])–
measurable for any A ∈ G. Note that δ(G), the Dynkin system generated by G, coincides with
σ(G), because G is closed under the formation of finite intersections. The aforementioned
measurability extends to all A ∈ δ(G) = σ(G) = σ(X). �

In the following lemma we will consider a general measurable space (Ω̃, F̃ ), rather than
(Ω,F ). Recall that Definition 1.4 admits a general measurable space and is not restricted
to the canonical model.

Lemma 1.8 Let Ξ := (ξν)ν∈P(E) be a family of probability measures on some measurable

space (Ω̃, F̃ ) such that ξν
X0

= ν for all ν ∈ P(E) and ξ(·)(A) is B(E)–B([0, 1])–measurable
for each A ∈ σ(X), where ξx := ξδx for all x ∈ E. In addition, assume that Ξ satisfies the
Markov property. Furthermore, let (µt)t∈R+

0
be a family of functions µt : E ×B(E) → [0, 1]

defined by µt(x,B) = ξx
Xt

(B) for all x ∈ E,B ∈ B(E). Then (µt)t∈R+
0

is a Markov semigroup

on (E,B(E)), and

∀ ν ∈ P(E) : ξν
(Xt1 ,...,Xtn ) = ν ⊗ µt1 ⊗ µt2−t1 ⊗ . . .⊗ µtn−tn−1 (1.3)

holds for any (t1, . . . , tn) ∈ H(R+
0 ).

Proof At first we show that µt, t ∈ R+
0 , is a Markov kernel on (E,B(E)). For fixed x ∈ E

we infer that µt(x, ·) is a probability measure on (E,B(E)), since µt(x, ·) = ξx
Xt
∈ P(E).
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Moreover, for any B ∈ B(E) we have that µt(·, B) = ξ(·)(Xt ∈ B), which is B(E)–B([0, 1])–

measurable by assumption. For all s, t ∈ R+
0 and every B ∈ B(E) let ξXs

Xt
(B) := ξ

(·)
Xt

(B)◦Xs

Now observe that the Markov property of (ξν)ν∈P(E) yields that

µt−s(Xs, B) = ξXs
Xt−s

(B)
(B.7)
= ξν(Xt ∈ B|Fs)

(B.1)
= ξν(Xt ∈ B|Xs)

holds ξν–a.s. for each ν ∈ P(E), any B ∈ B(E) and all s, t ∈ R+
0 with s ≤ t. In addition,

for any ν ∈ P(E) we denote by Eξν the expectation with respect to ξν . Therefore,

µs+t(X0, B) = ξν(Xs+t ∈ B|X0)

= Eξν (ξν(Xs+t ∈ B|X0, Xs)|X0)

(B.1)
= Eξν (ξν(Xs+t ∈ B|Xs)|X0)

(1.2)
=

∫
Ω̃

ξ
Xs(ω)
Xt

(B)ξ(·)(dω) ◦X0

=

∫
E

ξx
Xt

(B)ξX0
Xs

(dx)

=

∫
E

µs(X0, dx)µt(x,B)

= µs ◦ µt(X0, B)

holds true ξν–a.s. for each ν ∈ P(E), any B ∈ B(E) and all s, t ∈ R+
0 with s ≤ t,

which shows that µs+t = µs ◦ µt, i.e., (µt)t∈R+
0

satisfies the Chapman–Kolmogorov equation.
Moreover, we have

∀x ∈ E ∀B ∈ B(E) : µ0(x,B) = ξx
X0

(B) = δx(B),

and thus (µt)t∈R+
0

is a Markov semigroup. In order to complete the proof it remains to show

that (1.3) holds true. For this purpose let ν ∈ P(E) and (t1, . . . , tn) ∈ H(R+
0 ). Then we

deduce that

ξν
(Xt1 ,...,Xtn )(B0 ×B1 × . . .×Bn)

=

∫
Bn

. . .

∫
B1

∫
B0

ν(dx0)ξ
x0
Xt1

(dx1) . . . ξ
xn−1

Xtn−tn−1
(dxn)

=

∫
Bn

. . .

∫
B1

∫
B0

ν(dx0)µt1(x0, dx1) . . . µtn−tn−1(xn−1, dxn)

= ν ⊗ µt1 ⊗ . . .⊗ µtn−tn−1(B0 ×B1 × . . .×Bn)

holds for all B0, . . . , Bn ∈ B(E), which proves the assertion. �

1.2 Feller Processes

Throughout this section let (Pt)t∈R+
0

be a Markov semigroup on (E,B(E)). For any ν ∈ P(E)

let (X,P ν) be the canonical Markov process on (Ω,F ) := (ER+
0 ,Z (ER+

0 )) with respect
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to (Pt)t∈R+
0

and with initial distribution ν. Furthermore, let (Tt)t∈R+
0

be the associated

semigroup of transition operators, i.e., Ttf(x) =
∫

E
Pt(x, dy)f(y) for all x ∈ E and any

t ∈ R+
0 .

In view of (2.11) Proposition and (2.14) Proposition in Chapter III in [RY99] we may replace
the filtration FX by the complete filtration G X (cf. Definition A.1). In particular, we have
that a family of probability measures on (Ω,F ) which satisfies the Markov property with
respect to FX also satisfies the Markov property with respect to G X .

Let X∞ : Ω → E be a
∨

t∈R+
0

Ft–B(E)–measurable function. For any FX–stopping time τ
we define a random variable Xτ by

∀ω ∈ Ω : Xτ (ω) = Xτ(ω)(ω).

Definition 1.9 For any FX–stopping time τ we define a shift operator θτ : Ω → Ω by

∀ t ∈ R̄+
0 : θτ = θt on {τ = t},

where θ∞ is given by Xt ◦ θ∞ = X∞ for all t ∈ R+
0 . Note that, confer Definition 1.3,

Xt ◦ θτ = Xt+τ for all t ∈ R+
0 .

Definition 1.10 Let Ξ := (ξν)ν∈P(E) be a family of probability measures on (Ω,F ) such
that ξν

X0
= ν for all ν ∈ P(E) and ξ(·)(A) is B(E)–B([0, 1])–measurable for each A ∈ σ(X),

where ξx := ξδx for all x ∈ E. Then we say that Ξ satisfies the strong Markov property
if

Eξν (Y ◦ θτ |Fτ ) = EξXτ (Y ) ξν–a.s. (1.4)

holds for all ν ∈ P(E), Y ∈ B(Ω, σ(X)) and τ ∈ Sf (P
ν ,FX), where Sf (P

ν ,FX) denotes the
set of all FX–stopping times which are finite P ν–a.s.. Here, for any ν ∈ P(E), Eξν denotes
the expectation with respect to ξν, and for each x ∈ E we put Eξx := Eξδx . Furthermore, for
every t ∈ R+

0 and any Y ∈ B(Ω,F ) we adopt EξXt (Y ) := Eξ(·)(Y ) ◦Xt.

Lemma 1.11 We have that (1.4) is equivalent to

∀x ∈ E ∀A ∈ σ(X)∀ τ ∈ Sf (P
x,FX) : P x(θ−1

τ (A)|Fτ ) = PXτ (A) P x–a.s.. (1.5)

Proof “(1.4) =⇒ (1.5):” Let A ∈ σ(X), x ∈ E and τ ∈ Sf (P
x,FX). Furthermore, put

Y := 1A. Then Y ∈ B(Ω, σ(X)) and Y ◦ θτ = 1θ−1
τ (A). With ν := δx in (1.4) this shows the

assertion.

“(1.5) =⇒ (1.4):” The proof is completely analogous to the proof of “(B.8) =⇒ (B.9)” in
Lemma B.13, in conjunction with Lemma B.17. �

Definition 1.12 Let Ξ := (ξν)ν∈P(E) be a family of probability measures on (Ω,F ) such
that ξν

X0
= ν for all ν ∈ P(E) and ξ(·)(A) is B(E)–B([0, 1])–measurable for each A ∈ σ(X),

where ξx := ξδx for all x ∈ E. Then Ξ is said to satisfy the Feller property if

(i) ξxn
Xt
→ ξx

Xt
weakly as n → ∞ for any t ∈ R+

0 and all (xn)n∈N ⊆ E, x ∈ E with xn → x
as n→∞,
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(ii) Xt
ξx

→ X0 as t→ 0 for all x ∈ E.

Lemma 1.13 (P ν)ν∈P(E) satisfies the Feller property iff (Tt)t∈R+
0

is a Feller semigroup (cf.

Definition A.9), i.e.,

(i) ∀ t ∈ R+
0 : TtC0(E) ⊆ C0(E) ⇐⇒ ∀ t ∈ R+

0 : P xn
Xt

→ P x
Xt

weakly as n → ∞ for all
(xn)n∈N ⊆ E, x ∈ E with xn → x as n→∞,

(ii) ∀ f ∈ C0(E)∀x ∈ E : Ttf(x) → f(x) as t→ 0 ⇐⇒ ∀x ∈ E : Xt
P x

→ X0 as t→ 0.

Proof (i) Let (xn)n∈N ⊆ E and x ∈ E be such that xn → x. Then we have

∀ t ∈ R+
0 : TtC0(E) ⊆ C0(E)

⇐⇒ ∀ t ∈ R+
0 ∀ f ∈ C0(E) : Ttf(xn) → Ttf(x) as n→∞

⇐⇒ ∀ t ∈ R+
0 ∀ f ∈ C0(E) :

∫
E

f(z)Pt(xn, dz) →
∫

E

f(z)Pt(x, dz) as n→∞

⇐⇒ ∀ t ∈ R+
0 ∀ f ∈ C0(E) :

∫
E

f(z)P xn
Xt

(dz) →
∫

E

f(z)P x
Xt

(dz) as n→∞

⇐⇒ ∀ t ∈ R+
0 : P xn

Xt

w→ P x
Xt

as n→∞,

because in our situation the concepts of weak convergence and vague convergence
coincide (cf. p. 4).

(ii) Observe that

∀ f ∈ C0(E)∀x ∈ E : Ttf(x) → f(x) as t→ 0

⇐⇒ ∀ f ∈ C0(E)∀x ∈ E :

∫
E

Pt(x, dy)f(y) → f(x) as t→ 0

⇐⇒ ∀ f ∈ C0(E)∀x ∈ E :

∫
E

P x
Xt

(dy)f(y) →
∫

E

δx(dy)f(y) as t→ 0

⇐⇒ ∀x ∈ E : P x
Xt

w→ δx = P x
X0

as t→ 0

⇐⇒ ∀x ∈ E : Xt
P x

→ X0 as t→ 0,

where the latter equivalence holds, since a sequence of random variables converges in
probability (with respect to P x) to some random variable which is P x–a.s. constant
iff the sequence converges in distribution (with respect to P x) to this random variable
(cf. 5.1 Theorem in Chapter I in [Bau02]).

�

Definition 1.14 If (P ν)ν∈P(E) satisfies the Feller property, then we say that (X,P ν), ν ∈
P(E), is the canonical Feller process with respect to (Pt)t∈R+

0
and with initial distribution

ν.

For the remainder of this section we postulate that (P ν)ν∈P(E) satisfies the Feller property.
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Theorem 1.15 (Kinney’s Regularity Theorem) For any ν ∈ P(E) the process X has
an E–valued rcll P ν–modification.

Proof See e.g. Theorem 17.15 in [Kal01]. �

Lemma 1.16 Let ν ∈ P(E). Assume that X has a P ν–modification which satisfies some
property and let Ω̃ ⊆ Ω consist of all those ω ∈ Ω which have this property. Then P ν∗(Ω̃) = 1,
where ν∗ denotes the outer measure corresponding to ν.

Proof Confer Theorem 2.4 in conjunction with Definition 2.2 in [HT94]. �

The following definition provides us with a coordinate mapping process on RCLL(R+
0 , E).

Definition 1.17 Put Ω̃ := RCLL(R+
0 , E) ⊆ Ω. Furthermore, let ν ∈ P(E) and define

F̃ := F∩Ω̃ = B(Ω̃), P̃ ν := P ν∗|F̃ and X̃ := X|Ω̃. Since, by Theorem 1.15 and Lemma 1.16,
P ν∗(Ω̃) = 1, we infer from

P ν
Xt1 ,...,Xtn

= P ν∗
([
{(Xt1 , . . . , Xtn) ∈ ·} ∩ Ω̃

]
∪
[
{(Xt1 , . . . , Xtn) ∈ ·} ∩ Ω̃{

])
= P ν∗({(Xt1 , . . . , Xtn) ∈ ·} ∩ Ω̃) (1.6)

= P̃ ν
X̃t1 ,...,X̃tn

for all n ∈ N, t1, . . . , tn ∈ R+
0 that we can reduce (Ω,F , P ν) to the probability space (Ω̃, F̃ , P̃ ν)

such that the finite dimensional distributions of X under P ν and X̃ under P̃ ν coincide. We
call (X̃, P̃ ν) the Feller process with respect to (Pt)t∈R+

0
and with initial distribution ν.

Let us equip Ω̃ = RCLL(R+
0 , E) with the Skorohod topology TS (cf. (5.2) in Chapter 3 in

[EK86]). The following lemma yields that (Ω̃, TS) is a Polish space.

Lemma 1.18 Let (E1, TE1) be some Polish space. The topological space (RCLL(R+
0 , E1), TS),

where TS denotes the Skorohod topology on RCLL(R+
0 , E1), is a Polish space.

Proof See 5.6 Theorem in Chapter 3 in [EK86]. �

Theorem 1.19 (P̃ ν)ν∈P(E) satisfies the strong Markov property.

Proof See Theorem 1 in Section 3 of Chapter 2 in [Chu82] or Theorem 17.17 in [Kal01].
�

1.3 Feller Diffusions

In this section we will accomplish the main purpose of this chapter, for that we will give
a first definition of diffusion processes. Since the diffusion processes which we are going to
define in this section evolve from Feller processes, we will refer to them as Feller diffusions.

Our proceeding during this section is mainly based upon Chapter 17 in [Kal01], §6 of Chapter
Five and §1 of Chapter Ten in [Dyn65I] as well as §5 of Chapter Thirteen in [Dyn65II]. The
main ideas regarding the proofs are due to [Kal01].
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For each d ∈ N we denote the set of all symmetric real positive semidefinite d× d matrices
by Md. In addition, for each domain U ⊆ Rd and for any a : U →Md and x ∈ U we denote
the entries a(x)ij; i, j = 1, . . . , d; of a(x) by aij(x). Moreover, for any function b : U → Rd

we denote by bi the coordinate mapping.

Let (Pt)t∈R+
0

be a Markov semigroup on (E,B(E)), and assume that the corresponding

semigroup (Tt)t∈R+
0

of transition operators is a Feller semigroup. For any ν ∈ P(E) let

(X,P ν) be the Feller process on (Ω,F ) := (RCLL(R+
0 , E),B[RCLL(R+

0 , E)]) with respect
to (Pt)t∈R+

0
and with initial distribution ν. Furthermore, let T be the generator of (Tt)t∈R+

0

with domain D ⊆ C0(Rd).

1.3.1 Feller Diffusions in Rd

This subsection is devoted to the development of the notion of Feller diffusions in Rd. In the
next subsection we will utilise this in order to introduce the concept of Feller diffusions in a
domain U ⊆ Rd.

In the following we will consider stochastic processes M f := (M f
t )t∈R+

0
, f ∈ D, defined by

∀ t ∈ R+
0 : M f

t := f ◦Xt − f ◦X0 −
∫

[0,t]

(Tf) ◦Xs λ(ds). (1.7)

Lemma 1.20 Let f ∈ D. For any ν ∈ P(E) the process (M f , P ν) is an FX–martingale.
Moreover, in particular this implies that

∀x ∈ E : Ex(f ◦Xτ ) = f(x) + Ex

∫
[0,τ ]

Tf ◦Xs λ(ds) (1.8)

holds for every bounded FX–stopping stopping time τ . We call (1.8) Dynkin’s formula.

Proof Fix an arbitrary ν ∈ P(E). At first observe that

M f
t+h −M f

t = f ◦Xt+h − f ◦Xt −
∫

(t,t+h]

Tf ◦Xs λ(ds)

= f ◦Xh ◦ θt − f ◦X0 ◦ θt −
∫

(0,h]

Tf ◦Xs ◦ θt λ(ds)

= M f
h ◦ θt.

holds for all t, h ∈ R+
0 . Moreover, M f

h ∈ B(Ω, σ(X)), and thus we deduce from the Markov
property (cf. Lemma B.13) that

∀ t, h ∈ R+
0 : Eν(M

f
t+h −M f

t |Ft) = Eν(M
f
h ◦ θt|Ft) = EXt(M

f
h )

(∗)
= 0 P ν–a.s.,

where (∗) holds, since

EXt(M
f
h ) =

(
Thf − f −

∫
[0,h]

TsTf λ(ds)

)
◦Xt = 0.
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holds true by Theorem B.22 (i). Therefore, because M f is FX–adapted, we infer that
(M f , P ν) is an FX–martingale. Now consider a bounded FX–stopping time τ . By the
Optional Sampling Theorem (cf. Theorem B.18) we have Ex(M

f
τ ) = Ex(M

f
0 ) = 0, x ∈ E,

and hence, by taking the expectation in (1.7), we obtain

∀x ∈ E : Ex(f ◦Xτ )− f(x)− Ex

∫
[0,τ ]

Tf ◦Xs λ(ds) = Ex(M
f
τ ) = 0,

which shows that (1.8) holds. �

For any h ∈ R+
0 we define an FX–stopping time τh by

τh := inf{t ∈ R+
0 : ρE ◦ (X0, Xt) > h}.

Note that τh is indeed an FX–stopping time, since FX is right–continuous, and moreover
observe that x ∈ E is absorbing with respect to P x iff τ0 ≡ ∞ P x–a.s..

Lemma 1.21 For any nonabsorbing x ∈ E there exists an h0 ∈ R+
0 such that Ex(τh0) <∞

for all h ∈ [0, h0].

Proof Let x ∈ E be nonabsorbing. Then, since x is nonabsorbing, there exist t0, ε0 > 0
and p0 ∈ [0, 1) such that Pt0(x,B[x, ε0]) ≤ p0. Consider an arbitrary sequence (xn)n∈N in E
converging to x. We deduce from Lemma 1.13 (i) that P xn → P x weakly as n→∞. By the
Portmanteau Theorem (cf. Theorem 3.25 in [Kal01]) this implies that

lim sup
n→∞

P xn
Xt0

(B[x, ε0]) ≤ P x
Xt0

(B[x, ε0]),

i.e., P
(·)
Xt0

(B[x, ε0]) is upper semicontinuous in x. Therefore, for each δ > 0 there exists an
h0 > 0 such that

P y
Xt0

(B[x, ε0]) ≤ P x
Xt0

(B[x, ε0]) + δ ≤ p0 + δ, (1.9)

holds for all y ∈ B[x, h0]. This can be seen as follows: By definition of the limit superior
there exist k, n1, . . . , nk,∈ N such that

∀δ > 0∀n ∈ N \ {n1, . . . , nk} : P xn
Xt0

(B[x, ε0]) ≤ P x
Xt0

(B[x, ε0]) + δ. (1.10)

Now assume there were a δ > 0 such that for every h > 0 there exists some yh ∈ B[x, h]
with P yh

Xt0
(B[x, ε0]) > P x

Xt0
(B[x, ε0]) + δ. Then we could construct a sequence (zn)n∈N by

zn := y1/n for all n ∈ N. Note that zn → x as n→∞ and P zn
Xt0

(B[x, ε0]) > P x
Xt0

(B[x, ε0]) + δ

for all n ∈ N. But this would pose a contradiction to (1.10).

Choose some δ > 0 with pδ := p0 + δ < 1, and let h0 ∈ (0, ε0] be such that (1.9) holds for all
y ∈ B[x, h0]. Then we obtain that

P x(τh0 > nt0) ≤ P x
(Xt0 ,X2t0 ,...,Xnt0 )(B[x, h0]

n)

=

∫
B[x,h0]

∫
B[x,h0]

. . .

∫
B[x,h0]

P x
Xt0

(dx1)P
x1
Xt0

(dx2) . . . P
xn−1

Xt0
(dxn)
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≤ pn
δ

holds for all n ∈ N. It follows that

Ex(τh0) =

∫
[0,∞)

P x(τh0 ≥ s)λ(ds) ≤ t0
∑
n∈N0

P x(τh0 ≥ nt0) ≤ t0
∑
n∈N0

pn
δ =

t0
1− pδ

<∞,

since |pδ| < 1. Of course, this property extends to all h ∈ [0, h0]. �

Definition 1.22 We denote by DD the set of all f ∈ B(E) such that

lim
h↓0

Ex(f ◦Xτh
)− f(x)

Ex(τh)

exists and is finite for all nonabsorbing x ∈ E. Furthermore, the linear operator L on DD,
defined by Lf(x) = 0, f ∈ DD, for any absorbing x ∈ E and

∀ f ∈ DD : Lf(x) = lim
h↓0

Ex(f ◦Xτh
)− f(x)

Ex(τh)
(1.11)

for each nonabsorbing x ∈ E, is referred to as Dynkin’s characteristic operator.

Theorem 1.23 We have that D ⊆ DD, and T is the restriction of Dynkin’s characteristic
operator onto D.

Proof Let h0 be as in Lemma 1.21 and fix some f ∈ D. Initially, let x ∈ E be absorbing.
Then we have for any t ∈ R+

0 that Ttf(x) =
∫

E
Pt(x, dy)f(y) = f(x). Thus, by Theo-

rem B.22 (ii), Tf(x) = TtTf(x) = d
dt

(Ttf(x)) = 0, t ∈ R+
0 . Now let x ∈ E be nonabsorbing.

For all h ∈ [0, h0] and t ∈ R+
0 we have that τh ∧ t is a FX–stopping time which is bounded

above by t, and thus we infer from Dynkin’s formula (cf. Lemma 1.20) that

∀ t ∈ R+
0 ∀h ∈ [0, h0] : Ex(f ◦Xτh∧t)− f(x) = Ex

∫
[0,τh∧t]

Tf ◦Xs λ(ds). (1.12)

Since τh ∧ t is bounded above by τh and, by Lemma 1.21, Ex(τh) <∞ for all h ∈ [0, h0], we
can apply the Dominated Convergence Theorem in (1.12) at taking the limit as t→∞ and
obtain that

Ex(f ◦Xτh
)− f(x)

Ex(τh)
=

Ex

(∫
[0,τh]

Tf ◦Xs λ(ds)
)

Ex(τh)

=
Ex

(∫
[0,τh)

(Tf ◦Xs − Tf ◦X0 + Tf ◦X0)λ(ds)
)

Ex(τh)
(1.13)

=
Ex

(∫
[0,τh)

(Tf ◦Xs − Tf ◦X0)λ(ds)
)

Ex(τh)
+ Tf(x)

holds for any h ∈ [0, h0]. Note that because of the right-continuity of X, we have that
Ex(τh) > 0 for all h > 0. Fix some arbitrary ε > 0, then Tf being continuous yields that
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there exists a δε > 0 such that |Tf(y) − Tf(x)| ≤ ε for all y ∈ B[x, δε]. Now choose an
arbitrary hε ∈ [0, h0 ∧ δε]. Then we have for any ω ∈ Ω that ρE(X0(ω), Xs(ω)) ≤ δε for all
s ∈ [0, τhε(ω)). This results in∣∣∣∣∣∣

Ex

(∫
[0,τhε )

(Tf ◦Xs − Tf ◦X0)λ(ds)
)

Ex(τhε)

∣∣∣∣∣∣ ≤
Ex

(∫
[0,τhε )

|Tf ◦Xs − Tf ◦X0|λ(ds)
)

Ex(τhε)

≤ εEx(τhε)

Ex(τhε)
= ε,

which shows that limh↓0
Ex

“R
[0,τh)(Tf◦Xs−Tf◦X0) λ(ds)

”
Ex(τh)

= 0. Therefore, by means of (1.13), we
infer that

lim
h↓0

Ex(f ◦Xτh
)− f(x)

Ex(τh)
= lim

h↓0

Ex

(∫
[0,τh)

(Tf ◦Xs − Tf ◦X0)λ(ds)
)

Ex(τh)
+ Tf(x) = Tf(x).

�

For the remaining part of this chapter we fix an arbitrary d ∈ N and consider the locally
compact Polish space Rd equipped with the Euclidean norm, which we denote by ‖ · ‖2. In
addition, we denotate by the same symbol, ‖ · ‖2, the function ‖ · ‖2 : L 0(Ω) → R+

0 defined
by ‖Y ‖2(ω) = ‖Y (ω)‖2 for any Y ∈ L 0(Ω) and all ω ∈ Ω. This ambiguity of the symbol
‖ · ‖2 is somewhat intuitive and should not lead to any misinterpretations.

Definition 1.24 A B(Rd)–valued linear operator L with domain DL, C2
K(Rd) ⊆ DL ⊆

B(Rd), is called local if for every f ∈ C2
K(Rd) the property Lf(x) = 0 holds for any x ∈ Rd

with f ≡ 0 on B[x, ε] for some ε > 0.

Definition 1.25 Let L be a B(Rd)–valued linear operator with domain DL, C2
K(Rd) ⊆ DL ⊆

B(Rd). We say that L satisfies the local positive maximum principle if[
f ∈ C2

K(Rd), x ∈ Rd, ε > 0 : f+(y) ≤ f(x)∀ y ∈ B[x, ε]
]

=⇒ [Lf(x) ≤ 0].

Let C1, C2 ⊆ Rd be disjoint closed sets. In the proof of the following lemma, as well as
on several occasions throughout this thesis, we will utilise a so–called cut–off function
ϕ ∈ C∞

K (Rd, [0, 1]) with ϕ ≡ 1 on C1 and ϕ ≡ 0 on C2. For the proof of existence as well as
a construction of such a cut–off function see (7.2) and (7.4) Remark in [BJ73].

Lemma 1.26 Let L be a B(Rd)–valued linear operator with domain DL, C2
K(Rd) ⊆ DL ⊆

B(Rd), which is local and satisfies the positive maximum principle (cf. Definition A.11).
Then L satisfies the local positive maximum principle.

Proof Let f ∈ C2
K(Rd) have a nonnegative local maximum at x0 ∈ Rd. Then there exists

an ε > 0 with f(x0) ≥ f+(x) for all x ∈ B[x0, ε]. Moreover, there exists a cut–off function
ϕ ∈ C2

K(Rd) with ϕ ≡ 1 on B[x0, ε/2], ϕ ≡ 0 on Rd \ B[x0, ε] and ϕ(x) ∈ [0, 1] for all
x ∈ B[x0, ε] \B[x0, ε/2]. Furthermore, choose some ψ ∈ C2

K(Rd) with ψ = 1−ϕ on supp (f).



2.2. FELLER DIFFUSIONS IN Rd 15

Note that the product of functions in C2
K(Rd) is again an element of C2

K(Rd). It follows from
the positive maximum principle that L(ϕ ·f)(x0) ≤ 0, because ϕ ·f has a nonnegative global
maximum at x0. Furthermore, L being local implies that L(ψ · f)(x0) = 0, since ψ · f ≡ 0
on B[x0, ε/2]. By the linearity of L we obtain

Lf(x0) = L(ϕ · f)(x0) + L(ψ · f)(x0) ≤ 0.

�

Theorem 1.27 If C2
K(Rd) ⊆ D, then T is local iff for every ν ∈ P(Rd) the process X is

continuous P ν–a.s., i.e., P ν–a.a. trajectories of X are continuous on R+
0 . Moreover, if

either of these two equivalent properties holds, then there exist (aij)i,j=1,...,d ∈ C(Rd,Md),
(bi)i=1,...,d ∈ C(Rd,Rd) and c ∈ C(Rd,R+

0 ) such that

Tf(x) =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

f(x) +
d∑

i=1

bi(x)
∂

∂xi

f(x)− cf(x). (1.14)

for all f ∈ C2
K(Rd) and any x ∈ Rd. The coefficients (aij)i,j=1,...,d and (bi)i=1,...,d are called

diffusion coefficient and drift coefficient, respectively.

Proof Firstly, we presume that X is P ν–a.s. continuous for any probability measure ν. Let
f ∈ C2

K(Rd), x ∈ Rd and ε > 0 such that f ≡ 0 on B[x, ε]. For the time being, assume that
x is nonabsorbing. Note that because of the right-continuity of X we have that Ex(τh) > 0
for all h > 0, and because of the continuity of X we have that ‖X0 − Xτε‖2 = ε P x–a.s..
Therefore, Ex(f ◦Xτh

) = 0 for all h ∈ [0, ε], and thus, since f(x) = 0, we infer that

Tf(x)
T.1.23
= lim

h↓0

Ex(f ◦Xτh
)− f(x)

Ex(τh)
= 0.

If, however, x is absorbing, then Theorem 1.23 yields that Tf(x) = 0.

Conversely, we presume T to be local, and we choose an arbitrary x ∈ Rd and k,m ∈ N
with 1/k < m. Furthermore, let f ∈ C2

K(Rd) be nonnegative with supp (f) = {y ∈ Rd :
‖y−x‖2 ∈ [1/k,m]}. Then Tf ≡ 0 on B(x, 1/k), because T is local and for each y ∈ B(x, 1/k),
there is a neighbourhood N ⊆ B(x, 1/k) of y. Now Tf being continuous yields that even
Tf ≡ 0 on B[x, 1/k]. Furthermore, Xt(ω) ∈ B[X0, 1/k] for all t ∈ [0, τ1/k), ω ∈ Ω. Hence
we infer from Lemma 1.21 and the Optional Sampling Theorem (cf. Theorem B.18) that,

under P x, (f ◦Xt∧τ1/k
)t∈R+

0

P x–
=
a.s.

(M f
t∧τk

)t∈R+
0

is a martingale with respect to FX . Moreover,

Ex(f ◦ X0) = 0, and thus, by the martingale property mentioned above, we infer that
Ex(f ◦Xt∧τ1/k

) = 0 for all t ∈ R+
0 . Taking the limit as t→∞ we deduce from the Dominated

Convergence Theorem that Ex(f ◦ Xτ1/k
) = 0. Because f is nonnegative, it follows that

f ◦Xτ1/k
= 0 P x–a.s., i.e., ‖Xτ1/k

− x‖2 ∈ [0, 1/k] ∪ [m,∞] P x–a.s.. Letting m→∞, we infer
that

∀ k ∈ N : P x(‖Xτ1/k
− x‖2 ≤ 1/k) = 1. (1.15)

Let ν ∈ P(Rd). Since x ∈ Rd was chosen arbitrarily, we obtain

∀ k ∈ N : P ν

(⋂
t∈N0

θ−1
t {‖Xτ1/k

−X0‖2 ≤ 1/k}

)
= 1. (1.16)
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To see this, put A := {‖Xτ1/k
− x‖2 ≤ 1/k} and observe that PXt(A) ≡ 1 holds true,

because (1.15) holds for every x ∈ Rd. Hence the Markov property of (P ν)ν∈P(Rd) yields
that PXt(A) = P x(θ−1

t (A)|Ft), which results in P x(θ−1
t (A)) = 1 for all x ∈ Rd. Then (1.16)

follows from Lemma B.17 and the fact that the countable union of P ν–null sets is again a
P ν–null set.

Observe that

θ−1
t−1/n

{‖Xτ1/k
−X0‖2 ≤ 1/k} = {‖Xt+τ1/k−1/n −Xt−1/n‖2 ≤ 1/k}

holds for any t ∈ R+
0 and all k, n ∈ N. Therefore, we deduce from (1.16) that

∀ t ∈ R+
0 ∀ k, n ∈ N, 1/n ≤ τ1/k : P ν

(
‖Xt+τ1/k−1/n −Xt−1/n‖2 ≤ 1/k

)
= 1.

Letting k → ∞ and n → ∞ such that τ1/k − 1/n ↓ 0 results in ‖∆Xt‖2 = 0 P ν–a.s. for all
t ∈ R+

0 , where ∆Xt := Xt+0 − Xt−0. The right-continuity of X yields that ‖∆Xt‖2 = 0
P ν–a.s. for all t ∈ R+

0 , which shows that X is continuous P ν–a.s..

It remains to show that (1.14) holds. To this end we fix some arbitrary x ∈ Rd as well as
ε > 0, and we consider fx

ij, f
x
i ∈ C2

K(Rd), i, j = 1, . . . , d, defined on B[x, ε] by

∀ y ∈ B[x, ε] : fx
ij(y) = (yi − xi)(yj − xj), fx

i (y) = yi − xi.

Furthermore, choose fij, fi, f0 ∈ C2
K(Rd), i, j = 1, . . . , d, such that

fij = yiyj, fi(y) = yi, f0(y) = 1

holds for all y ∈ B[x, ε], and moreover put

ax
ij := Tfx

ij(x), bxi := Tfx
i (x), cx := −Tf0(x). (1.17)

Observe that ax
ij, b

x
i and cx are well defined, i.e., they do not depend on the actual choice

of fx
ij, f

x
i , f0 ∈ C2

K(Rd), i, j = 1, . . . , d, with fx
ij(y) = (yi − xi)(yj − xj), f

x
i (y) = yi − xi and

f0(y) = 1 for all y ∈ B[x, ε]. To see this, choose fx
ij, g

x
ij, f

x
i , g

x
i , f0, g0 ∈ C2

K(Rd) with the
properties mentioned above. Then T being local results in

T (fx
ij − gx

ij)(x) = T (fx
i − gx

i )(x) = T (f0 − g0)(x) = 0,

since fx
ij − gx

ij = fx
i − gx

i = f0 − g0 = 0 on B[x, ε]. Now we deduce from the linearity of T
that ax

ij, b
x
i and cx are well defined. It follows from the linearity of T that

Tfij(x) = T (fx
ij + xjfi + xifj − xixjf0)(x) = ax

ij + xjb
x
i + xib

x
j − xixjc

x,

T fi(x) = T (fx
i + xif0)(x) = bxi − xic

x. (1.18)

Let ϕ ∈ C2
K(Rd) be such that ϕ|B[x,ε] is a second–degree polynomial (cf. Definition A.2).

Then there exist αij, βi, γ ∈ R, i, j = 1, . . . , d, such that

ϕ(x) =
d∑

i,j=1

αijxixj +
d∑

i=1

βixi + γ.
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We infer that

∂

∂xi

ϕ(x) =
d∑

j=1

(αij + αji)xj + βi and
∂2

∂xi∂xj

ϕ(x) = αij + αji,

and obtain

Tϕ(x) =
d∑

i,j=1

αijTfij(x) +
d∑

i=1

βiTfi(x) + γTf0(x)

=
d∑

i,j=1

αij(a
x
ij + xjb

x
i + xib

x
j − xixjc

x) +
d∑

i=1

βi(b
x
i − xic

x)− γcx

=
1

2

d∑
i,j=1

ax
ij(αij + αji) +

d∑
i=1

bxi

(
d∑

j=1

(αij + αji)xj + βi

)

−cx
(

d∑
i,j=1

αijxixj +
d∑

i=1

βixi + γ

)

=
1

2

d∑
i,j=1

ax
ij

∂2

∂xi∂xj

ϕ(x) +
d∑

i,j=1

bxi
∂

∂xi

ϕ(x)− cxϕ(x).

By Lemma 1.26 in conjunction with Theorem B.23, T satisfies the local positive maximum
principle, and thus we infer from (1.17) that cx = −Tf0(x) ≥ 0, because f0 has a nonnegative
local maximum at x. Moreover, (ax

ij)i,j=1,...,d is positive semi–definite. This can be seen

by applying the local positive maximum principle to the functions gξ := −
(∑d

i=1 ξif
x
i

)2

,

ξ ∈ Rd, which have a nonnegative local maximum at x. This implies that ξT (ax
ij)i,j=1,...,dξ =

−Tfξ(x) ≥ 0 for all ξ ∈ Rd.

So far the choice of x ∈ Rd was arbitrary, i.e., the above constructions can be made on
the lines of our considerations above for all x ∈ Rd. Having done this, we can define
aij, bi, c : Rd → R, i, j = 1, . . . , d, by

∀x ∈ Rd : aij(x) = ax
ij, bi(x) = bxi , c(x) = cx.

Note that (1.18) implies that aij, bi, c ∈ C(Rd) and aij = aji for all i, j = 1, . . . , d. Therefore,
(1.14) holds at x for any function which coincides with a second–degree polynomial on B[x, ε].

Again choose arbitrary x ∈ Rd and ε > 0. Furthermore, let f ∈ C2
K(Rd) and let g ∈ C2

K(Rd)
be such that on B[x, ε] g coincides with a second–order Taylor expansion (cf. Definition A.2)
of f around x, i.e.,

g(y) = f(x) +
d∑

i=1

∂

∂xi

f(x)(y − x)

+2
d∑

i=1

∑
j>i

∂2

∂xi∂xj

f(x)(yi − xi)(yj − xj) +
1

2

d∑
i=1

∂2

∂x2
i

f(x)(yi − xi)
2.
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holds for all y ∈ B[x, ε]. Hence, on B[x, ε] the function g coincides with a second–degree
polynomial, and thus we obtain by our considerations above that (1.14) holds at x for g.
In order to extend this result to f we will utilise a result about the remainder term in the
Taylor formula and the fact that g(x) = f(x). Let (xn)n∈N be a sequence in Rd converging
to x. By the qualitative Taylor formula, which can be found in Section 4 of Chapter 2 in
[Kön97], we have that ([f(xn) − g(xn)]‖xn − x‖−2

2 ) → 0 as n → ∞. Therefore, there exists
an ε > 0 such that any ψε ∈ C2

K(Rd) given on B[x, ε] by

∀ y ∈ B[x, ε] : ψε(y) = f(y)− g(y)− ε‖x− y‖2
2

has a nonnegative local maximum at x, since ψε(x) = 0, which, by the local positive maxi-
mum principle, yields that

∀ε > 0 : Tψε(x) = Tf(x)− Tg(x)− ε

d∑
i=1

aii(x) ≤ 0.

Since the inequality holds for all ε > 0, we infer that

Tf(x)− Tg(x) = lim
ε→0

Tψε(x) ≤ 0,

Analogously we obtain that Tf(x) − Tg(x) ≤ 0, which shows that Tf(x) = Tg(x), and
consequently (1.14) holds at x for f . From that it follows the assertion, because x ∈ Rd was
chosen arbitrarily. �

Presume that C2
K(Rd) ⊆ D, and furthermore assume that T is local. In addition, define

Ώ := C(R+
0 ,Rd) ⊆ Ω, F́ := F ∩ Ώ, X́ := X|Ώ and Ṕ ν := P ν |F́ for any ν ∈ P(Rd). Since, by

means of Theorem 1.27, P ν(Ώ) = 1, we infer from an argument as in (1.6) that we can reduce

(Ω,F , P ν) to the probability space (Ώ, F́ , Ṕ ν) such that the finite dimensional distributions
of X under P ν and X́ under Ṕ ν coincide. For every ν ∈ P(Rd) we call (X́, Ṕ ν) the Feller

diffusion in Rd with respect to T and with initial distribution ν. Let F́t := σ(X́s : s ∈ [0, t])

for all t ∈ R+
0 , which gives a filtration F X́ := (F́t)t∈R+

0
on (Ώ, F́ ).

Above we have constructed Feller diffusions via Markov semigroups. In the next Theorem
one starts with a certain operator L, which is the generator of a Feller semigroup, and one
obtains a corresponding Feller diffusion as well as a Markov semigroup of transition kernels.

Theorem 1.28 Let L be the generator of a Feller semigroup of transition operators, and
presume that L satisfies (1.14) for some coefficients aij, bi, c ∈ C0,θ

b (Rd) for some θ > 0
and all i, j ∈ {1, . . . , d}. If (aij)i,j=1,...,d is symmetric and uniformly elliptic, then for any
ν ∈ P(Rd) there exists a Feller diffusion in Rd with respect to L and with initial distribution
ν. Furthermore, the corresponding transition measure has a λd–density.

Proof See Theorem 5.11 in [Dyn65I]. �
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1.3.2 Feller Diffusions in U ⊆ Rd

The main purpose of the present chapter is to define diffusion processes in a domain U ⊆ Rd.
We have almost achieved this goal, just that so far we have only considered diffusion processes
possibly taking values in the whole Rd. In this subsection we will take the remaining step,
i.e., we will consider a way to obtain Feller diffusions which live in a domain U ⊆ Rd.

We say that U ⊆ Rd is a domain if U is connected and open in Rd. For any domain U ⊆ Rd

we have according to Example 4 in §26 in [Bau92] that (U, ‖ · ‖2) is a Polish space. Note
that the symbol ‖ · ‖2, which denotes the Euclidean norm on Rd, also denotes the Euclidean
norm on a domain in Rd.

The following definition, which can be found in §6 of the appendix of [Dyn65II], will turn
out to be essential, because frequently our considerations do not work on general domains
in Rd, but rather on bounded domains with certain properties.

Definition 1.29 Let n ∈ N0 and θ > 0.

(i) We denote by Cn,θ(U) the family of all real–valued functions on U such that all partial
derivatives of order n exist and are Hölder continuous with exponent θ. A function
f : U → R is called Hölder continuous with exponent θ if there exists some α > 0
such that |f(x)− f(y)| ≤ α|x− y|θ for all x, y ∈ U .

(ii) We call U a Cn,θ–domain if for every y = (y1, . . . , yd) ∈ ∂U there exist an ε > 0 and
some ϕ ∈ Cn,θ(B((y1, . . . , yd−1), ε)) with

B(y, ε) ∩ U = B(y, ε) ∩ {x = (x1, . . . , xd) ∈ B(y, ε) : ϕ(x1, . . . , xd−1) < xd}.

Throughout this subsection fix some domain U ⊆ Rd.

Let (X́, Ṕ ν) be the Feller diffusion in Rd which we have constructed in the previous sub-

section. Define an F X́–stopping time τU := {t > 0 : X́t 6∈ U} and consider the killed
process X́U given by X́U

t (ω) = X́t(ω) for all 0 ≤ t < τU(ω). Moreover, for any ν ∈ P(U) let
Ṕ ν

U ∈ P(Ω) be defined by Ṕ ν
U := Ṕ ν , and we adopt Ṕ x

U := Ṕ δx
U for each x ∈ U . The associated

semigroup (ṔU
t )t∈R+

0
of transition kernels is given by ṔU

t (x,B) = Ṕ x(X́t ∈ B, τU > t) for all

t > 0, x ∈ U and B ∈ B(U). Note that (ṔU
t )t∈R+

0
is a sub–Markov semigroup on (U,B(U)).

The F X́–stopping time τU is referred to as the lifetime of X́U , and we say that X́U is
killed at τU . See also §1 of Chapter Ten in [Dyn65I] for an introduction to the notion of
the killed process corresponding to a given Markov process Y . In particular, observe that
by 10.2 Remark 3 in [Dyn65I] (Ṕ ν

U)ν∈P(U) satisfies the strong Markov property. Note that in
[Dyn65I] Dynkin calls the killed process “part of the process Y on the set U”.

Define DU := {f |U : f ∈ D with f ≡ 0 on Rd\U} ⊆ C0(U). Then we have that the operator
TU := T |DU

: DU → C0(U) is the generator of the Feller semigroup of transition operators

associated with (ṔU
t )t∈R+

0
. In particular, we infer from Theorem 1.27 that TU is given on

C2
K(U) by

∀ f ∈ DU ∀x ∈ U : TUf(x) =
1

2

d∑
i,j=1

aU
ij(x)

∂2

∂xi∂xj

f(x) +
d∑

i=1

bUi (x)
∂

∂xi

f(x)− cUf(x),
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where aU
ij := aij|U , bUi := bi|U , cU := c|U ∈ Cb(U) for all i, j ∈ {1, . . . , d}. Here the coefficients

(aij)i,j=1,...,d, (bi)i=1,...,d and c are given by Theorem 1.27. Note that the limits limx→∂U a
U
ij(x)

and limx→∂U b
U
i (x) exist for all i, j ∈ {1, . . . , d}, since there exist extensions of the respective

mappings to continuous functions on Rd. That the coefficients of TU are restrictions of
continuous maps on Rd to U will be relevant in Section 2.3, where we will compare the
diffusions defined in Section 2.3 with the Feller diffusions in U in the sense of the following
definition:

Definition 1.30 Let ν ∈ P(U). Then we call (X́U , Ṕ ν
U) the Feller diffusion in U with

respect to TU and with initial distribution ν.

In conclusion of this chapter we present a result which states that under certain assumptions
Feller diffusions in U have nice properties in terms of a λd|U–density.

Theorem 1.31 Assume that T satisfies the assumptions of Theorem 1.28, and presume that
U is a C1,θ–domain (cf. Definition 1.29) for some θ > 0. Then the measure ṔU

t (x, ·) has
a continuous λd|U–density pU

t (x, ·) with limz→x0 p
U
t (z, y) = 0 for all x, y ∈ U , x0 ∈ ∂U and

t > 0.

Proof See Theorem 13.18 in [Dyn65II]. �



Chapter 2

The Martingale Problem

In the previous chapter we have considered an approach to obtain Feller diffusions (cf.
Definition 1.30) in some domain U ⊆ Rd with respect to certain linear operators. In this
chapter we will develop another method, which for a particular class of linear operators
leads to diffusion processes in a domain U ⊆ Rd which are akin to Feller diffusions in U .
Our approach in this chapter is related to the approach via stochastic differential equations
(SDEs). Indeed, one can show (cf. (19.7) and (20.1) Theorem in [RW00]) that a probability
measure P ν solves a given martingale problem on Rd iff there exists a weak solution to
the corresponding SDE with distribution P ν and initial condition P ν

X0
= ν. However, it is

beyond the scope of this thesis to deal with the theory of SDEs, but it is worth mentioning
that the approach to obtain diffusions via weak solutions to SDEs is covered by the approach
which we are going to develop in this chapter. In the first section we will cite some results
by Stroock and Varadhan (cf. [SV79]) in order to introduce the martingale problem on Rd.
In Section 2.2 we will consider a localisation of the martingale problem, for that we will
define the martingale problem on some domain U ⊆ Rd. The idea of such a localisation
of the martingale problem is due to Pinsky (cf. Section 13 of Chapter 1 in [Pin95]), who
calles it the “generalised martingale problem on U”. Finally, in Section 2.3 we will utilise
the martingale problem on U in order to define diffusions. We will show that there is a
strong relation between diffusions in the sense of Section 2.3 and Feller diffusions in U ,
as developed in Subsection 1.3.2. We would like to point out that the approach via the
martingale problem is particularly useful for considerations related to the processes obtained
by conditioning diffusions on not leaving U . However, in the present thesis we won’t deal with
such conditional processes, which have been studied e.g. by Pinsky in [Pin85] as well as by
Gong, Qian and Zhao in [GQZ88]. In this respect, the present chapter has a meaning beyond
its role within this thesis, because it may provide the background for further considerations
in terms of conditional processes within the framework of diffusion processes. In Section 2.3
we will take up this topic again.

As suggested in the introduction above, the most relevant literature on which this chapter
is based are [Pin95] and [SV79].

Throughout this chapter fix some d ∈ N and consider the Banach space (Rd, ‖ · ‖2), where
‖·‖2 denotes the Euclidean norm on Rd. We will also denote by the symbol ‖·‖2 the function

21
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‖ · ‖2 : L 0(Ω) → L 0(Ω), defined by ‖Y ‖2(ω) = ‖Y (ω)‖2 for any Y ∈ L 0(Ω) and all ω ∈ Ω,
where (Ω,F ) is some measurable space. Additionally, we presume Rd and any subset U ⊆ R
to be endowed with the Borel σ–algebras B(Rd) and B(U), respectively.

Let U ⊆ Rd. We say that a second–order differential operator T : C2
K(U) → B(U) is given in

nondivergence form if there exist some measurable locally bounded (aij)i,j=1,...,d : U →Md

and (bi)i=1,...,d : U → Rd such that

∀ f ∈ C2
K(U)∀x ∈ U : Tf(x) =

1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

f(x) +
d∑

i=1

bi(x)
∂

∂xi

f(x) .

Furthermore, we say that T is given in divergence form if there exists some differentiable
(aij)i,j=1,...,d : U →Md such that

∀ f ∈ C2
K(U)∀x ∈ U : Tf(x) =

1

2

d∑
i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

f(x)

]
If moreover there exists some (bi)i=1,...,d : U → Rd such that

∀ f ∈ C2
K(Rd)∀x ∈ U : Tf =

1

2

d∑
i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

f(x)

]
+

d∑
i=1

bi(x)
∂

∂xi

f(x),

then we say that the principal part of T is in divergence form. We call the matrix (aij)i,j=1,...,d

elliptic if for every x ∈ U there exists a βx > 0 such that
∑d

i,j=1 aij(x)θiθj ≥ βx

∑d
i=1 θ

2
i

holds for all θ ∈ Rd, and furthermore we say that (aij)i,j=1,...,d is uniformly elliptic if there

exists some β > 0 such that
∑d

i,j=1 aij(x)θiθj ≥ β
∑d

i=1 θ
2
i holds for all x ∈ U and θ ∈ Rd.

2.1 The Martingale Problem on Rd

Throughout this section let (aij)i,j=1,...,d ∈ C(Rd,Md) and (bi)i=1,...,d : Rd → Rd be measur-
able coefficients of a linear operator T : C2

K(Rd) → B(Rd) in nondivergence form, defined
by

∀ f ∈ C2
K(Rd)∀x ∈ Rd : Tf(x) =

1

2

d∑
i,j=1

aij(x)
∂2

∂xixj

f(x) +
d∑

i=1

bi(x)
∂

∂xi

f(x).

The coefficients (aij)i,j=1,...,d and (bi)i=1,...,d are called diffusion coefficient and drift coef-
ficient, respectively.

We define (Ω̌, F̌ ) := (C(R+
0 ,Rd),B[C(R+

0 ,Rd)]), where C(R+
0 ,Rd) is equipped with the

topology of uniform convergence on bounded intervals of R+
0 , and B[C(R+

0 ,Rd)] denotes the
Borel σ–algebra on C(R+

0 ,Rd). Furthermore, we consider the coordinate mapping process
X̌ := (X̌t)t∈R+

0
on (Ω̌, F̌ ), defined by X̌t := πt : Ω̌ → Rd, t ∈ R+

0 , where, as in Definition B.5,

πt denotes the projection from Ω̌ onto Rd. Moreover, we define the filtration F X̌ := (F̌t)t∈R+
0
,

where F̌t := σ(X̌s : s ∈ [0, t]} for any t ∈ R+
0 . In addition, for any domain D ⊆ Rd consider

the F X̌–stopping time τ̌D := inf{t ∈ R+
0 : X̌t 6∈ D}.
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Definition 2.1 For any ν ∈ P(Rd) we say that P ν ∈ P(Ω̌) solves the martingale problem
for (T, ν) on Rd if

(i) P ν
X̌0

= ν,

(ii)
(
f ◦ X̌t −

∫
[0,t]

Tf ◦ X̌sλ(ds)
)

t∈R+
0

is an F X̌–martingale under P ν for any f ∈ C2
K(Rd).

We say that (P ν)ν∈P(Rd) ⊆ P(Ω̌) is a solution to the martingale problem for T on Rd if P ν

is a solution to the martingale problem for (T, ν) on Rd for each ν ∈ P(Rd).

In the following we will develop results which deal with the martingale problem on Rd, but
which will turn out to be instrumental in establishing the martingale problem on a domain
U ⊆ Rd. In order to keep our proceeding reasonably concise we will start by citing some
results which are proven in [SV79], and we refer the interested reader to that book for the
proofs.

Theorem 2.2 Assume that (aij)i,j=1,...,d and (bi)i=1,...,d are measurable and locally bounded.
Furthermore, consider some measurable and locally bounded (a′ij)i,j=1,...,d : Rd → Md and
(b′i)i=1,...,d : Rd → Rd as well as a bounded domain U ⊆ Rd such that (aij)i,j=1,...,d and
(a′ij)i,j=1,...,d as well as (bi)i=1,...,d and (b′i)i=1,...,d coincide on U . In addition, we define a
linear operator T ′ : C2

K(Rd) → B(Rd) by

T ′ :=
1

2

n∑
i,j=1

a′ij
∂2

∂xixj

+
n∑

i=1

b′i
∂

∂xi

.

Fix some ν ∈ P(Rd) and presume that there exist a unique solutions P ν to the martingale
problems on Rd for (T, ν). Then for every solution P ′ν to the martingale problems on Rd for
(T ′, ν) we have that P ν = P ′ν holds on F̌τ , where τ is given by τ = inf{t ∈ R+

0 : X̌t 6∈ U}.

Proof See 10.1.1 Theorem in [SV79]. �

Later on we will need the following variation of Tulcea’s extension theorem:

Theorem 2.3 (Tulcea’s Extension Theorem) Let (G,G ) be a measurable space and let
(Gn)n∈N0 be a filtration on (G,G ) with G =

∨
n∈N0

Gn. Furthermore, for any n ∈ N0, let
ϕn : G→ P(G) be defined by

ϕn(x) =
⋂
{B ∈ Gn : x ∈ B},

and let µn be a Markov kernel from (G,Gn−1) to (G,Gn) such that µn(x,B) = 0 holds for
all B ∈ Gn with ϕn−1(x) ∩ B = ∅. If, moreover, we have that

⋂
n∈N0

ϕn(xn) 6= ∅ holds true

for any sequence (xn)n∈N0 in G satisfying
⋂N

n=0 ϕn(xn) 6= ∅ for all N ∈ N, then for every
probability measure ν on (G,G0) there exists a uniquely defined probability measure P ν on
(G,G ) agreeing with ν on G0 and such that

∀n ∈ N ∀B ∈ Gn : P ν(B) =

∫
G

µn(·, B)dP ν .
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Proof Confer 1.1.9 Theorem in [SV79]. �

Theorem 2.4 Presume that (aij)i,j=1,...,d ∈ Cb(Rd,Md) is elliptic and (bi)i=1,...,d : Rd → Rd

is measurable and bounded. Then the martingale problem for T on Rd has a solution which
is unique.

Proof See 7.2.1 Theorem in [SV79]. �

Theorem 2.5 Assume that (aij)i,j=1,...,d and (bi)i=1,...,d are as in Theorem 2.4. Furthermore,
let (P ν)ν∈P(Rd) denote the unique solution to the martingale problem for T on Rd. Then a
family P ⊆ (P ν)ν∈P(Rd) is relatively weakly compact if

lim
k→∞

sup
P∈P

P (‖X̌0‖2 ≥ k) = 0. (2.1)

Proof The idea is to apply 1.4.6 Theorem in [SV79], i.e., we have to show that for all
nonnegative f ∈ C∞

K (Rd) there exists a constant αf ≥ 0 such that (f ◦ X̌t + αf t)t∈R+
0

is an

F X̌–martingale under any P ∈ P, and that αf works for all translates of f .

Let f ∈ C∞
K (Rd). Because each P ∈ P is the solution to the martingale problem for (T, ν)

on Rd for some ν ∈ P(Rd), we obtain∫
A

(f ◦ X̌t − f ◦Xs) dP =

∫
A

∫
(s,t]

Tf ◦ X̌uλ(dt) dP

≥ (t− s) min
x∈Rd

Tf(x)P (A) (2.2)

≥

{
0, minx∈Rd Tf(x) ≥ 0

−minx∈Rd Tf(x)P (A)(s− t), minx∈Rd Tf(x) < 0

for all s, t ∈ R+
0 with s ≤ t, any A ∈ F̌s and every P ∈ P. Note that minx∈Rd Tf(x) exists,

since Tf ∈ B(Rd). If minx∈Rd Tf(x) ≥ 0, choose αf := 0. Otherwise, if minx∈Rd Tf(x) < 0,
let αf := −minx∈Rd Tf(x). Now we deduce from (2.2) that in both cases (f ◦X̌t +αf t)t∈R+

0
is

an F X̌–submartingale under any P ∈ P. Moreover, such an F X̌–submartingale property
under every P ∈ P is satisfied with the same αf for any translate of f , because Tc = 0 for
all c ∈ R. By means of 1.4.6 Theorem in [SV79] this yields the assertion. �

Lemma 2.6 Presume that (aij)i,j=1,...,d and (bi)i=1,...,d are as in Theorem 2.4. In addition, let
(P ν)ν∈P(Rd) denote the unique solution to the martingale problem for T on Rd, which exists

according to Theorem 2.4. Then P (·)(A) : Rd → [0, 1], x 7→ P x(A), is B(Rd)–B([0, 1])–
measurable for each A ∈ F̌ .

Proof See 6.7.4 in [SV79]. �

Theorem 2.7 Assume that (aij)i,j=1,...,d and (bi)i=1,...,d satisfy the assumptions of Theo-
rem 2.4. Furthermore, let (P ν)ν∈P(Rd) denote the unique solution to the martingale problem
for T on Rd. Then (P ν)ν∈P(Rd) satisfies the strong Markov property. If moreover (bi)i=1,...,d

is continuous, then (P ν)ν∈P(Rd) satisfies the Feller property.
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Proof These properties can be shown on the lines of the proofs that the unique solution to
the martingale problem for T on a domain U ⊆ Rd (cf. Section 2.2), if existent, satisfies these
properties. For this purpose see Theorem 2.23 on page 36 and Theorem 2.24 on page 38. �

Theorem 2.8 Presume that (aij)i,j=1,...,d and (bi)i=1,...,d satisfy the assumptions of Theo-
rem 2.4, and let (P ν)ν∈P(Rd) denote the unique solution to the martingale problem for T on

Rd. Then
∫

Ω̌
Y dP (·) is continuous on Rd for any Y ∈ B(Ω̌) which is P y–a.s. continuous for

every y ∈ Rd.

Proof Let x ∈ Rd and let (xn)n∈N be a sequence in Rd such that xn → x as n→∞. Then
the Feller property of (P ν)ν∈P(Rd) implies that P xn

Xt
→ P x

Xt
, t ∈ R+

0 , weakly as n → ∞. At
first we show that

∀m ∈ N ∀ (t1, . . . , tm) ∈ H(R+
0 ) : P xn

(Xt1 ,...,Xtm ) → P x
(Xt1 ,...,Xtm ) (2.3)

weakly as n → ∞. By means of the Markov property of (P ν)ν∈P(Rd) and Lemma 1.8 we
obtain for any f ∈ CK(Rmd) that∫

Rmd

f dP xn

(Xt1 ,...,Xtm )

=

∫
supp (f)

. . .

∫
supp (f)

f(y1, . . . , ym)P
ym−1

Xtm
(dym)P

ym−2

Xtm−1
(dym−1) . . . P

y1

Xt2
(dy2)P

xn
Xt1

(dy1)

(∗)→
∫

supp (f)

. . .

∫
supp (f)

f(y1, . . . , ym)P
ym−1

Xtm
(dym)P

ym−2

Xtm−1
(dym−1) . . . P

y1

Xt2
(dy2)P

x
Xt1

(dy1)

=

∫
Rmd

f dP x
(Xt1 ,...,Xtm )

as n→∞. Note that it is sufficient to consider f ∈ CK(Rmd), since on P(Rd) the concepts
of weak convergence and vague convergence coincide (cf. p. 4). In order to prove (∗) we
show that

∫
K
f(·, y)P (·)(dy) is continuous on K, where f ∈ CK(R2d) with compact support

K ⊆ Rd. Let ε > 0. To begin with, observe that
∫

K
f(v, y)P (·)(dy) is continuous for every

v ∈ K, i.e.,

∀ z ∈ K ∃ δ1 > 0∀ z′ ∈ B[z, δ1] :

∣∣∣∣∫
K

f(v, y)P z(dy)−
∫

K

f(v, y)P z′(dy)

∣∣∣∣ ≤ ε

3
. (2.4)

Since f is continuous and K2 is compact, we infer that f is uniformly continuous on K2. In
view of the uniform continuity of f on K2, choose some δ2 > 0 such that

|f(z, y)− f(v, y)| ≤ ε/3 (2.5)

for all z, v ∈ K with ‖z − v‖2 ≤ δ2. Fix z ∈ K and let z′ ∈ B[z,min(δ1, 2δ2)]. In addition,
choose some v ∈ B[z, δ2] ∩B[z′, δ2]. Then we have∣∣∣∣∫

K

f(z, y)P z(dy)−
∫

K

f(z′, y)P z′(dy)

∣∣∣∣
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=

∣∣∣∣∫
K

[f(z, y)− f(v, y)]P z(dy) +

∫
K

f(v, y)P z(dy)

−
∫

K

f(v, y)P z′(dy)−
∫

K

[f(z′, y)− f(v, y)]P z′(dy)

∣∣∣∣
≤

∫
K

|f(z, y)− f(v, y)|P z(dy) +

∫
K

|f(z′, y)− f(v, y)|P z′(dy)

+

∣∣∣∣∫
K

f(v, y)P z(dy)−
∫

K

f(v, y)P z′(dy)

∣∣∣∣
(2.4)

≤
(2.5)

ε

which shows that
∫

K
f(·, y)P (·)(dy) is continuous on K. Thus, (∗) is established.

We want to apply Theorem 2.5 in order to deduce that (P xn)n∈N is relatively weakly compact.
To this end we have to show that (2.1) is satisfied. For this purpose choose some ε > 0.
Since xn → x, there exists an n0 ∈ N such that ‖x − xn‖2 ≤ ε for all n ≥ n0. With
k > max(max{‖xn‖2 : n < n0}, ‖x‖2 + ε) we obtain that supn∈N P

xn(‖X̌0‖2 ≥ k) = 0, which
shows that (2.1) is satisfied. Consequently, by means of Theorem 2.5, the sequence (P xn)n∈N
is relatively weakly compact. Hence, 7.8 Theorem (b) in Chapter 3 in [EK86] in conjunction
with (2.3) yields that P xn → P x weakly as n → ∞. Therefore,

∫
Ω̌
Y dP (·) is continuous on

Rd for all Y ∈ Cb(Ω̌). Now consider some Y ∈ B(Ω̌) which is P y–a.s. continuous for every
y ∈ Rd, i.e.,

∀ y ∈ Rd : P y(ω ∈ Ω̌ : ω is a point of discontinuity of Y ) = 0.

Futhermore, put A := {ω ∈ Ω̌ : Y is continuous at ω}. Then P y(A) = 1 for each y ∈ Rd,
and thus ∫

Ω̌

Y dP xn =

∫
A

Y dP xn →
∫

A

Y dP x =

∫
Ω̌

Y dP x

as n→∞, which proves the assertion. �

Theorem 2.9 Assume that (aij)i,j=1,...,d and (bi)i=1,...,d satisfy the assumptions of Theo-
rem 2.4, and denote the unique solution to the martingale problem for T on Rd by (P ν)ν∈P(Rd).
Then P ν

X̌t
possesses a λd–density for any ν ∈ P(Rd).

Proof Confer 9.2.2 Lemma in [SV79]. �

Now we have compiled all the results which will turn out to be adjuvant in Section 2.2, where
we will extend the theory compiled above in order to establish more general results. Much
of the following section is based upon Chapter 1 in [Pin95]. However, our aim is to present
that theory within our framework, i.e., we will focus on the results related to the martingale
problem on a domain in Rd. In [Pin95] Pinsky states most of the results which we are going
to develop, but often he only proves them in a special case or he doesn’t give a proof at all.
Even though the main ideas of the proofs are similar, they have to be modified considerably
in order to apply them in our situation. Moreover, we will give more detailed proofs than
the ones in [Pin95].
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2.2 The Martingale Problem on U ⊆ Rd

In this section we will consider a localisation of the the theory compiled in the previous
section. This approach has the benefit that we can relax the assumptions regarding the
boundedness of (aij)i,j=1,...,d and (bi)i=1,...,d.

Throughout the whole section fix some domain U ( Rd. Note that we allow U to be
unbounded. Furthermore, let (aij)i,j=1,...,d ∈ C(U,Md) and (bi)i=1,...,d : U → Rd be locally
bounded measurable coefficients of an operator T : C2

K(U) → B(U) defined by

T :=
1

2

d∑
i,j=1

aij
∂2

∂xixj

+
d∑

i=1

bi
∂

∂xi

.

Let us denote by ∆ ∈ Rd \U a point which yields an Alexandroff one–point compactification
Û := U ∪ {∆} of U (cf. Theorem B.24). In the literature ∆ is sometimes called “point at
infinity” or “cemetery state”. Let M be a basis of neighbourhoods at ∆, where the elements
of M are the complements in Û of the compact sets in U . By Example 6 in §26 in [Bau92]
the compact space (Û , TÛ) is a Polish space. The topology TÛ is induced by the metric ρÛ

on Û × Û which is given by

∀x, y ∈ Û : ρÛ(x, y) =

{
infz∈∂U ‖x− z‖2, x ∈ U, y = ∆

min(‖x− y‖2, ρÛ(x,∆) + ρÛ(y,∆)), x, y ∈ U.

Consider the function δ : U → R+ given by δ(x) = infy∈∂U ‖x − y‖2 for all x ∈ U . Observe
that δ(x) = ρÛ(x,∆) for all x ∈ U .

Throughout the whole section let (Un)n∈N be a sequence of bounded domains in U with

U =
⋃

n∈N Un and such that Ūn ( Un+1 for all n ∈ N. We define functions τn, τ
′
U : ÛR+

0 → R̄+
0 ,

n ∈ N, by τ ′n(f) = inf{t ∈ R+
0 : f(t) 6∈ Un} and τ ′U(f) = inf{t ∈ R+

0 : f(t) 6∈ U} for all n ∈ N
and f ∈ ÛR+

0 . Let us adopt

Ω := {ω ∈ C(R+
0 , Û) : ω(t) = ∆∀ t ≥ τ ′U(ω)}

and Ω̃ :=

{ω ∈ ÛR+
0 : [ω|[0,τ ′U (ω)) ∈ C([0, τ ′U(ω)), U)]∧[ω(t) = ∆∀ t ≥ τ ′U(ω)]∧[τ ′n(ω) < τ ′U(ω)∀n ∈ N]}.

Below we will point out briefly why we consider Ω̃.

Here presume Ω to be endowed with the topology of uniform convergence on bounded in-
tervalls of R+

0 , denoted by T . Note that (Ω, T ) is a Polish space. Let X := (Xt)t∈R+
0

and X̃ := (X̃t)t∈R+
0

be defined by Xt := πt : Ω → Û and X̃t := πt : Ω̃ → Û for ev-

ery t ∈ R+
0 . Then we get measurable spaces (Ω,F ) and (Ω̃, F̃ ), where F := B(Ω) and

F̃ := σ(X̃). Here B(Ω) denotes the Borel σ–algebras on Ω. Moreover, for any t ∈ R+
0 we

adopt Ft := σ(Xs : s ∈ [0, t]) and F̃t := σ(X̃s : s ∈ [0, t]), and therewith we obtain filtrations
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FX := (Ft)t∈R+
0

as well as F X̃ := (F̃t)t∈R+
0
. Furthermore, we have F = σ(X) =

∨
t∈R+

0
Ft.

For every domain D ⊆ Rd let us define an FX–stopping time τD := inf{t ∈ R+
0 : Xt 6∈ D}

as well as an F X̃–stopping time τ̃D := inf{t ∈ R+
0 : X̃t 6∈ D}.

Later on we will only be concerned with Ω, since the diffusions which we are going to define
have trajectories in Ω. But in order to prove the main result of this chapter, we will show
that for any ν ∈ P(U) there exists a probability measure P ν ∈ P(Ω̃) with the desired
properties, and then, in order to complete the proof of that theorem, we will prove that
P ν(Ω̃ \ Ω) = 0. The reason why we have to deal with Ω̃ is that a map ω ∈ Ω̃ may not
have a limit from the left as t ↑ τU(ω), whereas this is not possible for functions in Ω. This
difference will be of importance, and we will explain it in more detail in Remark 2.20 on
page 36. The underlying idea is somewhat similar to the idea of the proof of the Kolomogorov
extension theorem (cf. Theorem B.8), where one also uses a larger space. We will apply
Tulcea’s extension theorem (cf. Theorem 2.3). Note that Tulcea’s extension theorem does
not require that the underlying space has a metric, and thus we don’t have to specify a
topology on Ω̃.

For any family (P ν)ν∈P(U) of probability measures on (Ω,F ) and every ν ∈ P(U) we denote
by Eν the expectation with respect to P ν . As in the previous chapter we adopt P x := P δx

and Ex := Eδx for all x ∈ U . In addition, for any t ∈ R+
0 and each A ∈ F we define the

random variable PXt(A) := P (·)(A) ◦ Xt. Analogous adoptions will be valid if we replace
(Ω,F ) by (Ω̃, F̃ ).

Presume that (aij)i,j=1,...,d is elliptic. For every n ∈ N let us consider a cut–off function
ψn ∈ C∞

K (Rd, [0, 1]) with ψn ≡ 1 on Un and ψn ≡ 0 on Rd \ Un+1. Using (ψn)n∈N we can
construct sequences (an)n∈N and (bn)n∈N of functions from Rd to R as follows:

∀n ∈ N ∀ i, j ∈ {1, . . . , d} : an
ij := a′ij · ψn + (1− ψn)δij and bni := b′i · ψn, (2.6)

where a′ij, b
′
i : Rd → R are given by a′ij = aij1U and b′i = bi1U for all i, j ∈ {1, . . . , d}. Observe

that (2.6) yields that (an
ij)i,j=1,...,d is bounded, continuous as well as elliptic, and (bni )i=1,...,d is

bounded and continuous for all n ∈ N, i.e., (an
ij)i,j=1,...,d and (bni )i=1,...,d satisfy the assumptions

of Theorem 2.4. For any n ∈ N we define a linear operator Tn : C2
K(Rd) → B(Rd) by

Tn :=
1

2

n∑
i,j=1

an
ij

∂2

∂xixj

+
n∑

i=1

bni
∂

∂xi

. (2.7)

By means of Theorem 2.4 there exits a unique solution (P ν
n )ν∈P(Rd) to the martingale problem

for Tn on Rd. We denote the expectation with respect to P ν
n , ν ∈ P(Rd), by En

ν . Throughout
this section terms as P ν

n will always refer to the aforementioned solution, which will play a
crucial role for our considerations.

For each n ∈ N let us define an FX–stopping time τn := inf{t ∈ R+
0 : Xt 6∈ Un} as well as

an F X̃–stopping time τ̃n := inf{t ∈ R+
0 : X̃t 6∈ Un}.

Throughout this section we consider a family of stochastic processes defined by

∀n ∈ N ∀ f ∈ C2
K(U)∀ t ∈ R+

0 : Mn,f
t := f ◦Xt∧τn −

∫
[0,t∧τn]

Tf ◦Xsλ(ds).
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Definition 2.10 Let ν ∈ P(U), then a probability measure P ν ∈ P(Ω) is said to solve the
martingale problem for (T, ν) on U if

(i) P ν
X0

= ν,

(ii) (Mn,f
t )t∈R+

0
is an FX–martingale under P ν for any n ∈ N and every f ∈ C2

K(U).

We say that (P ν)ν∈P(U) ⊆ P(Ω) is a solution to the martingale problem for T on U if P ν is
a solution to the martingale problem for (T, ν) on U for each ν ∈ P(U).

We will occasionally utilise the following lemma, which can be found in [SV79].

Lemma 2.11 For every FX–stopping time τ as well as any F X̃–stopping time τ̃ we have
Fτ = σ(Xt∧τ : t ∈ R+

0 ) and F̃τ̃ = σ(X̃t∧τ̃ : t ∈ R+
0 ).

Proof See 1.3.3 Lemma in [SV79]. Note that there the assertion is shown for C(R+
0 ,Rd)

instead of Ω and Ω̃, respectively. However, the proof does not rely on that, and thus it works
out equally well with Ω and Ω̃. �

Remark 2.12 In particular, Lemma 2.11 yields that
∨

n∈N Fτn = FτU
= FτU∨t = F

and
∨

n∈N F̃τ̃n = F̃τ̃U
= F̃τ̃U∨t = F̃ hold true for every t ∈ R+

0 . The reason is that

σ(XτU
) = σ(XτU+t : t ∈ R+

0 ) = {∅,Ω} and σ(X̃τ̃U
) = σ(X̃τ̃U+t : t ∈ R+

0 ) = {∅, Ω̃}, because
XτU+t = X̃τ̃U+t ≡ ∆ for all t ∈ R+

0 . ♦

For every ν ∈ P(U) we denote by ν̌ ∈ P(Rd) the corresponding extended measure defined
by ν̌|B(U) := ν and ν̌(Rd \ U) := 0.

Define Ψ : Ω̌ → Ω̃ by Ψ(ω) = ω1[0,τU (ω)) + ∆1[τU (ω),∞) for all ω ∈ Ω̌. Observe that Ψ is

F̌τ̌n–F̃τ̃n–measurable for all n ∈ N, since Ψ−1(X̃−1
t∧τ̃n

(B)) = X̌−1
t∧τ̌n

(B) for all t ∈ R+
0 and

B ∈ B(U), and because we have F̌τ̌n = σ(X̌−1
t∧τ̌n

(B) : t ∈ R+
0 , B ∈ B(U)) as well as

F̃τ̃n = σ(X̃−1
t∧τ̃n

(B) : t ∈ R+
0 , B ∈ B(U)). For any n ∈ N and A ∈ F̃τ̃n let us adopt

Ǎ := Ψ−1(A) ∈ F̌τ̌n . Analogously we obtain that Ψ is F̌τ̌n–Fτn–measurable for all n ∈ N,
and we adopt Ǎ := Ψ−1(A) for any A ∈ Fτn . These adoptions will be valid throughout the
whole section.

With the set–up developed above, which will turn out to be essential for our further con-
siderations, we obtain the following lemma which constitutes an indispensable tool for our
proceeding.

Lemma 2.13 Fix some arbitrary ν ∈ P(U) and assume that there exists a P ν ∈ P(Ω) with

∀n ∈ N ∀A ∈ Fτn : P ν(A) = P ν̌
n (Ǎ). (2.8)

Then the following properties hold:

(i) P ν is uniquely determined by (2.8).

(ii) P ν is a solution to the martingale problem for (T, ν) on U .
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Proof (i) Fix some t ∈ R+
0 and let A ∈ Ft. Furthermore, we set AU := A ∩ {τU ≤ t},

and for every n ∈ N we put An := A ∩ {τn > t}. According to Remark 2.12 we have
FτU

= FτU∨t, and thus A ∩ {τU ≤ t} ∈ FτU
. Moreover, according to Remark 2.12 we

have
∨

n∈N Fτn = FτU
. In view of (2.8) P ν(AU) is therefore uniquely determined by

the family (P ν̌
n )n∈N. Now we show that P ν(A ∩ {τU > t}) is uniquely determined by

(2.8). To this end we infer from the upper continuity of the measure P ν and (2.8) that

P ν(A ∩ {τU > t}) = lim
n→∞

P ν(A ∩ {τn ≤ t} ∩ {τU > t}) + lim
n→∞

P ν(A ∩ {τn > t})

= lim
n→∞

P ν(An) = lim
n→∞

P ν̌
n (Ǎn),

because A ∩ {τn > t} ∈ Ft, and thus A ∩ {τn > t} ∈ Fτn , for all n ∈ N. Hence we
conclude that P ν(A) is uniquely determined by (2.8), which yields the assertion, since
F =

∨
t∈R+

0
Ft.

(ii) Fix some n ∈ N as well as f ∈ C∞
K (U), and observe that P ν

X0
(B) = P ν̌

n (X̌0 ∈ B) = ν(B)

holds true by (2.8) for all B ∈ B(U). Since (f ◦X̌t−
∫

[0,t]
Tnf ◦X̌sλ(ds))t∈R+

0
is an F X̌–

martingale under P ν̌
n , we infer from the Optional Sampling Theorem (cf. Theorem B.18)

that (f ◦ X̌t∧τ̌n −
∫

[0,t∧τ̌n]
Tnf ◦ X̌sλ(ds))t∈R+

0
is an F X̌–martingale under P ν̌

n , where

τ̌n := inf{t ∈ R+
0 : X̌t 6∈ Un}. Note that we can indeed apply the Optional Sampling

Theorem, because t ∧ τ̌n ∈ Sb(F X̌) for all t ∈ R+
0 . Moreover, note that Tf = Tnf

on Ūn, because a = an and b = bn on Ūn. Therefore, it follows from (2.8) that
(f ◦ Xt∧τn −

∫
[0,t∧τn]

Tf ◦ Xsλ(ds))t∈R+
0

is an FX–martingale under P ν , which proves

the assertion. Note that here we have used that τn(ω) = τ̌n(ω̌) for all ω ∈ Ω and ω̌ ∈ Ω̌
with ω = ω̌ on [0, τn(ω)].

�

Remark 2.14 Let ν ∈ P(U), and observe that by Theorem 2.2 every solution to the mar-
tingale problem for (T, ν) on U satisfies (2.8), since aij = an

ij and bi = bni on Un for all n ∈ N
and i, j ∈ {1, . . . , d}. Therefore, we infer from Lemma 2.13 (ii) that a measure P ν ∈ P(Ω)
is a solution to the martingale problem for (T, ν) on U iff it satisfies (2.8). In conjunction
with Lemma 2.13 (i) this yields in particular that there exists at most one solution to the
martingale problem for (T, ν) on U . ♦

Let (ǎij)i,j=1,...,d : Rd → Md be bounded, continuous as well as elliptic, and let (b̌)i=1,...,d :
Rd → Rd be bounded as well as continuous. Consider the linear operator Ť : C2

K(Rd) →
CK(Rd) defined by Ť := 1

2

∑d
i,j=1 ǎij

∂2

∂xixj
+
∑d

i=1 b̌i
∂

∂xi
and let x ∈ Rd. Then the martingale

problem for (Ť , δx) on Rd has a unique solution P̌ x ∈ P(Ω̌).

In the proof of the main theorem in this chapter we will utilise the following two theorems
which can both be found in [Pin95].

Theorem 2.15 Let x ∈ Rd and let B ⊆ Rd be a domain satisfying an exterior cone condition
at any y ∈ ∂B, i.e., for any y ∈ ∂B there exists a cone in Rd \ B with base at y. Then τ̌B
is a P̌ x–a.s. continuous function from Ω̌ → R̄+

0 .

Proof Confer Theorem 3.3 (iv) in Chapter 2 in [Pin95]. �
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Remark 2.16 Let x ∈ U and α > 0. Since B(x, α) satisfies an exterior cone condition at
any y ∈ ∂B(y, α), we infer from Theorem 2.15 that the mapping τ̌B(x,α) : Ω̌ → R̄+

0 is P̌ x–a.s.
continuous. ♦

Theorem 2.17 (Stroock-Varadhan Support Theorem) Let x ∈ Rd, then we have

supp (P̌ x) = {ω ∈ Ω̌ : X̌0(ω) = x}.

Proof See Theorem 6.1 in Chapter 2 in [Pin95]. �

Later on, the Stroock-Varadhan Support Theorem will be applied in the form of the following
corollary.

Corollary 2.18 Fix some x ∈ U and β, ε > 0. In addition, let δ(x) > ε and choose some
α > 0 such that δ(y) > ε for all y ∈ B(x, α). Then P̌ x(τ̌B(x,α) > β) > 0.

Proof Put Ω̌α := {ω ∈ Ω̌ : τ̌B(x,α) is continuous in ω} and define σ̌B(x,α) : Ω̌α → R̄+
0 by

σ̌B(x,α) = τ̌B(x,α)|Ω̌α . Since P̌ x(Ω̌ \ Ω̌α) = 0, we deduce that Q̌x := P̌ x|B(Ω̌α) is a probability

measure on (Ω̌α,B(Ω̌α)), where B(Ω̌α) denotes the Borel σ–algebra on Ω̌α. According to
Theorem 2.17 we have that

Ω̌α
x := {ω ∈ Ω̌α : X̌0(ω) = x} = supp (Q̌x) = {ω ∈ Ω̌α : Q̌x(Nω) > 0∀Nω ∈ Nω},

where Nω denotes the set of all open neighbourhoods of ω ∈ Ω̌α. Let ω′ ∈ Ω̌α
x be such that

σ̌B(x,α)(ω
′) > β. Then {ω ∈ Ω̌α : σ̌B(x,α)(ω) > β} ∈ Nω′ , and because ω′ ∈ supp (Q̌x) we

deduce that Q̌x(σ̌B(x,α) > β) > 0. Therefore, P̌ x(τ̌B(x,α) > β) > 0. �

Now we are in a position to prove the main result of this chapter.

Theorem 2.19 Presume that (aij)i,j=1,...,d ∈ C(U,Md) is elliptic and (bi)i=1,...,d : U → Rd is
measurable and locally bounded. Then for every ν ∈ P(U) the martingale problem for (T, ν)
on U has a solution P ν which is unique.

Proof Fix some arbitrary ν ∈ P(U). Basically, our approach is to apply Theorem 2.3 and
to show that the restriction to Ω of the unique probability measure P ν ∈ P (Ω̃), obtained by
Theorem 2.3, is indeed a uniquely defined solution to the martingale problem for (T, ν) on
U . We will achieve this by showing that P ν(A) = P ν̌

n (Ǎ) holds true for all n ∈ N and every
A ∈ F̃τ̃n . Then we will show that supp (P ν) ⊆ Ω, which by means of Remark 2.14 proves
the assertion.

Part I

With the denotations of Theorem 2.3, put (G,G ) := (Ω̃,F X̃) and (Gn)n∈N := (F̃τ̃n)n∈N. In
addition, let G0 := F̃0. Note that this choice of (G,G ) and (Gn)n∈N is indeed in accordance
with Theorem 2.3, since

G = F X̃ = F̃τ̃U
= F̃0 ∨

⋃
n∈N

F̃τ̃n =
∨

n∈N0

Gn



32 CHAPTER 2. THE MARTINGALE PROBLEM

holds true by Remark 2.12. Let us adopt τ̃0 :≡ 0. Then we deduce that the functions
ϕn : Ω̃ → P(Ω̃), which appear in Theorem 2.3, are given by

∀n ∈ N0 ∀ω ∈ Ω̃ : ϕn(ω) = {η ∈ Ω̃ : η(t) = ω(t)∀ t ∈ [0, τ̃n(ω)]}. (2.9)

Moreover, we have that
⋂

n∈N0
ϕn(ωn) 6= ∅ holds true for any sequence (ωn)n∈N0 in Ω̃ satisfying⋂N

n=0 ϕn(ωn) 6= ∅ for all N ∈ N (cf. Remark 2.20 on p. 36). For the time being, fix an
arbitrary n ∈ N and define

An := {τ̃n−1 = ∞} ∪ ({{X̃(τ̃n−1+t1)∧τ̃n ∈ B1, . . . , X̃(τ̃n−1+tm)∧τ̃n ∈ Bm} :

m ∈ N, (t1, . . . , tm) ∈ H(R+
0 ), Bj ∈ B(U), j = 1, . . . ,m} ∩ {τ̃n−1 <∞}).

By means of Lemma 2.11 we have F̃τ̃n = σ({F ∩ A : F ∈ F̃τ̃n−1 , A ∈ An}). For any

τ̌ ∈ S(F X̌) let θ̌τ̌ : Ω̌ → Ω̌ be a shift operator as in Definition 1.9. For every ω ∈ Ω̃ we
define a probability measure νω

n on F̃τ̃n by

νω
n (F ∩ A) =


0, F ∩ ϕn−1(ω) = ∅

P
X̃τ̃n−1

(ω)
n (η ∈ Ω̌ : θ̌τ̌n−1η ∈ Ǎ), F ∩ ϕn−1(ω) 6= ∅, τ̃n−1(ω) <∞

1, ω ∈ F, τ̃n−1(ω) = ∞

for all F ∈ F̃τ̃n−1 and A ∈ An. Observe that by means of Lemma B.12 the measure νω
n is

uniquely defined, since {F ∩ A : F ∈ F̃τ̃n−1 , A ∈ An} is closed under the formation of finite

intersections. Let us define a Markov kernel µn from (Ω̃, F̃τ̃n−1) to (Ω̃, F̃τ̃n) by

∀ω ∈ Ω̃ ∀A ∈ F̃τ̃n : µn(ω,A) = νω
n (A).

Then we infer from (2.9) that µn(ω,A) = 0 for all ω ∈ Ω̃ and A ∈ F̃τ̃n with ϕn−1(ω)∩A = ∅.
In addition, consider the probability measure ν0 on (Ω̃, F̃0) defined by ν0

X̃0
:= ν. Hence, the

assumptions of Theorem 2.3 are satisfied, and thus we obtain from Theorem 2.3 that there
exists a uniquely defined probability measure P ν on (Ω̃, F̃ ) with P ν

X̃0
= ν0

X̃0
= ν and such

that P ν =
∫

Ω̃
µn(ω, ·)P ν(dω) on F̃τ̃n .

Part II

Our aim is to show
∀n ∈ N ∀A ∈ F̃τ̃n : P ν(A) = P ν̌

n (Ǎ), (2.10)

which can be accomplished by induction. We have P ν(X̃0 ∈ B) = ν(B) = P ν̌
n (X̌0 ∈ B)

for any B ∈ B(U), i.e., P ν(A) = P ν̌
n (Ǎ) for all A ∈ F̃0. Let n ∈ N, and assume that

P ν(A) = P ν̌
n−1(Ǎ) holds for all A ∈ F̃τ̃n−1 . Then P ν(A) = P ν̌

n (Ǎ) for all A ∈ F̃τ̃n−1 ,
because Theorem 2.2 yields that P ν̌

n = P ν̌
n−1 on Fτn−1 . For the time being, consider some

A = {τ̃n−1 = ∞} ∪ ({X̃(τ̃n−1+t1)∧τ̃n ∈ B1, . . . , X̃(τ̃n−1+tm)∧τ̃n ∈ Bm} ∩ {τ̃n−1 <∞}) ∈ An, and
observe that

ω ∈ Ǎ
⇐⇒ (ω([τ̌n−1(ω) + t1] ∧ τ̌n(ω)), . . . , ω([τ̌n−1(ω) + tn] ∧ τ̌n(ω))) ∈ (B1 × . . .×Bn)
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⇐⇒ (ω([τ̌n−1(ω) + τ̌n−1(ω)− τ̌n−1(ω) + t1] ∧ [τ̌n−1(ω) + τ̌n(ω)− τ̌n−1(ω)]), . . . ,

ω([τ̌n−1(ω) + τ̌n−1(ω)− τ̌n−1(ω) + tn] ∧ [τ̌n−1(ω) + τ̌n(ω)− τ̌n−1(ω)]))

∈ (B1 × . . .×Bn)

⇐⇒
(
θ̌τ̌n−1ω([τ̌n−1(ω)− τ̌n−1(ω) + t1] ∧ [τ̌n(ω)− τ̌n−1(ω)]), . . . ,

θ̌τ̌n−1ω([τ̌n−1(ω)− τ̌n−1(ω) + tn] ∧ [τ̌n(ω)− τ̌n−1(ω)])
)
∈ (B1 × . . .×Bn)

⇐⇒
(
θ̌τ̌n−1ω([τ̌n−1(θ̌τ̌n−1ω) + t1] ∧ τ̌n(θ̌τ̌n−1ω)), . . . ,

θ̌τ̌n−1ω([τ̌n−1(θ̌τ̌n−1ω) + tn] ∧ τ̌n(θ̌τ̌n−1ω))
)
∈ (B1 × . . .×Bn)

⇐⇒ θ̌τ̌n−1ω ∈ Ǎ

holds for all ω ∈ {τ̌n−1 <∞}, i.e.,

θ̌−1
τ̌n−1

(Ǎ) = Ǎ on {τ̌n−1 <∞}. (2.11)

Adopt τ̌0 :≡ 0 and define a map ϕ̌n−1 : Ω̌ → P(Ω̌) by

∀ω ∈ Ω̌ : ϕ̌n−1(ω) = {η ∈ Ω̌ : η(t) = ω(t)∀ t ∈ [0, τ̌n−1(ω)]}.

By means of the strong Markov property of (P µ
n )µ∈P(Rd) (cf. Theorem 2.7) we deduce that

P ν(F ∩ A) =

∫
Ω̃

µn(·, F ∩ A) dP ν

(2.11)
=

∫
{ω∈Ω̃:F∩ϕn−1(ω) 6=∅, τ̃n−1(ω)<∞}

P
X̃τ̃n−1
n (Ǎ) dP ν + P ν(τ̃n−1 = ∞)

(∗)
=

∫
{ω∈Ω̌:F̌∩ϕ̌n−1(ω) 6=∅, τ̌n−1(ω)<∞}

P
X̌τn−1
n (Ǎ) dP ν̌

n + P ν̌
n (τ̌n−1 = ∞)

=

∫
{ω∈Ω̌:F̌∩ϕ̌n−1(ω) 6=∅, τ̌n−1(ω)<∞}

P ν̌
n

(
θ̌−1

τ̌n−1
(Ǎ)

∣∣F̌τn−1

)
dP ν̌

n + P ν̌
n (τ̌n−1 = ∞)

(2.11)
= P ν̌

n ({ω ∈ Ω̌ : F̌ ∩ ϕ̌n−1(ω) 6= ∅, τ̌n−1(ω) <∞} ∩ Ǎ) + P ν̌
n (τ̌n−1 = ∞)

= P ν̌
n (F̌ ∩ Ǎ)

= P ν̌
n (Ψ−1(F ∩ A)),

for all F ∈ F̃τ̃n−1 and A ∈ An, where we have used P ν = P ν̌
n ◦Ψ−1 on F̃τ̃n−1 in order to get (∗).

We infer from Lemma B.12 that (2.10) holds, since F̃τ̃n = σ({F ∩ A : F ∈ F̃τ̃n−1 , A ∈ An})
and {F ∩ A : F ∈ F̃τ̃n−1 , A ∈ An} is closed under the formation of finite intersections.

Part III

Now we want to show that supp (P ν) ⊆ Ω. To this end observe that

Ω̃ \ Ω = {τ̃U <∞} ∩
{

lim sup
t→τ̃U

δ ◦ X̃t > 0

}
.
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Hence we have to show that P ν({τ̃U <∞}∩{lim supt→τ̃U
δ◦X̃t > 0}) = 0, which is equivalent

to

∀ t0 > 0∀ ε > 0 : P ν

(
{τ̃U < t0} ∩

{
lim sup

t→τ̃U

δ ◦ X̃t > ε

})
= 0.

For our further proceeding we fix some ε > 0, and additionally we choose some 0 < ρ < ε.
Let us define a sequence (σ̃n)n∈N of F X̃–stopping times by

σ̃2n := inf{t ≥ σ̃2n−1 : δ ◦ X̃t ≤ ε− ρ}
σ̃2n+1 := inf{σ̃2n ≤ t < τ̃U : δ ◦ X̃t ≥ ε}

for all n ∈ N, where σ̃1 := inf{0 ≤ t < τ̃U : δ ◦ X̃t ≥ ε}. We also consider a sequence
(σ̌n)n∈N of F X̌–stopping times, which is defined analogously with X̃t and τ̃U replaced by X̌t

and τ̌U . Observe that we have {τ̃U < t0} ∩ {lim supt→τ̃U
δ ◦ X̃t > ε} ⊆

⋂
i∈N{σ̃i ≤ t0} for

every t0 > 0. Therefore, it remains to show that P ν (
⋂∞

i=1{σ̃i ≤ t0}) = 0 for all t0 > 0. To
this end we choose some n0 ∈ N with Uε,ρ := {x ∈ U : δ(x) > ε − ρ} ⊆ Un0 . Note that
τ̃Uε,ρ = inf{t ∈ R+

0 : δ ◦ X̃t ≤ ε − ρ} and τ̌Uε,ρ = inf{t ∈ R+
0 : δ ◦ X̌t ≤ ε − ρ}. For any

x ∈ Bε := {y ∈ U : δ(y) ≥ ε} choose some αx > 0 such that B(x, αx) ⊆ Uε,ρ. Then we
obtain that

P ν

(
2n⋂
i=1

{σ̃i ≤ t0}

)

= Eν

(
2n∏
i=1

1{σ̃i≤t0}

)

= Eν

(
Eν

(
1{σ̃2n≤t0}

2n−1∏
i=1

1{σ̃i≤t0}

∣∣∣∣∣ F̃σ̃2n−1

))
(∗)
= Eν

(
2n−1∏
i=1

1{σ̃i≤t0}Eν

(
1{σ̃2n≤t0}

∣∣∣F̃σ̃2n−1

))
(2.12)

≤ Eν

(
2n−1∏
i=1

1{σ̃i≤t0}P
ν
(
inf{t ≥ 0 : δ ◦ X̃t+σ̃2n−1 ≤ ε− ρ} ≤ t0

∣∣∣F̃σ̃2n−1

))
(∗∗)
≤ Eν

(
2n−1∏
i=1

1{σ̃i≤t0}P
X̃σ̃2n−1 (τ̃Uε,ρ ≤ t0)

)
(∗∗∗)
= Eν

(
2n−1∏
i=1

1{σ̃i≤t0}P
X̃σ̃2n−1
n0 (τ̌Uε,ρ ≤ t0)

)
(∗∗∗∗)
≤ Eν

(
2n−1∏
i=1

1{σ̃i≤t0}P
X̃σ̃2n−1
n0

(
τ̌
B

„
X̃σ̃2n−1

,αX̃σ̃2n−1

« ≤ t0

))

holds true for all n ∈ N and every t0 > 0.

To



2.2. THE MARTINGALE PROBLEM ON U ⊆ Rd 35

(∗): Note that σ̃m is F̃σ̃2n−1–B(R̄+
0 )–measurable for all m ≤ 2n− 1.

(∗∗): By Theorem 2.7 we have that (P µ
n )µ∈P(Rd) satisfies the strong Markov property for any

n ∈ N. Let θ̃σ̃2n−1 : Ω̃ → Ω̃ be a shift operator as in Definition 1.9. Then we obtain

P ν(inf{t ≥ 0 : δ ◦ X̃t+σ̃2n−1 ≤ ε− ρ} ≤ t0|F̃σ̃2n−1)

=
∑
k∈N

P ν((θ̃−1
σ̃2n−1

{τ̃Uε,ρ ≤ t0}) ∩ {τ̃k−1 ≤ σ̃2n < τ̃k}|F̃σ̃2n−1)

=
∑
k∈N

P ν̌
k ((θ̌−1

σ̌2n−1
{τ̌Uε,ρ ≤ t0}) ∩ {τ̌k−1 ≤ σ̌2n < τ̌k}|F̌σ̌2n−1)

≤
∑
k∈N

P
X̌σ̌2n−1

k ({τ̌Uε,ρ ≤ t0} ∩ θ̌σ̌2n−1{τ̌k−1 ≤ σ̌2n < τ̌k})

=
∑
k∈N

P X̃σ̃2n−1 ({τ̃Uε,ρ ≤ t0} ∩ θ̃σ̃2n−1{τ̃k−1 ≤ σ̃2n ∧ τ̌U < τ̃k})

= P X̃σ̃2n−1 (τ̃Uε,ρ ≤ t0)

P ν–a.s. on {σ̃2n−1 <∞}, because P ν(A) = P ν̌
n (Ǎ) for all n ∈ N and every A ∈ F̃τ̃n .

(∗ ∗ ∗): Since Uε,ρ ⊆ Un0 , this follows from P X̃σ̃2n−1 (A) = P
X̃σ̃2n−1
n0 (Ǎ) for all A ∈ F̃τ̃n0

.

(∗ ∗ ∗ ∗): Recall that (P x
n0
◦ X̌0) = δx for every x ∈ Rd, where δx denotes the Dirac measure

on (Rd,B(Rd)). Thus we infer that X̌0 ∈ Bε P
X̃σ̃2n−1

(ω)
n0 –a.s. for all ω ∈ Ω̃ with σ2n−2 <∞.

We obtain (∗ ∗ ∗ ∗), because B(x, αx) ⊆ Uε,ρ for any x ∈ Bε.

By Remark 2.16 we have that τ̌B(x,αx) is P x
n0

–a.s. continuous for each x ∈ U . Moreover,

Theorem 2.9 yields that P x
n0
◦ X̌t has a λd–density for every x ∈ U and each t ∈ R+

0 ,

i.e., in particular, P x
n0

(τ̌B(x,αx) = t0) ≤ P x
n0

(X̌t0 ∈ ∂B(x, αx)) = 0 for any t0 > 0 and all
x ∈ Bε. Therefore, 1{τ̌B(x,αx)≤t0} is P x

n0
–a.s. continuous for all x ∈ Bε, which by means of

Theorem 2.8 in conjunction with Theorem 2.7 yields that P
(·)
n0 (τ̌B(x,αx) ≤ t0) is continuous

on Bε. In addition, we infer from Corollary 2.18 that γ := maxx∈Bε P
x
n0

(τ̌B(x,αx) ≤ t0) < 1,

since otherwise the continuity of P
(·)
n0 (τ̌B(x,αx) ≤ t0) on Bε would yield the existence of some

y ∈ Bε with P y
n0

(τ̌B(x,αx) ≤ t0) = 1, which were a contradiction to Corollary 2.18. By our

considerations above we do now deduce from δ ◦ X̃σ̃2n−1 ≥ ε that

P ν

(
2n⋂
i=1

{σ̃i ≤ t0}

)
(2.12)

≤ γEν

(
2n−1∏
i=1

1{σ̃i≤t0}

)
= γP ν

(
2n−1⋂
i=1

{σ̃i ≤ t0}

)
≤ γP ν

2(n−1)⋂
i=1

{σ̃i ≤ t0}


holds true for all n ∈ N and any t0 > 0. By continuing this process we obtain that

∀n ∈ N ∀ t0 > 0 : P ν

(
2n⋂
i=1

{σ̃i ≤ t0}

)
≤ γn−1P ν ({σ̃1 ≤ t0} ∩ {σ̃2 ≤ t0}) ≤ γn−1,

which results in

∀ t0 > 0 : P ν

(
∞⋂
i=1

{σ̃i ≤ t0}

)
≤ lim

n→∞
γn−1 = 0.
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As mentioned above this shows that P ν |Ω ∈ P(Ω). Now we infer from Remark 2.14 that
P ν |Ω is the unique solution to the martingale problem for (T, ν) on U . �

Remark 2.20 Note that the property “
⋂

n∈N0
ϕn(ωn) 6= ∅ holds for any sequence (ωn)n∈N

in G satisfying
⋂N

n=0 ϕn(ωn) 6= ∅ for all N ∈ N”, which we have used in Part I of the proof

of Theorem 2.19, does hold if (G,G ) = (Ω̃,F X̃), but not if (G,G ) = (Ω,FX).

To begin with, we show that this property holds if (G,G ) = (Ω̃,F X̃). To this end,
consider a sequence (ωn)n∈N0 in Ω̃ such that

⋂N
n=0 ϕn(ωn) 6= ∅ for all N ∈ N. Since

ϕn(ωn) ∩ ϕn+1(ωn+1) 6= ∅, we infer that ωn+1 = ωn on [0, τ̃n(ωn)] for all n ∈ N. Thus,
τ̃n(ωn) = τ̃n(ωn+1) ≤ τ̃n+1(ωn+1) for all n ∈ N, i.e., limn→∞ τn(ωn) exists. Then define ω ∈ Ω̃
by ω = ωn on [0, τn(ωn)] for all n ∈ N and ω ≡ ∆ on [limn→∞ τn(ωn),∞). Note that ω is
indeed an element of Ω̃. Moreover, we have ω ∈

⋂
n∈N0

ϕn(ωn).

That the aforementioned property does not hold if (G,G ) = (Ω,FX) can be shown by
constructing a sequence (ωn)n∈N0 in Ω as follows: Assume that d = 1, U = (−1, 1) and
Un = (n−1 − 1, 1 − n−1) for all n ∈ N. Furthermore, let ω ∈ Ω̃ be given by ω(t) =
t sin((1− t)−1)1{t<1} + ∆1{t≥1}, consider ω0 :≡ 0 ∈ Ω, and for any n ∈ N0 define ωn ∈ Ω by

ωn(t) = t sin((1− t)−1)1{t<τ̃n(ω)} + τ̃n(ω) sin((1− τ̃n(ω))−1)1{t≥τ̃n(ω)}

for all t ∈ R+
0 . Then (ωn)n∈N0 is a sequence in Ω which satisfies

⋂N
n=0 ϕn(ωn) 6= ∅ for all

N ∈ N. Any element in
⋂

n∈N0
ϕn(ωn) has to coincide with ω on [0, 1), but there does not

exist any element in Ω which coincides with ω on [0, 1), since ω does not have a left-hand
limit as t ↑ 1. Therefore,

⋂
n∈N0

ϕn(ωn) = ∅.

The conclusion that the aforementioned property holds if (G,G ) = (Ω̃,F X̃), but not if
(G,G ) = (Ω,FX), is the reason why we consider Ω̃ at all. ♦

Now that we have given sufficient conditions under which the martingale problem for T on
U has a unique solution, we are goint to present a few properties of this solution.

Lemma 2.21 Assume that (aij)i,j=1,...,d and (bi)i=1,...,d satisfy the assumptions of Theo-
rem 2.19. Furthermore, let (P ν)ν∈P(U) be the unique solution to the martingale problem
for T on U . Then P (·)(A) : U → [0, 1] is B(U)–B([0, 1])–measurable for every A ∈ Ω.

Proof The assertion can be proven on the lines of the ideas in 6.7.4 in [SV79]. �

Theorem 2.22 Assume that (aij)i,j=1,...,d and (bi)i=1,...,d are as in Theorem 2.19. Further-
more, let (P ν)ν∈P(U) denote the unique solution to the martingale problem for T on U . Then
a family P ⊆ (P ν)ν∈P(U) is relatively weakly compact if

lim
k→∞

sup
P∈P

P (‖X0‖2 ≥ k) = 0. (2.13)

Proof The assertion can be proven along the lines of the proof of Theorem 2.5. �

Theorem 2.23 Presume that (aij)i,j=1,...,d and (bi)i=1,...,d satisfy the assumptions of Theo-
rem 2.19, and let (P ν)ν∈P(U) be the unique solution to the martingale problem for T on U .
If (bi)i=1,...,d is continuous, then (P ν)ν∈P(U) satisfies the Feller property.
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Proof Definition 1.12 (i): Let x ∈ U and let (xn)n∈N be a sequence in U such that
xn → x as n → ∞. We want to apply Theorem 2.22 in order to deduce that (P xn)n∈N
is relatively weakly compact. To this end we have to show that (2.13) is satisfied. For
this purpose choose some ε > 0. Since xn → x, there exists an n0 ∈ N such that
‖x− xn‖2 ≤ ε for all n ≥ n0. With k > max(max{‖xn‖2 : n < n0}, ‖x‖2 + ε) we obtain that
supn∈N P

xn(‖X0‖2 ≥ k) = 0, which shows that (2.13) is satisfied. Consequently, by means
of Theorem 2.22, the sequence (P xn)n∈N is relatively compact in the weak topology. In par-
ticular, we deduce that (P xn)n∈N ⊆ (P x)x∈U has a subsequence (P xnk )k∈N converging weakly
to some ω–limk→∞ P xnk ∈ (P x)x∈U . Note that by Remark 13.13 in [Kle06] the weak limit
ω–limk→∞ P xnk is uniquely defined. The idea is to show that Q := ω–limk→∞ P xnk ∈ P(Ω)
is a solution to the martingale problem for (T, δx) on U . Then, by the uniqueness of the
solution, this yields that ω–limk→∞ P xnk = P x. We deduce from 7.8 Theorem (a) in Chapter
3 in [EK86] that P

xnk

(Xt1 ,...,Xtn ) → Q(Xt1 ,...,Xtn ) weakly as k →∞ for all n ∈ N, t1, . . . , tn ∈ R+
0 .

Thus it remains to show that Q satisfies Definition 2.10 (i) for δx and Definition 2.10 (ii).

Definition 2.10 (i): Consider the sequence (ϕm)m∈N of functions ϕm ∈ Cb(U) with ϕm ≡ 1
on B[x, 1/m], ϕm ≡ 0 on U \ B[x, 2/m] and such that ϕm(y) = (2/m − ‖y − x‖2)m for all
y ∈ B[x, 2/m]\B[x, 1/m]. Fix some arbitrary m ∈ N and choose a km ∈ N with xnk

∈ B[x, 1/m]
for any k ≥ km. Note that such a km exists, since xn → x as n→∞. Then Exnk

(ϕm◦X0) = 1
for all k ≥ km, which results in EQ(ϕm◦X0) = limk→∞Exnk

(ϕm◦X0) = 1, where EQ denotes
the expectation with respect to Q. Thus, since m ∈ N was chosen arbitrarily and because
X0 is continuous, we infer that

QX0({x}) = EQ

(
lim

m→∞
ϕm ◦X0

)
DCT
= lim

m→∞
EQ (ϕm ◦X0) = 1,

which shows that Q satisfies Definition 2.10 (i) for δx.

Definition 2.10 (ii): By the FX–martingale property of (Mn,f
t )t∈R+

0
under P xnk we have that∫

A

Mn,f
t dP xnk =

∫
A

Mn,f
s dP xnk

holds true for any f ∈ C2
K(U), each k ∈ N, all s, t ∈ R+

0 with s ≤ t and every A ∈ Fs.

Let t ∈ R+
0 and let A ∈ Ft be closed. In view of Lemma B.21 there exists a sequence

(gm)m∈N ⊆ C(Ω, [0, 1]) with gm ↓ 1A pointwise as m→∞. Hence we obtain that

lim
k→∞

∫
A

f ◦Xt∧τn dP xnk
DCT
= lim

k→∞
lim

m→∞

∫
Ω

gn(f ◦Xt∧τn) dP xnk

= lim
m→∞

lim
k→∞

∫
Ω

gn(f ◦Xt∧τn) dP xnk

= lim
m→∞

∫
Ω

gn(f ◦Xt∧τn) dQ

DCT
=

∫
A

f ◦Xt∧τn dQ

and similarly

lim
k→∞

∫
A

∫
[0,t∧τn]

Tf ◦Xu∧τnλ(du) dP xnk
DCT
=

∫
[0,t∧τn]

lim
k→∞

∫
A

Tf ◦Xu∧τn dP xnkλ(du)
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=

∫
[0,t∧τn]

∫
A

Tf ◦Xu∧τn dQλ(du)

=

∫
A

∫
[0,t∧τn]

Tf ◦Xu∧τnλ(du) dQ

hold for all f ∈ C2
K(U), since Tf ∈ Cb(U), and because Xσ is continuous on Ω for each

σ ∈ Sb(FX). Thus,∫
A

Mn,f
t dQ = lim

k→∞

∫
A

Mn,f
t dP xnk = lim

k→∞

∫
A

Mn,f
s dP xnk =

∫
A

Mn,f
s dQ

holds for any f ∈ C2
K(U), each k ∈ N, all s, t ∈ R+

0 with s ≤ t and every closed A ∈ Fs. Since∫
(·)M

n,f
t dQ and

∫
(·)M

n,f
s dQ are finite measures on (Ω,Fs) with

∫
Ω
Mn,f

t dQ =
∫

Ω
Mn,f

s dQ,

and because Fs is generated by {A ∈ Fs : A is closed}, which is closed under the formation
of finite intersections, we conclude that

∫
A
Mn,f

t dQ =
∫

A
Mn,f

s dQ for all A ∈ Fs, which
shows that Q satisfies Definition 2.10 (ii). Therefore, (P ν)ν∈P(U) satisfies Definition 1.12 (i).

Definition 1.12 (ii): Fix an arbitrary x ∈ U and f ∈ Cb(U). By means of the Dominated
Convergence Theorem and the continuity of X(·)(ω) on R+

0 for any ω ∈ Ω, we have that

lim
t→0

Ex(f ◦Xt)
DCT
= Ex(f ◦ lim

t→0
Xt) = Ex (f ◦X0) ,

and hence we deduce that P x
Xt

w→ P x
X0

as t→ 0, which is equivalent to Xt
P x

→ X0 as t→∞,
since P x

X0
= δx. Therefore, (P ν)ν∈P(U) satisfies Definition 1.12 (ii), and thus we conclude

that (P ν)ν∈P(U) satisfies the Feller property. �

According to Theorem 1.1 in Chapter 2 in [Pin95] we have that supx∈D Ex(τD) ∈ R+
0 for

every domain D ⊆ U with D̄ ⊆ U . In particular, this yields that τn ∈ L 1(Ω, P ν) and thus
τn <∞ P ν–a.s. for all n ∈ N and any ν ∈ P(U).

Theorem 2.24 Presume that (aij)i,j=1,...,d and (bi)i=1,...,d are as in Theorem 2.19. Then
(P ν)ν∈P(U), the unique solution to the martingale problem for T on U , satisfies the strong
Markov property.

Proof Fix some arbitrary ν ∈ P(U), τ ∈ Sf (P
ν ,FX). The approach to prove the assertion

is quite similar to the idea which we have employed in the proof of Lemma 2.23 in order
to prove that Definition 1.12 (i) is satified. For any σ ∈ S(FX) let θσ : Ω → Ω be a shift
operator as in Definition 1.9. In view of Theorem B.19 we consider a regular Fτ–conditional
distribution P ν

θτ |Fτ
of θτ , i.e., P ν

θτ |Fτ
(·, A) = P ν(θ−1

τ (A)|Fτ ) P
ν–a.s. for all A ∈ F , and

we show that for P ν–a.a. ω ∈ Ω the probability measure P ν
θτ |Fτ

(ω, ·) ∈ P(Ω) solves the

martingale problem for (T, δXτ (ω)) on U . Then we infer from the uniqueness of the solution
that P ν(θ−1

τ (A)|Fτ ) = P ν
θτ |Fτ

(·, A) = PXτ (A) P ν–a.s. for all A ∈ F , which proves the
assertion. Since all our considerations are only P ν–a.s., and because τ < ∞ P ν–a.s., we
can assume w.l.o.g. that τ < ∞. In the following we will denote by P ν

θ0|Fτ
a regular Fτ–

conditional distribution of θ0, i.e., P ν
θ0|Fτ

(·, A) = P ν(A|Fτ ) P
ν–a.s. for all A ∈ F .

Now we show that P ν
θτ |Fτ

(ω, ·) satisfies Definition 2.10 (i) for δXτ (ω) and Definition 2.10 (ii)
for P ν–a.a. ω ∈ Ω.



2.2. THE MARTINGALE PROBLEM ON U ⊆ Rd 39

Definition 2.10 (i): By means of the P ν–a.s. uniqueness of the regular conditional distribu-
tions (cf. Theorem B.19) we obtain that

P ν
θτ |Fτ

(ω, {X0 ∈ ·}) = P ν
θ0|Fτ

(ω, {Xτ ∈ ·}) = 1{Xτ∈·}(ω) = δXτ (ω)

holds true for P ν–a.a. ω ∈ Ω, since Xτ is Fτ–B(Û)–measurable, where B(Û) denotes the
Borel σ–algebra on Û . This shows that P ν

θτ |Fτ
(ω, ·) satisfies Definition 2.10 (i) for δXτ (ω) for

P ν–a.a. ω ∈ Ω.

Definition 2.10 (ii): Fix some n ∈ N and f ∈ C2
K(U). In addition, let s, t ∈ R+

0 with s ≤ t.
Observe that (Mn,f

u )u∈R+
0

is uniformly P ν–integrable, since

∀u ∈ R+
0 : |Mn,f

u | ≤ ‖f‖∞ + ‖Tf‖∞τn

and ‖f‖∞ + ‖Tf‖∞τn ∈ L 1(Ω, P ν), because τn ∈ L 1(Ω, P ν). By the FX–martingale prop-
erty of (Mn,f

u )u∈R+
0

in conjunction with the Optional Sampling Theorem (cf. Theorem B.18)

we have that
∫

A
Mn,f

t+τ dP ν =
∫

A
Mn,f

s+τ dP ν holds true for all A ∈ Fs+τ . By means of the
P ν–a.s. uniqueness of the regular conditional distributions and by means of Lemma B.20
this results in∫

A

[Mn,f
t −Mn,f

s ](ω)P ν
θτ |Fτ

(·, dω) =

∫
θ−1
τ (A)

[Mn,f
t −Mn,f

s ] ◦ θτ (ω)P ν
θ0|Fτ

(·, dω)

L.B.20
= Eν

(
1θ−1

τ (A)[M
n,f
t+τ −Mn,f

s+τ ]
∣∣∣Fτ

)
= 0

P ν–a.s. for every A ∈ Fs, where
∫

A
[Mn,f

t − Mn,f
s ](ω)P ν

θτ |Fτ
(·, dω) : Ω → R is given by∫

A
[Mn,f

t −Mn,f
s ](ω)P ν

θτ |Fτ
(·, dω)(η) =

∫
A
[Mn,f

t −Mn,f
s ](ω)P ν

θτ |Fτ
(η, dω) for all η ∈ Ω. The

function
∫

θ−1
τ (A)

[Mn,f
t − Mn,f

s ] ◦ θτ (ω)P ν
θ0|Fτ

(·, dω) : Ω → R is given analogously. Hence,

P ν
θτ |Fτ

(ω, ·) satisfies Definition 2.10 (ii) for P ν–a.a. ω ∈ Ω, which proves the assertion. �

Remark 2.25 In the proof of Theorem 2.7 we have claimed that the assertions can be
proven on the lines of the proofs of Theorem 2.23 and Theorem 2.24. Well, if we want to
prove that the unique solution to the martingale problem on Rd for some operator satisfies
the strong Markov property, then it is a little bit more intricate to show that Definition 2.1
(ii) is satisfied. Hence we will briefly scetch the main idea how to show this point.

Assume that the martingale problem on Rd for some second–order differential operator T on
C2

K(Rd), as in Section 2.1, has a unique solution (P ν)ν∈P(Rd) ⊆ P(Ω̌). Let τ ∈ Sf (P
ν ,F X̌)

and f ∈ C2
K(Rd). Moreover, let ν ∈ P (Rd), and let (Dn)n∈N be a sequence of bounded

domains Dn ⊆ Rd with Rd =
⋃

n∈NDn and such that D̄n ( Dn+1 for all n ∈ N. Then
we can apply the Optional Sampling Theorem (cf. Theorem B.18) in order to deduce that(
f ◦ X̌t∧Dn −

∫
[0,t∧Dn]

Tf ◦ X̌sλ(ds)
)

t∈R+
0

is an F X̌–martingale under P ν . Let ω ∈ Ω and

consider the measure P ν(θ−1
τ (·)|Fτ )(ω) ∈ P(Ω). Along the lines of the proof of Theo-

rem 2.24 we obtain that
(
f ◦ X̌t∧τ̌Dn

−
∫

[0,t∧τ̌Dn ]
Tf ◦ X̌sλ(ds)

)
t∈R+

0

is an F X̌–martingale
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under P ν(θ−1
τ (·)|Fτ )(ω) for any n ∈ N. By considering the limits as n → ∞ this results in(

f ◦ X̌t −
∫

[0,t]
Tf ◦ X̌sλ(ds)

)
t∈R+

0

being an F X̌–martingale under P ν(θ−1
τ (·)|Fτ )(ω), since

limn→∞ τ̌Dn = τ̌Rd = ∞. This shows that Definition 2.1 (ii) is satisfied if we proceed as in
the proof of Theorem 2.24 in order to show that (P ν)ν∈ P (Rd) satisfies the strong Markov
property. ♦

Theorem 2.26 Assume that (aij)i,j=1,...,d and (bi)i=1,...,d satisfy the assumptions of Theo-
rem 2.19, and let (P ν)ν∈P(U) denote the unique solution to the martingale problem for T on
U . Then

∫
Ω
Y dP (·) is continuous on U for any Y ∈ B(Ω) which is continuous P y–a.s. for

every y ∈ U .

Proof The assertion can be proven on the lines of the proof of Theorem 2.8. �

2.3 Diffusions

The main purpose of this thesis is to study certain properties of diffusion semigroups. There-
fore, as in Chapter 1, the motivation for the theory developed so far is to construct a diffusion
process in a domain U ⊆ Rd. In this section we will give a second definition of diffusion pro-
cesses, and we will briefly discuss its relation to the Feller diffusions which we have defined
in the previous chapter (cf. Definition 1.30).

Throughout this section let U ( Rd be a domain.

Definition 2.27 Presume that (aij)i,j=1,...,d, (bi)i=1,...,d and T are as in Theorem 2.19, and
let (P ν)ν∈P(U) denote the unique solution to the martingale problem for T on U . For any
ν ∈ P(U) we call (X,P ν) the diffusion with respect to T and with initial distribution ν.
Furthermore, the associated sub–Markov semigroup (Pt)t∈R+

0
of transition kernels is referred

to as diffusion semigroup. In the spirit of referring to ∆ as cemetery state we say that X
is killed at τU , and we call τU the lifetime of the diffusion. Note that this killing is different
from the killing in Subsection 1.3.2.

Now we want to discuss briefly the relation between the diffusions in the sense of Defini-
tion 2.27 and the Feller diffusions in U as given by Definition 1.30.

A Feller diffusion (X́U , Ṕ ν
U) in U with respect to TU and with initial distribution ν ∈ P(U)

clearly satisfies Definition 2.10 (i). Moreover, we deduce from Lemma 1.20 and the Optional
Sampling Theorem (cf. Theorem B.18) that (f ◦ X́U

t∧τn
−
∫

[0,t∧τn]
(TUf) ◦ X́U

s λ(ds))t∈R+
0

is

an (F́U
t )t∈R+

0
–martingale under Ṕ ν

U for any f ∈ C2
K(U), where F́U

t := σ{X́U
s∧τU

: s ∈ [0, t]}.
That is, the stopped process corresponding to a Feller diffusion satisfies a martingale prop-
erty as in Definition 2.10 (ii). Conversely, we have shown in the previous section that any
diffusion in the sense of Definition 2.27 is a Feller process as well as a strong Markov process.
Thus, all these basic properties are shared by both classes of diffusion processes. In view
of that, it may be justified to refer to processes from both classes as diffusion processes.
However, there are considerable differences between Feller diffusions in U and diffusions as
in Definition 2.27. To begin with, Feller diffusions in U and diffusions are defined on different
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spaces. Moreover, Feller diffusions in U do not exist anymore after τU , whereas diffusions
in the sense of Definition 2.27 are identical ∆ from τU on. An important question is under
which assumptions the respective diffusion processes exist. Recall that a Feller diffusion in
U is obtained by killing a Feller diffusion in Rd, and consequently the coefficients aU

ij and bUi ;
i, j = 1, . . . , d; appendant to the killed process have limits in R as x → ∂U , and (bUi )i=1,...,d

is continuous. However, even if the limits limx→∂U aij(x) and limx→∂U bi(x) do not exist in
R for some i, j ∈ {1, . . . , d}, or if (bi)i=1,...,d is not continuous, there may be a diffusion with

respect to T = 1
2

∑d
i,j=1 aij

∂2

∂xixj
+
∑d

i=1 bi
∂

∂xi
in the sense of Definition 2.27.

A possible extension of our considerations in the present thesis may be to deal with diffusions
conditional on not leaving U . These conditional processes, which are examples of Doob’s
h processes, are closely related to the questions with which we will deal in Part II of this
thesis. Since the drift coefficients of those conditional diffusions are unbounded on U , these
processes are not Feller diffusions in U . However, those conditional processes are diffusions in
the sense of Definition 2.27 (cf. the theorem in [Pin85]). Despite not dealing with conditional
diffusions in this thesis, our motivation to construct diffusions via the martingale problem is
that it enables us to consider those conditional processes in the context of diffusion processes.
This may justify the consideration of the approach via the martingale problem in this thesis,
even though in Part II we won’t take full advantage of the power of the martingale problem.

In Part II of this thesis we will consider diffusion semigroups as given by Definition 2.27.
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Chapter 3

Intrinsic Ultracontractivity

This chapter, in which we will deal with a certain analytical property of diffusion semigroups,
constitutes the main part of this thesis. The diffusions are given by Definition 2.27, and some
of their properties are provided by the previous chapter.

We consider Rd, d ≥ 3, endowed with the Euclidean norm ‖ · ‖2. Throughout this chapter
let U ⊆ Rd be a bounded C2,1–domain, and let the Borel σ–algebra on U be denoted by
B(U). Additionally, let ∆ ∈ Rd \ U be a point which yields an Alexandroff one-point
compactification Û := U ∪{∆} of U (cf. Theorem B.24). Furthermore, we define a function
σU : C(R+

0 , Û) → R̄+
0 by σU(f) = inf{t ∈ R+

0 : f(t) 6∈ U} for all f ∈ C(R+
0 , Û). Consider a

measurable space (Ω,F ), where Ω := {ω ∈ C(R+
0 , Û) : ω(t) = ∆∀ t ≥ σU(ω)} is equipped

with the topology of uniform convergence on bounded intervals of R+
0 , and F := B(Ω).

Moreover, B(Ω) denotes the Borel σ–algebra on Ω. In addition, we will be concerned with
the coordinate mapping process X := (Xt)t∈R+

0
on (Ω,F ), defined by Xt := πt : Ω → Û ,

where πt denotes the projection as in Definition B.5. Moreover, we consider a filtration
FX := (Ft)t∈R+

0
, where Ft := σ(Xs : s ∈ [0, t]} for any t ∈ R+

0 , and we obtain an FX–

stopping time τU := σU |Ω. Furthermore, we denote by λd the d–dimensional Lebesgue
measure and by ca(B(U)) the family of all finite signed measures on B(U). In this chapter
we will consider diffusions in U , as constructed in the previous chapter (cf. Definition 2.27).
Recall that by definition a diffusion in U is a stochastic process killed at τU , i.e., with the
zero Dirichlet boundary condition.

As the title of this chapter reveals, we will concern ourselves with the so–called intrinsic
ultracontractivity. In Section 3.1 we will provide the basic assumptions and tools for our
further proceeding in the following sections. The main part of this chapter is Section 3.2,
where we will introduce the concept of intrinsic ultracontractivity, and in which we will state
and prove the main result of this thesis.

Without going into detail, we just want to mention here the main result of this chapter, so
that the reader who is already familiar with the underlying concepts can get a general idea
of what we are going to do.

Our main result states that a diffusion semigroup (Pt)t∈R+
0
, as defined in Definition 2.27, is

intrinsically ultracontractive on U [with respect to λd] if the diffusion coefficient (aij)i,j=1,...,d

45
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and the drift coefficient (bi)i=1,...,d satisfy the following conditions:

(i) aij ∈ C2(Ū) and bi ∈ C1(Ū) for all i, j ∈ {1, . . . , d},
(ii) aij; i, j = 1, . . . , d; can be extended to some ǎij ∈ Cb(Rd) such that ∂

∂xj
ǎij exists and is

bounded, and such that (ǎij)i,j=1,...,d is symmetric as well as uniformly elliptic.

Moreover, if there exists some inner regular finite measure m0 on (U,B(U)) such that for
any t > 0 and all x ∈ U the transition measure Pt(x, ·) possesses a bounded continuous
m0–density pm0

t (x, ·), then the first condition can be relaxed to

∃ θ > 0∀ i, j ∈ {1, . . . , d} : aij, bi ∈ C0,θ(Ū)

in order that (Pt)t∈R+
0

is intrinsically ultracontractive on U with respect to m0. We will
present the proof in Section 3.2.

The main literature to which we will refer troughout this chapter are [KS06a], [GQZ88] and
[Dyn65II]. Furthermore, in order to prove our main theorem we will utilise results from
[HS82] and [GW82]. We will primarily refer to [KS06a] in order to compare the main result
obtained by Kim and Song with our main result. However, the methods in that paper are
not utilised in the course of our approach. In contrast, [GQZ88] contains some results which
are indispensable for our considerations, and we will refer to these results occasionally. Note
that the assumptions on the coefficients of the underlying operator in [GQZ88] look slightly
different from our assumptions on T , but the proofs of the cited results work out equally
well under our assumptions. In fact, the principal part of the diffusion generating operator
in [GQZ88] is given in divergence form, whereas our operator will be given in nondivergence
form, which may explain the differences.

3.1 Preliminaries

Throughout the whole chapter we consider a linear operator T : C2
K(U) → CK(U) in nondi-

vergence form defined by

∀ f ∈ C2
K(U)∀x ∈ U : Tf(x) =

1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

f(x) +
d∑

i=1

bi(x)
∂

∂xi

f(x) , (3.1)

where (aij)i,j=1,...,d and (bi)i=1,...,d satisfy the following conditions:

(i) ∃ θ > 0∀ i, j ∈ {1, . . . , d} : aij, bi ∈ C0,θ(Ū),

(ii) aij; i, j = 1, . . . , d; can be extended to some ǎij ∈ Cb(Rd) such that ∂
∂xj
ǎij exists and is

bounded, and such that (ǎij)i,j=1,...,d is symmetric as well as uniformly elliptic.

Note that Ū denotes the closure of U in Rd. In particular, (aij)i,j=1,...,d and (bi)i=1,...,d satisfy
the conditions of Theorem 2.19, i.e., for any ν ∈ P(U) the martingale problem for (T, ν)
on U has a unique solution P ν ∈ P(Ω,F ). As in the previous chapter, we set P x := P δx .



3.1. PRELIMINARIES 47

Furthermore, let (Pt)t∈R+
0

be a semigroup of sub–Markov kernels Pt, t > 0, on (U,B(U)),

defined by Pt(x,B) = P x(Xt ∈ B) for all x ∈ U and B ∈ B(U). In addition, we define a
Feller semigroup (Tt)t∈R+

0
of transition operators Tt on C0(U) by Ttf(x) =

∫
U
Pt(x, dy)f(y)

for all f ∈ C0(U) and any t > 0.

Note that the conditions which we have imposed on the domain U as well as on the diffusion
and drift coefficients of T are actually much stronger than the assumptions of Theorem 2.19,
which yield a unique solution to the corresponding martingale problem. However, as we will
see below, these conditions are necessary in order to establish the set–up for Section 3.2, in
which we will utilise the results developed in the present section.

Theorem 3.1 There exists a positive function p(·)(·, ·) ∈ C(R+ × U × U) such that pt is
bounded and pt(x, ·) is a λd|U–density of Pt(x, ·) for any t > 0 and all x ∈ U .

Proof Except for the positivity, this follows from Theorem 0.6 in §6 of the appendix of
[Dyn65II].

Our approach to prove the positivity is based on an idea of the proof of Theorem 4.3 in
Chapter 2 in [PS78], where Port and Stone prove the positivity of a λd|U–density relating to
the d–dimensional Wiener process with the zero Dirichlet boundary condition.

For all i, j ∈ {1, . . . , d} extend aij and bi to some ǎij ∈ Cb(Rd) and some bounded measurable
b̌i : Rd → R such that ∂

∂xj
ǎij exists and is bounded, and such that (ǎij)i,j=1,...,d is symmetric as

well as uniformly elliptic. Note that by condition (ii) in the definition of T such extensions are
possible, and observe that (ǎij)i,j=1,...,d and (b̌i)i=1,...,d satisfy the assumptions of Theorem 2.4.
Moreover, these extensions enable us to use Theorem 1 in [Aro67]. In addition, consider the
linear operator Ť := 1

2

∑d
i,j=1 ǎij

∂2

∂xixj
+
∑d

i=1 b̌i
∂

∂xi
from C2

K(Rd) to B(Rd). Then we infer

from Theorem 2.4 that for any x ∈ Rd the martingale problem for (Ť , δx) on Rd has a unique
solution P̌ x on (Ω̌, F̌ ), where Ω̌ := C(R+

0 ,Rd) and F̌ := B(Ω̌). Here Ω̌ is presumed to be
endowed with the topology of uniform convergence on bounded intervals of R+

0 , and B(Ω̌)
denotes the Borel–σ–algebra on Ω̌. Furthermore, we will be concerned with the coordinate
mapping process X̌ := (X̌t)t∈R+

0
on (Ω̌, F̌ ), defined by X̌t := πt : Ω̌ → Rd. We will use

the random variable τ̌U := inf{t ∈ R+
0 : X̌t 6∈ U}. Consider the sub–Markov semigroup

(P̌t)t∈R+
0

of transition kernels defined by P̌t(x,B) = P̌ x(X̌t ∈ B) for all t ∈ R+
0 , x ∈ Rd and

B ∈ B(Rd), where B(Rd) denotes the Borel–σ–algebra on Rd. According to Lemma 2.9
P̌t(x, ·), x ∈ Rd, possesses a λd–density p̌t(x, ·), which by means of Aronson’s estimate (cf.
Theorem 1 in [Aro67]) satisfies

α−1t−
d/2 exp(−α‖x− y‖2

2t
−1) ≤ p̌t(x, y) ≤ αt−

d/2 exp(−α−1‖x− y‖2
2t
−1) (3.2)

for all y ∈ Rd.

Part I

Let x0 ∈ U . Based on the proof of Proposition 4.1 in Chapter 2 in [PS78] we will show
that there exists some ε > 0 such that pt(x, y)p̌t(x, y)

−1 → 1 uniformly in x, y ∈ B[x0, ε] as
t→ 0. For any t > 0 consider p′t : U × U → R+

0 given by p′t(x, y) = p̌t(x, y)− pt(x, y) for all
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x, y ∈ U , and observe that

∀x, y ∈ U : p′t(x, y) =

∫
{τ̌U<t}

p̌t−τ̌U
(Xτ̌U

(ω), y)P̌ x(dω). (3.3)

Indeed, since P̌ x(X̌t ∈ B, τ̌U = t) ≤ P̌ x(X̌t ∈ B, X̌t ∈ ∂U) = 0 for all B ∈ B(U), we have
that∫

B

p̌t(x, y)λd(dy) = P̌ x(X̌t ∈ B) = P̌ x(X̌t ∈ B, τ̌U > t) + P̌ x(X̌t ∈ B, τ̌U < t)

= P x(Xt ∈ B, τ̌U > t) +

∫
{τ̌U<t}

P̌ X̌τ̌U
(ω)(X̌t−τ̌U

∈ B)(·, y)P̌ x(dω)

=

∫
B

pt(x, y)λd(dy) +

∫
B

∫
{τ̌U<t}

p̌t−τ̌U
(Xτ̌U

(ω), y)P̌ x(dω)λd(dy)

holds true for all x, y ∈ U and each B ∈ B(U). By the continuity on U of the integrands of
the integrals above, this results in

∀x, y ∈ U : p̌t(x, y) = pt(x, y) +

∫
{τ̌U<t}

p̌t−τ̌U
(Xτ̌U

(ω), y)P̌ x(dω),

which shows (3.3). Let ρ := inf{‖z − x0‖ : z ∈ U{} and fix some ε > 0 with 3ε < ρ.
Furthermore, let x, y ∈ B[x0, ε] and define η := inf{‖z−v‖ : z ∈ U{, v ∈ B[x0, ε]}. Note that
‖x−y‖2 ≤ 2ε < ρ−ε ≤ η. In addition, observe that αt−d/2 exp(−α−1η2t−1) is monotonically
increasing in t ∈ (0, 2η2α−1d−1). Therefore, we deduce from (3.2) that

p̌t−s(z, y) ≤ α(t− s)−
d/2 exp(−α−1‖z − y‖2

2(t− s)−1)

≤ α(t− s)−
d/2 exp(−α−1η2(t− s)−1) ≤ αt−

d/2 exp(−α−1η2t−1).

for all 0 ≤ s < t < 2η2α−1d−1 and every z ∈ U{. By means of (3.3) this yields that

∀ 0 < t < 2η2α−1d−1 : p′t(x, y) ≤ αt−
d/2 exp(−α−1η2t−1),

which, by (3.2), results in

∀ 0 < t < 2η2α−1d−1 :
p′t(x, y)

p̌t(x, y)
≤ exp

(
−η

2 − ‖x− y‖2
2

αt

)
≤ exp

(
−η

2 − 4ε2

αt

)
.

Since p′(tx, y) = p̌t(x, y)− pt(x, y), we conclude by the inequality above that

pt(x, y)p̌t(x, y)
−1 → 1 uniformly in x, y ∈ B[x0, ε] as t→ 0.

Part II

Now fix some arbitrary t0 > 0 and x ∈ U , and define A := {y ∈ U : pt0(x, y) > 0}, which
is open in U by the continuity of pt0(x, ·). Observe that we obtain A = U if we show that
A 6= ∅ and Ā∩U = A. This can be seen as follows: Since A ⊆ U by definition, we only have
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to show that U ⊆ A. From Ā ∩ U = A we infer that U ∩ ∂A = ∅. Because U is connected
and A 6= ∅, this yields that U ∩ A{ = ∅, which results in A = U .

At first observe that A 6= ∅. In fact, Pt0(x, U) = Pt0(x,A), since Pt0(x, U \ A) = 0 by
definition of A. Moreover, since x ∈ U and because the diffusion is continuous, we have that
Pt0(x, U) > 0. Now if A = ∅, then we had Pt0(x, U) = 0, which would be a contradiction to
the positivity of Pt0(x, U).

Since A ⊆ Ā ∩ U , it only remains to show that Ā ∩ U ⊆ A.

For the time being, let y ∈ U and observe that there exists a neighbourhood Ny ⊆ U of y
such that pt(u, v) > 0 for all u, v ∈ Ny and every t > 0. This can be seen as follows: By
Part I there exists an ε > 0 such that pt(u, v)p̌t(u, v)

−1 → 1 uniformly in u, v ∈ B[y, ε] as
t→ 0. With Ny := B[y, ε] we infer that there exists some ty > 0 such that pt(u, v) > 0 for all
u, v ∈ Ny and any t ≤ ty. Now let t > 0 and choose some nt ∈ N with ntty ≤ t ≤ (nt + 1)ty,
i.e., 0 ≤ t− ntty ≤ ty. Now the Chapman–Kolmogorov equation yields that

pt(u, v) =

∫
U

pntty(u,w)pt−ntty(w, v)λd(dw)

=

∫
U

∫
U

. . .

∫
U︸ ︷︷ ︸

nt times

pty(u,w1) . . . pty(wnt , w)pt−ntty(w, v)λd(dw1) . . . λd(wnt)λd(dw) > 0

holds true for all u, v ∈ Ny.

Choose some z ∈ Ā ∩ U . Then, as shown above, there exists a neighbourhood Nz ⊆ U of
z such that pt(u, v) > 0 for all u, v ∈ Nz and every t > 0. Note that A ∩ Nz 6= ∅, since
z ∈ Ā. Let y ∈ A ∩ Nz and observe that pt0(x, y) > 0, because y ∈ A. By the continuity
of p(·)(x, y) there exists an 0 < s < t0 with ps(x, y) > 0. Since ps(x, ·) is continuous, we
conclude that there exists a neighbourhood Ny ⊆ Nz of y with pt(x,w) > 0 for all w ∈ Ny.
Another application of the Chapman–Kolmogorov equation in conjunction with our above
considerations results in

pt0(x, z) =

∫
U

ps(x,w)pt0−s(w, z)λd(dw) ≥
∫

Ny

ps(x,w)pt−s(w, z)λd(dv) > 0,

i.e., z ∈ A. Since z ∈ Ā ∩ U was chosen arbitrarily, we infer that Ā ∩ U ⊆ A. As mentioned
above, this yields the assertion. �

Throughout this chapter let p(·)(·, ·) denote the function as in Theorem 3.1.

Remark 3.2 (i) Note that in the proof of Theorem 3.1 we can indeed apply Theorem 0.6
in §6 of the appendix of [Dyn65II], because we can extend (aij)i,j=1,...,d and (bi)i=1,...,d

to coefficients on some domain D ⊇ Ū which satisfy the assumptions of Theorem 2.19.
Since all trajectories ωD of the corresponding diffusion (cf. Definition 2.27) are con-
tinuous up to inf{t ∈ R+

0 : ωD(t) 6∈ D}, we deduce by means of Theorem 2.2 that for
every ω ∈ Ω there exists some x0 ∈ ∂U such that ‖ω(t)− x0‖2 → 0 as t→ τU(ω).
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(ii) Observe that (pt)t∈R+ satisfies the Chapman–Kolmogorov equation with respect to λd.
Indeed, we know that (Pt)t∈R+

0
is a semigroup. Thus we infer that∫

B

ps+t(x, y)λd(dy) = Ps+t(x,B) =

∫
U

Ps(x, dz)Pt(z, B)

=

∫
B

∫
U

ps(x, z)pt(z, y)λd(dz)λd(dy)

holds true for all x ∈ U , B ∈ B(U) and s, t > 0, i.e., pt(x, y) =
∫

U
ps(x, z)pt(z, y)λd(dz).

♦

Later on we will frequently deal with an “adjoint” semigroup of the Feller semigroup (Tt)t∈R+
0
.

Actually, rather than considering the adjoint semigroup itself, we will consider a semigroup
which is closely related to the adjoint semigroup, and which will be referred to as formal
adjoint semigroup.

We define a semigroup (Ut)t∈R+
0

of linear operators Ut : ca(B(U)) → ca(B(U)) by

∀ ν ∈ ca(B(U))∀B ∈ B(U) : Utν(B) =

∫
U

Pt(x,B)ν(dx).

The dual space B(U)∗ of B(U) is related to ca(B(U)) in the following way: Each f ∗ ∈ B(U)∗

can be represented by

∀ f ∈ B(U) : f ∗(f) =

∫
U

f dν =: 〈f, ν〉,

where ν ∈ ca(B(U)). That is, any f ∗ ∈ B(U)∗ corresponds to some ν ∈ ca(B(U)), and thus
B(U)∗ can be equated with ca(B(U)). Note that

〈Ttf, ν〉 =

∫
U

∫
U

pt(x, y)f(y)λd(dy)ν(dx) =

∫
U

f(y)

∫
U

Pt(x, dy)ν(dx) = 〈f, Utν〉

holds true for all t > 0, f ∈ C0(U) and ν ∈ ca(B(U)), i.e., Ut is the adjoint of Tt. Moreover,
observe that

∀ t > 0∀ ν ∈ ca(B(U))∀B ∈ B(U) : Utν(B) =

∫
B

∫
U

pt(x, y)ν(dx)λd(dy),

i.e., for any ν ∈ ca(B(U)) the signed measure Utν has a λd|U–density
∫

U
pt(x, ·)ν(dx) ∈

Cb(U).

We define a semigroup (T ∗
t )t∈R+

0
of linear operators T ∗

t : Cb(U) → Cb(U) by

∀ t > 0∀ f ∈ Cb(U) : T ∗
t f =

∫
U

pt(x, ·)f(x)λd(dx).

In particular, we obtain for any f ∈ Cb(U) that T ∗
t f is a λd|U–density of Ut(fλd), since∫

B

T ∗
t f(y)λd(dy) =

∫
B

∫
U

pt(x, y)f(x)λd(dx)λd(dy) = Ut(fλd)(B) (3.4)
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holds for all t > 0, B ∈ B(U) and y ∈ U . Furthermore, we infer that∫
U

f(x)T ∗
t g(x)λd(dx) =

∫
U

∫
U

f(x)pt(y, x)g(y)λd(dy)λd(dx) =

∫
U

g(y)Ttf(y)λd(dy) (3.5)

holds true for all f ∈ C0(U), g ∈ Cb(U) and t > 0. We call (T ∗
t )t∈R+

0
the formal adjoint

semigroup of (Tt)t∈R+
0
. A motivation for this name will be given in Lemma 3.14 on page 60.

Let (P ∗
t )t∈R+

0
denote the semigroup of transition kernels associated with (T ∗

t )t∈R+
0
.

Throughout this chapter we will make frequent use of the following result concerning eigen-
values and eigenfunctions, which is based on the strong version of the Krein–Rutman theorem
(cf. [KR62]) and the strong maximum principle (cf. [GT98]).

Theorem 3.3 There exists a γ > 0 such that e−γt is a simple eigenvalue of Tt and T ∗
t for

any t > 0. Furthermore, |l| < e−γt for all t > 0 and l ∈ (σ(Tt) ∪ σ(T ∗
t )) \ {e−γt}. Moreover,

there exist positive ϕ, ψ ∈ C0(U), normalised such that
∫

U
ψ dλd = 1 and

∫
U
ϕψ dλd = 1,

which satisfy Ttϕ = e−γtϕ as well as T ∗
t ψ = e−γtψ for all t > 0.

Proof See Theorem 5.5 and Theorem 6.1 in Chapter 3 in [Pin95] as well as Proposition
3 and Proposition 4 in [GQZ88]. Fix some t > 0, and note that we don’t get directly the
result concerning T ∗

t and ψ. But since Ut is the adjoint of Tt, we obtain that there exists a
measure ν on B(U), normalised such that ν(U) = 1 and

∫
U
ϕ dν = 1, with Utν = e−γtν and

such that ν(B) > 0 for any nonempty open B ⊆ U . Let ψ ∈ Cb(U) be a λd|U–density of ν.
Note that such a ψ ∈ Cb(U) exists, since, as we have shown above, Utν has a λd|U–density
in Cb(U). According to (3.4) we have that∫

B

T ∗
t ψ dλd = Ut(ψλd)(B) = Utν(B) = e−γtν(B) = e−γt

∫
B

ψ dλd

holds true for all B ∈ B(U), and hence T ∗
t ψ = e−γtψ. That ψ is positive follows from

the positivity of pt and from ν(B) > 0 for all nonempty open B ⊆ U . Moreover, that∫
U
ψ dλd = 1 and

∫
U
ϕψ dλd = 1 results from ν(U) = 1 and

∫
U
ϕ dν = 1, because ψ is a

λd|U–density of ν. �

Remark 3.4 Note that the Krein–Rutman theorem is not applicable directly, because
C0(U) has an empty interior, and the strong version of the Krein–Rutman theorem requires
that the cone of the nonnegative functions in the respective function space has a nonempty
interior. Thus, this theorem cannot be applied directly to an operator on C0(U). However,
in Section 5 of Chapter 3 in [Pin95] Pinsky shows a way of how to apply the Krein–Rutman
theorem in order to prove Theorem 3.3. ♦

Throughout this chapter let γ, ϕ and ψ denote the constant and eigenfunctions, respectively,
as in Theorem 3.3.

In the course of our considerations we will frequently refer to the following hypotheses:

(H1) There exists some inner regular m0 ∈ Mf (U) such that for any t > 0 and all x ∈ U
the transition measure Pt(x, ·) possesses a bounded, continuous and symmetric m0–density
pm0

t (x, ·), i.e., Pt(x,B) =
∫

B
pt(x, y)m0(dy) and pm0

t (x, ·) = pm0
t (·, x) for all x ∈ U , any t > 0

and every B ∈ B(U).
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(H1’) We say that a finite inner regular measure m on (U,B(U)) satisfies Hypothesis (H1’)
if for any t > 0 and all x ∈ U the transition measure Pt(x, ·) possesses a positive, bounded,
continuous and symmetric m–density pm

t (x, ·).
(H2) In addition to the assumptions on the coefficients in the definition of T we have that
aij ∈ C2(Ū) and bi ∈ C1(Ū) for all i, j ∈ {1, . . . , d}.
We do not postulate that Hypothesis (H1) or Hypothesis (H2) is satisfied, but for some
results in the upcoming part of this chapter we will assume that (H1) or (H2) is satisfied.
In these situations we will explicitely refer to the corresponding hypothesis.

Observe that if Hypothesis (H1) is satisfied, then pm0
t satisfies the Chapman–Kolmogorov

equation with respect to m0 (cf. Remark 3.2 (ii)).

Note that Hypothesis (H1) is satisfied whenever there exists a measure m ∈Mf (U) which
satisfies Hypothesis (H1’).

In particular, Hypothesis (H1) is satisfied if the diffusion is symmetric. In fact, in that
situation we deduce from Theorem 3.1 that λd satisfies Hypothesis (H1’). However, Hy-
pothesis (H1) does not require the diffusion to be symmetric.

In particular, Hypothesis (H2) implicates that ∂2

∂xi∂xj
aij as well as ∂

∂xi
bi are bounded for all

i, j ∈ {1, . . . , d}.

3.2 Intrinsic Ultracontractivity

Now we are ready to introduce the main concept of this thesis, the so–called intrinsic ul-
tracontractivity. As we will see in Chapter 4, this property is sufficiently strong in order to
guarantee nice convergence properties of the diffusion. In fact, that is our main motivation
to deal with intrinsic ultracontractivity.

Definition 3.5 Let m be a finite measure on (U,B(U)), such that for any t > 0 as well
as each x ∈ U the transition measure Pt(x, ·) has an m–density pm

t (x, ·). We say that the
diffusion semigroup (Pt)t∈R+

0
is intrinsically ultracontractive [on U ] with respect to m if

for any t > 0 the function qm
t : U × U → R+

0 , defined by

∀ t > 0∀x, y ∈ U : qm
t (x, y) =

pm
t (x, y)

ϕ(x)ψ(y)
, (3.6)

is bounded.

If m = λd (i.e., pm = p) and if (3.6) is satisfied, then we will simply say (Pt)t∈R+
0

is

intrinsically ultracontractive [on U ], without mentioning the measure.

The concept of intrinsic ultracontractivity for symmetric processes was introduced by Davies
and Simon in [DS84]. Davies and Simon used a different definition (cf. Section 3 in [DS84]).
They considered a semigroup (Lt)t∈R+

0
of transition operators on L 2(U, λd|U) with associ-

ated semigroup (Qt)t∈R+
0

of transition kernels and normalised eigenfunction ϕ corresponding
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to the principal eigenvalue e−γt, i.e., Ltϕ = e−γtϕ for all t > 0. They call (Lt)t∈R+
0

in-

trinsically ultracontractive if for any t > 0 the operator L′t on L 2(U,ϕ2λd|U), defined by
L′tf(x) =

∫
U
Qt(x, dy)ϕ(x)−1ϕ(y)−1f(y) for all f ∈ L 2(U,ϕ2λd|U) and x ∈ U , is a bounded

operator which maps L 2(U,ϕ2λd|U) into L∞(U,ϕ2λd|U). In Theorem 3.2 in [DS84] Davies
and Simon show that in this symmetric L 2–context their definition is equivalent to our defi-
nition. Moreover, in Proposition 2.2 in [KS06a] Kim and Song prove that the corresponding
equivalence holds true also for non–symmetric operators.

All our considerations in this chapter are related to the bounded C2,1–domain U . However,
in the literature, many authors consider a diffusion with “nice” coefficients, e.g. the Wiener
process, on some bounded domain D ⊆ Rd with the zero Dirichlet boundary condition, and
they are interested in how “regular” the boundary of D has to be for intrinsic ultracontrac-
tivity to hold. That is, whereas our approach is to fix the domain and to find coefficients as
general as possible, a common approach in the literature is to fix a “nice” diffusion and to
find a domain as general as possible to have intrinsic ultracontractivity. This approach was
chosen for example by Davies and Simon in [DS84], where they prove that the semigroup
corresponding to the Laplace operator with the zero Dirichlet boundary condition is intrin-
sically ultracontractive if D has a C∞–boundary (cf. Theorem 9.2 in [DS84]) or if D satisfies
an interior cone condition and an exterior cone condition (cf. Theorem 9.3 in [DS84]). Much
more general results in this regard can be derived from Theorem 1.2 in [BB92], where Bass
and Burdzy show that on certain domains the parabolic boundary Harnack principle (cf.
(3.11) on p. 57) holds for a large class of symmetric operators. We show that the parabolic
boundary Harnack principle is equivalent to intrinsic ultracontractivity (cf. Theorem 3.11
on p. 57), and thus they have effectively proven that intrinsic ultracontractivity holds under
their assumptions.

Another approach, which was employed by Cipriani in Theorem 3 in [Cip94] as well as by
Ouhabaz and Wang in Corollary 2.4 (a) in [OW07], is to investigate under which assumptions
on the eigenfunction ϕ intrinsic ultracontractivity holds true.

Almost all authors considered intrinsic ultracontractivity in the context of symmetric dif-
fusions. The paper closest to our considerations is [KS06a], firstly because Kim and Song
are the first (and to the best of our knowledge only ones) who considered intrinsic ultracon-
tractivity of non–symmetric diffusion semigroups, and secondly because they have taken the
approach to fix a domain and to consider how the coefficients have to be chosen in order
that intrinsic ultracontractivity holds. We are going to deal with a similar question. In
view of these similarities of their paper with this thesis, we will compare the main result in
[KS06a] with our main result, in order to point out where is the novelty of our work. This
comparison is done at the end of the present section. Note that intrinsic ultracontractivity
is an analytical property, and so far this property was mainly studied in the Hilbert space
context, often using Dirichlet forms and logarithmic Sobolev inequalities. That functional
analytical approach was also used by Kim and Song, whereas we are working on C0(U) and
we have chosen a more stochastic approach. That is, our method differs profoundly from
the approach in [KS06a].

As we have noted above, many authors are interested in the question under which assump-
tions intrinsic ultracontractivity holds true. Thus one may wonder if there are situations
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at all in which intrinsic ultracontractivity does not hold. Well, in Theorem 9.1 in [DS84]
Davies and Simon give a counterexample of a bounded domain in R2 on which the semi-
group corresponding to the Laplace operator with the zero Dirichlet boundary condition is
not intrinsically ultracontractive. Another counterexample is given in Section 4 in [BD89]
by Bañuelos and Davis. There they show that e−γtpt(x, y)ϕ(x)−1ψ(y)−1 does not converge
jointly uniformly in (x, y) ∈ D2 as t → ∞, but intrinsic ultracontractivity implies such a
jointly uniformly convergence. These counterexamples, which fit into the approach of con-
sidering “nice” diffusions and “irregular” domains, show that, as one may have expected,
some regularity conditions on the boundary of D are necessary in order to obtain intrinsic
ultracontractivity of the diffusion semigroup. Indeed, it turns out that what might cause
problems are what in [BB92] Bass and Burdzy call “long and thin canals”.

Above we have mentioned that there exist many results which show that on bounded domains
with sufficiently regular boundary intrinsic ultracontractivity holds for “nice” diffusions, in
particular for the Wiener process with the zero Dirichlet boundary condition. However, ex-
cept for the results in [KS06a] these results are related to symmetric operators. As mentioned
above, in [KS06a] there is developed an idea for dealing with intrinsic ultracontractivity in
the context of non–symmetric diffusions, which differs profoundly from our method. Be-
fore we will present our results, we will present a class of diffusions in U whose diffusion
semigroups are intrinsically ultracontractive.

Consider the function δ : U → R+ defined by δ(x) = infy∈∂U ‖x − y‖2 for all x ∈ U . This
definition will be valid throughout the whole section.

Lemma 3.6 There exist some α > β > 0 such that

βδ(x) ≤ ϕ(x) ≤ αδ(x) and βδ(x) ≤ ψ(x) ≤ αδ(x)

hold true for every x ∈ U .

Proof Confer Proposition 3 in [GQZ88]. �

Example 3.7 Let g = (gi)i=1,...,d ∈ C∞
b (U,Rd) be such that ∂

∂xi
g is bounded. Then (P g

t )t∈R+
0
,

the semigroup of the Wiener process with drift g killed at τU , is intrinsically ultracontractive.

Proof For every x ∈ U let pg
t (x, ·) denote the λd|U–density of P g

t (x, ·). Then we have by
Theorem 4.2 in [KS06b] that there exist α1, α2 > 0 such that

pg
t (x, y) ≤ α1t

− d+2
2 δ(x)δ(y) exp

(
−α2

‖x− y‖2
2

2t

)
holds for all x, y ∈ U . By means of Lemma 3.6 this results in

pg
t (x, y) ≤ αϕ(x)ψ(y)

for some α > and all x, y ∈ U , i.e., (P g
t )t∈R+

0
is intrinsically ultracontractive. �

Observe that in the above example the generator T g of the Wiener process with drift g
killed at τU is given on C2

K(U) by T gf = 1/2∆df +
∑d

i=1 gi
∂

∂xi
f(x), where ∆d denotes the

d–dimensional Dirichlet Laplacian.
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Now we start to develop our theory concerning intrinsic ultracontractivity, which comprises
the non–symmetric case. The first result states that the upper bound, which is obtained by
intrinsic ultracontractivity, yields a positive lower bound.

Theorem 3.8 Assume that for every t > 0 there exist an αt > 0 and some inner regular
m ∈ M(U) such that for any x ∈ U the measure Pt(x, ·) possesses an m–density pm

t , which
satisfies pm

t (x, y) ≤ αtϕ(x)ψ(y) for all y ∈ U . Then for any t > 0 there exists a βt > 0
and some m̃ ∈Mf (U), which satisfies Hypothesis (H1’), such that for each x ∈ U we have
that pm̃

t (x, ·), the corresponding m̃–density of Pt(x, ·), satisfies βtϕ(x)ψ(y) ≤ pm̃
t (x, y) for all

y ∈ U .

Proof Our approach is based on the ideas of the proof of Theorem 3.2 “(iv)=⇒(v)” in
[DS84]. Let t > 0. The inner regularity of m implies that there exists a compact K0 ⊆ U
with λd(U \K0) ≤ α−1

t 2−1e−γt[maxx∈U ϕ(x) maxx∈U ψ(x)]−1, which yields that∫
U\K0

ϕ(x)ψ(x)m(dx) ≤ max
x∈U

ϕ(x) max
x∈U

ψ(x)m(U \K0) ≤
e−γt

2αt

. (3.7)

We deduce from e−γtϕ(x) = Ttϕ =
∫

U
Pt(x, dy)ϕ(y) and pm

t (x, z) ≤ αtϕ(x)ψ(z); x, z ∈ U ;
that

e−γtϕ(x) ≤ αtϕ(x)

∫
U\K0

ϕ1(y)ψ1(y)m(dy) +

∫
K0

Pt(x, dy)ϕ(y)

(3.7)

≤ 1

2
e−γtϕ(x) +

∫
K0

Pt(x, dy)ϕ(y).

holds for all x ∈ U . This and an analogous consideration with (P ∗
s )s∈R+

0
result in

1

2
e−γtϕ(x) ≤

∫
K0

Pt(x, dy)ϕ(y) and
1

2
e−γtψ(x) ≤

∫
K0

P ∗
t (x, dy)ψ(y) (3.8)

for all x ∈ U . Moreover, observe that the continuity and positivity on U ×U and U , respec-
tively, of pm̃

t , ϕ and ψ implies that Ft : U×U → R, defined by Ft(x, y) = pm̃
t (x, y)ϕ(x)−1ψ(y)−1

for all x, y ∈ U , is continuous and positive on U × U , and thus κt := minx,y∈K0 Ft(x, y) > 0.
Now we infer from the Chapman–Kolmogorov equation that

pm̃
s (x, y) =

∫
U

∫
U

pm̃
s/3(x, u)p

m̃
s/3(u, v)p

m̃
s/3(v, y)m̃(du)m̃(dv)

≥
∫

K0

∫
K0

pm̃
s/3(x, u)p

m̃
s/3(u, v)p

m̃
s/3(v, y)m̃(du)m̃(dv)

≥ κs/3

∫
K0

Ps/3(x, du)ϕ(u)

∫
K0

P ∗
s/3(y, dv)ψ(v)

(3.8)

≥ 1

4
κs/3e

− 2
3
γsϕ(x)ψ(y)

holds for all x, y ∈ U and every s > 0, which yields the assertion with βs := 1
4
κs/3e

− 2
3
γs. �
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The previous theorem will be of interest in particular in Chapter 4, where it is an indispens-
able tool for our considerations.

The following lemma will be very useful in order to prove intrinsic ultracontractivity.

Lemma 3.9 Let t > 0, and assume there exists a compact Kt ⊆ U and an αt,Kt > 0 with
Pt/2(·, U) ≤ αt,KtPt/2(·, Kt). Then there exists some κt,Kt > 0 such that pm

t (x, ·) ≤ κt,Ktϕ(x)
holds for all x ∈ U and any m ∈ M which satisfies that Pt(x, ·) has a bounded m–density
pm

t (x, ·) for all x ∈ U .

Proof At first note that e−γtϕ = Ttϕ for all t > 0 implies that

ϕ(x) = eγt

∫
U

pm
t (x, y)ϕ(y)λd(dy) ≥

∫
K

pm
t (x, y)ϕ(y)λd(dy) ≥ min

y∈K
ϕ(y)

∫
K

pm
t (x, y)λd(dy)

holds for all x ∈ U and any compact K ⊆ U , since eγt > 1. That is, for every x ∈ U and
each compact K ⊆ U we have ∫

K

pm
t (x, y)λd(dy) ≤ ξKϕ(x), (3.9)

where ξK := [miny∈K ϕ(y)]−1.

Put ρt := maxx,y p
m
t/2(x, y). Then we deduce by means of the Chapman–Kolmogorov equation

and (3.9) that

pm
t (x, y) =

∫
U

pm
t/2(x, z)p

m
t/2(z, y)λd(dz)

≤ ρt

∫
U

pm
t/2(x, z)λd(dz)

≤ ρtαt,Kt

∫
Kt

pm
t/2(x, z)λd(dz) (3.10)

≤ ρtαt,KtξKtϕ(x)

holds true for all x, y ∈ U . With κt,Kt := ρtαt,KtξKt we thus have that pm
t (x, ·) ≤ κt,Ktϕ(x)

for all x ∈ U . �

Now we are in a position to prove a first equivalent characterisation of intrinsic ultracontrac-
tivity in case that Hypothesis (H1) is satisfied. The first direction is basically a corollary of
Theorem 3.8, whereas the converse direction follows from the previous lemma in conjunction
with Lemma 3.6.

Theorem 3.10 Presume that Hypothesis (H1) is satisfied, then the following properties are
equivalent:

(i) (Pt)t∈R+
0

is intrinsically ultracontractive with respect to m0,

(ii) ∀ t > 0∃Kt ⊆ U,Kt compact, ∃ %t,Kt > 0 : Pt(·, U) ≤ %t,KtPt(·, Kt).
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Proof “(i) =⇒ (ii):” Let t > 0 and choose some compact K ⊆ U . By Theorem 3.8 we
have that

∀x ∈ U :
Pt(x, U)

Pt(x,K)
≤
αt

∫
K
ϕ(x)ψ(y)m0(dy)

βt

∫
U
ϕ(x)ψ(y)λd(dy)

≤
αt

∫
K
ψ(y)m0(dy)

βt

∫
U
ψ(y)λd(dy)

.

“(ii) =⇒ (i):” Let t > 0. Then we infer from Lemma 3.9 that there exists some κt,Kt > 0
such that pm0

t (x, ·) ≤ κt,Ktϕ(x) for all x ∈ U . Now the Chapman–Kolmogorov equation and
the symmetry of pm0

t/2 yield that

pm0
t (x, y) =

∫
U

pm0
t/2 (x, z)pm0

z/y
m0(dz)

≤ κt,Ktϕ(x)

∫
U

pm0
t/2 (y, z)m0(dz)

≤ κ2
t,Kt

m0(U)ϕ(x)ϕ(y)

holds true for all x, y ∈ U . By means of Lemma 3.6 there exists some ρ > 0 such that
ϕ(y) ≤ ρψ(y) for all y ∈ U , which results in

∀x, y ∈ U : pm0
t (x, y) ≤ ρκ2

t,Kt
m0(U)ϕ(x)ψ(y).

�

By means of the previous theorem we obtain further equivalent characterisations of intrinsic
ultracontractivity, which are given in the following theorem.

Theorem 3.11 Assume that there exists a measure m ∈ Mf (U) which satisfies Hypothe-
sis (H1’). Then the following properties are equivalent:

(i) (Pt)t∈R+
0

is intrinsically ultracontractive with respect to m,

(ii) ∀ s, t > 0∃αs,t ∀w, x, y, z ∈ U :

pm
t (x, y)

pm
t (x, z)

≤ αs,t
pm

s (w, y)

pm
s (w, z)

, (3.11)

(iii) ∀ t > 0∃αt > 0∀w, x, y ∈ U :

pm
t (x, y)

Pt(x, U)
≤ αt

pm
t (w, y)

Pt(w,U)
. (3.12)

Proof “(i) =⇒ (ii):”

Let s, t > 0, then by means of Theorem 3.8 (Pt)t∈R+
0

being intrinsically ultracontractive

implies that there exist αs, αt, βs, βt > 0 such that βsϕ(x)ψ(y) ≤ pm
s (x, y) ≤ αsϕ(x)ψ(y),

βtϕ(x)ψ(y) ≤ pm
t (x, y) ≤ αtϕ(x)ψ(y) hold true for all x, y ∈ U . Thus, we infer that

pm
s (x, y)pm

t (w, z)

pm
s (x, z)pm

t (w, y)
≤ αsαtϕ(x)ψ(y)ϕ(w)ψ(z)

βsβtϕ(x)ψ(z)ϕ(w)ψ(y)
=
αsαt

βsβt

.
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“(ii) =⇒ (iii):”

Let s = t > 0. Since αt := αs,t in (3.11) does not depend on z ∈ U , we obtain that

∀w, x, y ∈ U : pm
t (x, y)

∫
U

pm
t (w, z)m(dz) ≤ αtp

m
t (w, y)

∫
U

pm
t (x, z)m(dz),

which is (3.12).

“(iii) =⇒ (i):” Fix some t > 0 as well as x0 ∈ U , and let αt > 0 be such that

pm
t (x0, y)

Pt(x0, U)
≤ αt

pm
t (·, y)
Pt(·, U)

.

holds true for all y ∈ U . Hence∫
K

pm
t (x0, y)

Pt(x0, U)
m(dy) ≤ αt

∫
K

pm
t (·, y)
Pt(·, U)

m(dy),

which is equivalent to
Pt(·, U)

Pt(·, K)
≤ αt

Pt(x0, U)

Pt(x0, K)
.

With %t,K := αtPt(x0, U)Pt(x0, K)−1 this results in Pt(·, U) ≤ %t,KPt(·, K), and thus Theo-
rem 3.10 yields the assertion. �

Property (3.11) is referred to as parabolic boundary Harnack principle.

Now we present a sufficient condition for intrinsic ultracontractivity, which will be an indis-
pensable tool in order to prove the main result of this thesis.

Theorem 3.12 If Hypothesis (H1) is satisfied, then (Pt)t∈R+
0

is intrinsically ultracontractive
with respect to m0 if for each t > 0 there exist some compact Ct ⊆ U and a constant κt,Ct > 0
with

∀x ∈ C{
t : P x(τC{

t
≤ t|τU > t) ≥ κt,Ct ,

where C{
t := U \ Ct.

Proof Fix some t > 0 and let Ct ⊆ U and κt,Ct > 0 be such that Ct is compact and
P x(τC{

t
≤ t, τU > t)Pt(x, U)−1 ≥ κt,Ct for all x ∈ C{

t . In addition, choose some compact Kt

with Ct ⊆ Kt ⊆ U and inf{‖x− y‖2 : x ∈ ∂Ct, y ∈ ∂Kt} > 0.

Part I

We define the following FX–stopping times:

σ := inf{s ∈ R+
0 : Xs ∈ ∂Kt},

ζ := inf{s ∈ R+
0 : Xs ∈ ∂Ct},

υ := inf{s ∈ [ζ,∞) : Xs ∈ ∂Kt} = ζ + σ ◦ θζ ,

where θζ denotes a shift operator as in Definition 1.9.
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Observe that P x(t = σ) ≤ P x(Xt ∈ ∂Kt) = 0 for all x ∈ U , and thus 1{t≤σ} is continuous
P x–a.s. for every x ∈ U . Hence we deduce from Theorem 2.26 that P (·)(t ≤ σ) is continuous
on U . Similarly to the proof of Corollary 2.18 we infer from the Stroock-Varadhan Support
Theorem (cf. Theorem 2.17) that P x(t ≤ σ) > 0 for all x ∈ ∂Ct. Furthermore, Xζ(ω) ∈ ∂Ct

for all ω ∈ {ζ <∞}, and moreover ∂Ct is compact. Therefore, we conclude that

ηt,Ct := inf
ω∈{ζ<∞}

PXζ(ω)(t ≤ σ) ≥ min
x∈∂Ct

P x(t ≤ σ) > 0.

Now we deduce from the strong Markov property that

Pt(x,Kt)Pt(x, U)−1 ≥ P x(t ∈ [ζ, υ])Pt(x, U)−1

= P x({ζ ≤ t} ∩ {t ≤ υ})Pt(x, U)−1

= Ex

(
1{ζ≤t}P

x(t− ζ ≤ σ ◦ θζ |Fζ)
)
Pt(x, U)−1

≥ Ex

(
1{ζ≤t}P

Xζ(t ≤ σ)
)
Pt(x, U)−1

≥ ηt,CtP
x(ζ ≤ t)Pt(x, U)−1

≥ ηt,Ctκt,Ct

holds for all x ∈ C{
t , since P x(ζ ≤ t)Pt(x, U)−1 = P x(τC{

t
≤ t, τU > t)Pt(x, U)−1 holds true

for any x ∈ C{
t . With αI

t,Ct
:= η−1

t,Ct
κ−1

t,Ct
> 0 this results in

Pt(x, U) ≤ αI
t,Ct

Pt(x,Kt)

for all x ∈ C{
t .

Part II

The continuity and positivity of pt(·, ·), t > 0, implies that Pt(·, Kt) is continuous and
positive, and hence minx∈Ct Pt(x,Kt) > 0. Thus, for any t > 0 there exists some αII

t,Ct
> 0

such that

Pt(x, U) ≤ max
y∈Ct

Pt(y, U) ≤ αII
t,Ct

min
y∈Ct

Pt(y,Kt) ≤ αII
t,Ct

Pt(x,Kt)

holds true for all x ∈ Ct.

Part III

For each t > 0 set αt,Ct := max(αI
t,Ct

, αII
t,Ct

). Then we infer from Part I and Part II that

∀ t > 0 : Pt(·, U) ≤ αt,CtPt(·, Kt),

and hence the assertion follows from Theorem 3.10. �

Note that we have shown the above characterisations of intrinsic ultracontractivity under
the assumption that Hypothesis (H1) is satisfied. In the following we will develop a tool
which enables us to deal with the case that Hypothesis (H2) is satisfied. To this end we
will consider the formal adjoint of T , which is defined as follows:
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Definition 3.13 If Hypothesis (H2) is satisfied, then the operator T ∗ : C2
K(U) → CK(U),

defined by

T ∗f =
1

2

d∑
i,j=1

∂2

∂xi∂xj

(aijf)−
d∑

i=1

∂

∂xi

(bif)

for all f ∈ C2
K(U), is called the formal adjoint of T .

Lemma 3.14 Presume that Hypothesis (H2) is satisfied. Then T ∗ is the restriction to
C2

K(U) of the generator of the formal adjoint semigroup (T ∗
t )t∈R+

0
, which in fact motivates

the name for that semigroup.

Proof Our procedure to prove the assertion is to give a characterisation of the generator
of (T ∗

t )t∈R+
0
, and to show that this characterisation uniquely determines the generator on

C2
K(U). Then we will show that T ∗ satisfies this characterisation, and thus we will conclude

that T ∗ is the restriction of the generator of (T ∗
t )t∈R+

0
to C2

K(U).

Part I

We deduce from (3.5) that

∀ f, g ∈ C2
K(U)∀ t > 0 :

∫
U

f(x)t−1(T ∗
t − id )g(x)λd(dx) =

∫
U

g(x)t−1(Tt − id )f(x)λd(dx).

Let T ′ denote the generator of (T ∗
t )t∈R+

0
. Then the aforementioned equality results in∫

U

f(x)T ′g(x)λd(dx) = lim
n→∞

∫
U

f(x)n(T ∗
1/n − id )g(x)λd(dx)

= lim
n→∞

∫
U

g(x)n(T1/n − id )f(x)λd(dx) (3.13)

=

∫
U

g(x)Tf(x)λd(dx)

for all f, g ∈ C2
K(U).

Let B ⊆ U be compact. According to Lemma B.21 there exists a monotonically decreasing
sequence (fn)n∈N ⊆ C2

K(U) converging pointwise to 1B as n → ∞, and thus we obtain by
the Dominated Convergence Theorem that∫

B

T ′g(x)λd(dx) = lim
n→∞

∫
U

fn(x)T ′g(x)λd(dx)
(3.13)
= lim

n→∞

∫
U

g(x)Tfn(x)λd(dx)

holds true for all g ∈ C2
K(U). Since T ′g is continuous, this shows that T ′ is uniquely defined

on C2
K(U) by (3.13).

Part II

In view of Part I we have to show that
∫

U
gTf dλd =

∫
U
fT ∗g dλd holds for all f, g ∈ C2

K(U).
By the d–dimensional integration by parts formula we obtain that∫

U

gTf dλd =

∫
U

1

2

d∑
i,j=1

gaij
∂2

∂xi∂xj

f dλd +

∫
U

d∑
i=1

gbi
∂

∂xi

f dλd
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= −
∫

U

1

2

d∑
i,j=1

[
∂

∂xi

(gaij)

] [
∂

∂xj

f

]
dλd −

∫
U

d∑
i=1

f
∂

∂xi

(gbi) dλd

=

∫
U

1

2

d∑
i,j=1

f
∂2

∂xi∂xj

(aijg) dλd −
∫

U

d∑
i=1

f
∂

∂xi

(big) dλd

=

∫
U

fT ∗g dλd

holds true for all f, g ∈ C2
K(U), which proves the assertion. Note that the d–dimensional

integration by parts formula requires a domain with piecewise smooth boundary. How-
ever, because f, g ∈ C2

K(U), we can consider a sub–domain U ′ ⊆ U with piecewise smooth
boundary and such that supp (f) ∪ supp (g) ⊆ U ′. Hence we can apply the d–dimensional
integration by parts formula, and thus we deduce that T ∗ = T ′, i.e., T ∗ is the restriction to
C2

K(U) of the generator of the formal adjoint semigroup (T ∗
t )t∈R+

0
. �

Lemma 3.15 Presume that Hypothesis (H2) is satisfied, and let t > 0. Then there exists
a function p∗t ∈ Cb(U × U,R+) satisfying T ∗

t f =
∫

U
p∗t (·, y)f(y)λd(dy) for every f ∈ Cb(U),

and such that pt(x, y) = p∗t (y, x) for all x, y ∈ U .

Proof At first observe that

T ∗f

=
1

2

d∑
i,j=1

∂2

∂xi∂xj

(aijf)−
d∑

i=1

∂

∂xi

(bif)

=
1

2

d∑
i,j=1

(
aij

∂2

∂xi∂xj

f + 2

[
∂

∂xi

aij

] [
∂

∂xj

f

]
+ f

∂2

∂xi∂xj

aij

)
−

d∑
i=1

(
bi
∂

∂xi

f + f
∂

∂xi

bi

)

=
1

2

d∑
i,j=1

aij
∂2

∂xi∂xj

f −
d∑

i=1

bi
∂

∂xi

f +
d∑

i,j=1

[
∂

∂xj

aij

] [
∂

∂xi

f

]
(3.14)

−
d∑

i=1

f
∂

∂xi

bi +
1

2

d∑
i,j=1

f
∂2

∂xi∂xj

aij

=
1

2

d∑
i,j=1

aij
∂2

∂xi∂xj

f −
d∑

i=1

(
bi −

d∑
j=1

∂

∂xj

aij

)
∂

∂xi

f −
d∑

i=1

f
∂

∂xi

(
bi −

1

2

d∑
j=1

∂

∂xj

aij

)
holds true for all f ∈ C2

K(U). Hence, Theorem 0.6 in §6 of the appendix of [Dyn65II] yields
that there exists a function p∗t ∈ Cb(U × U,R+

0 ) satisfying T ∗
t f =

∫
U
p∗t (·, y)f(y)λd(dy) for

every f ∈ Cb(U). Let B1, B2 ∈ B(U) be compact. By Lemma B.21 there exist monotoni-
cally decreasing sequences (fn)n∈N, (gn)n∈N ⊆ C2

K(U) converging pointwise to 1B1 and 1B2 ,
respectively, as n→∞. In conjunction with (3.5) and the Dominated Convergence Theorem
our considerations above result in∫

B1

∫
B2

pt(x, y)λd(dy)λd(dx) = lim
m→∞

lim
n→∞

∫
U

fn(x)Ttgm(x)λd(dx)
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= lim
m→∞

lim
n→∞

∫
U

gm(y)T ∗
t fn(y)λd(dy)

=

∫
B2

∫
B1

p∗t (y, x)λd(dx)λd(dy)

=

∫
B1

∫
B2

p∗t (y, x)λd(dy)λd(dx).

Therefore, we conclude that pt(x, y) = p∗t (y, x) for all x, y ∈ U . �

In particular, we had shown in the proof of the previous lemma that if Hypothesis (H2) is
satisfied, then

T ∗f =
1

2

d∑
i,j=1

aij
∂2

∂xi∂xj

f −
d∑

i=1

(
bi −

d∑
j=1

∂

∂xj

aij

)
∂

∂xi

f −
d∑

i=1

f
∂

∂xi

(
bi −

1

2

d∑
j=1

∂

∂xj

aij

)

holds for all f ∈ C2
K(U). If Hypothesis (H2) is satisfied, then in view of the previous

equation we consider a linear operator T̃ : C2
K(U) → CK(U) defined by

∀ f ∈ C2
K(U) : T̃ f =

1

2

d∑
i,j=1

aij
∂2

∂xi∂xj

f −
d∑

i=1

(
bi −

d∑
j=1

∂

∂xj

aij

)
∂

∂xi

f.

Since by Hypothesis (H2) the coefficients of T̃ satisfy all the assumptions which we have
made in Section 3.1, we can follow the lines of our procedure in that section in order to
obtain that for any x ∈ U the corresponding martingale problem has a unique solution P̃ x

on (Ω,F ). Furthermore, for any t > 0 the measure P̃t(x, ·) possesses a λd|U–density p̃t(x, ·),
with properties as in Theorem 3.1, where (P̃t)t∈R+

0
denotes the sub–Markov semigroup of

transition kernels associated with P̃ x. Moreover, as in Theorem 3.3 we deduce that there
exists a positive γ̃ and a positive ϕ̃ ∈ C0(U) such that e−γ̃tϕ̃(x) =

∫
U
P̃t(x, dy)ϕ̃(y) for all

x ∈ U .

Definition 3.16 Let g ∈ Cb(U). Then we define a family (T g
t )t∈R+

0
of linear operators

T g
t : C0(U) → C0(U) by

∀ t > 0∀ f ∈ C0(U)∀x ∈ U : T g
t f(x) = Ex

(
exp

[∫
[0,t]

g ◦Xsλ(ds)

]
f ◦Xt

)
.

According to Theorem 1 in Section 17 of Chapter 2 in [Itô04] we have that (T g
t )t∈R+

0
is a

semigroup, which we call the Kac semigroup with rate function g associated with (Tt)t∈R+
0
.

Furthermore, we denote by T g the generator of (T g
t )t∈R+

0
.

Lemma 3.17 Let g ∈ Cb(U). Then C2
K(U) ⊆ DT g , where DT g denotes the domain of T g. In

addition, we have that T gf = Tf + g · f for all f ∈ C2
K(U), i.e., T gf(x) = Tf(x)+ g(x)f(x)

for all x ∈ U .

Proof Confer Theorem 3 in Section 17 of Chapter 2 in [Itô04]. �
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Theorem 3.18 Presume that Hypothesis (H2) is satisfied. Let t > 0 and assume that

∃Kt ⊆ U,Kt compact, ∃αt,Kt > 0 : P̃t(·, U) ≤ αt,KtP̃t(·, Kt).

Then there exists some ρt,Kt such that pt(·, y) ≤ ρt,Ktψ(y) holds for all y ∈ U .

Proof

Part I

Choose some compact Kt ⊆ U and κt,Kt > 0 with

∀x ∈ U : p̃t(x, ·) ≤ κt,Ktϕ̃(x). (3.15)

Note that such Kt and κt,Kt exist by an argument as in Lemma 3.9. Moreover, as in
Lemma 3.6 we deduce from Proposition 3 in [GQZ88] that there exist some α̃, β > 0 such
that

βδ(x) ≤ ψ(x) and ϕ̃(x) ≤ α̃δ(x) (3.16)

hold for all x ∈ U .

Here we have utilised that by Hypothesis (H2) the coefficients of T̃ satisfy all the assumptions
which we have made in Section 3.1. In particular, this ensures that an argument as in
Lemma 3.9 is applicable, and that the assumptions of Proposition 3 in [GQZ88] are satisfied
if we consider T̃ .

Part II

Choose some c0 ∈ R+ with

c0 ≥ −
d∑

i=1

∂

∂xi

(
bi −

1

2

d∑
j=1

∂

∂xj

aij

)
,

which exists since ∂2

∂xi∂xj
aij and ∂

∂xi
bi are bounded for all i, j ∈ {1, . . . , d}. Furthermore, put

c :=
d∑

i=1

∂

∂xi

(
bi −

1

2

d∑
j=1

∂

∂xj

aij

)
+ c0 ≥ 0.

Consider the Kac semigroup (T c0
s )s∈R+

0
with rate function g :≡ −c0 associated with (Ts)s∈R+

0
.

Then we infer that∫
U

pc0
t (x, y)f(y)λd(dy) = T c0

t f(x)

= exp

[
−
∫

[0,t]

c0λ(ds)

] ∫
U

Pt(x, dy)f(y)

= e−c0t

∫
U

pt(x, y)f(y)λd(dy)
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holds true for all x ∈ U and every f ∈ C0(U). Let B ⊆ U be compact, and in the light of
Lemma B.21 let (fn)n∈N be a monotonically decreasing sequence in C0(U), which converges
pointwise to 1B as n→∞. Then the Dominated Convergence Theorem yields that

∀ t > 0∀x ∈ U :

∫
B

pc0
t (x, y)λd(dy) = lim

n→∞

∫
U

pc0
t (x, y)fn(y)λd(dy)

= e−c0t lim
n→∞

∫
U

pt(x, y)fn(y)λd(dy)

= e−c0t

∫
B

pt(x, y)λd(dy),

which shows that pc0
t (x, ·) = e−c0tpt(x, ·) for all x ∈ U . Denote the generator of (T c0

s )s∈R+
0

by

T c0 . Analogously to (3.14) we obtain that T c0∗, the formal adjoint of T c0 , is given on C2
K(U)

by

∀ f ∈ C2
K(U) : T c0∗f =

1

2

d∑
i,j=1

aij
∂2

∂xi∂xj

f −
d∑

i=1

(
bi −

d∑
j=1

∂

∂xj

aij

)
∂

∂xi

f − cf.

We infer from Theorem 0.6 in §6 of the appendix of [Dyn65II] that there exists a function
pc0∗

t ∈ Cb(U × U,R+
0 ) satisfying T c0∗

t f =
∫

U
pc0∗

t (·, y)f(y)λd(dy) for every f ∈ Cb(U), and as
in the proof of Lemma 3.15 we deduce that

∀ t > 0∀x ∈ U : pc0∗
t (x, ·) = pc0

t (·, x) = e−c0tpt(·, x). (3.17)

Part III

Now observe that (T c0∗
s )s∈R+

0
is the Kac semigroup with rate function −c associated with

(T̃s)s∈R+
0
. Therefore, we conclude that∫

U

pc0∗
t (x, y)f(y)λd(dy) = T c0∗

t f(x) =

∫
U

exp

(
−
∫

[0,t]

c ◦Xsλ(ds)

)
f ◦XtP̃ (x, ·)

≤
∫

U

p̃t(x, y)f(y)λd(dy)

holds for any x ∈ U and all f ∈ C0. Analogously to above we infer that pc0∗
t (x, ·) ≤ p̃t(x, ·)

holds for all x ∈ U and t > 0, which by means of (3.15), (3.16) and (3.17) results in

pt(·, x) = ec0tpc0∗
t (x, ·) ≤ ec0tp̃t(x, ·) ≤ κt,Kte

c0tϕ̃(x)κt,Ktα̃e
c0tδ(x) ≤ ρt,Ktβδ(x) ≤ ρt,Ktψ(x),

where ρt,Kt := κt,Ktα̃e
c0tβ−1. �

Now we are in a position to prove similar results as in Theorem 3.10, Theorem 3.11 and
Theorem 3.12 in the situation that Hypothesis (H2) is satisfied.

Theorem 3.19 Presume that Hypothesis (H2) is satisfied, then (Pt)t∈R+
0

is intrinsically
ultracontractive if for every t > 0 there exist some compact Kt ⊆ U and some %t,Kt > 0 with

Pt(·, U) ≤ %t,KtPt(·, Kt) and P̃t(·, U) ≤ %t,KtP̃t(·, Kt). (3.18)
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Proof Let t > 0. We deduce from Lemma 3.9 and Theorem 3.18 in conjunction with the
Chapman–Kolmogorov equation that there exist some positive constants κt,Kt and ρt,Kt with

∀x, y ∈ U ∀ t > 0 : pt(x, y) =

∫
U

pt/2(x, z)pt/2(z, y)λd(dz) ≤ κt,Ktρt,Ktλd(U)ϕ(x)ψ(y).

�

Analogously to the proofs of Theorem 3.10 one can show that (3.18) holds true if Hypothe-
sis (H2) is satisfied and if (Pt)t∈R+

0
and (P̃t)t∈R+

0
are intrinsically ultracontractive.

Theorem 3.20 Presume that Hypothesis (H2) is satisfied and consider

(i) (Pt)t∈R+
0

and (P̃t)t∈R+
0

are intrinsically ultracontractive,

(ii) ∀ s, t > 0∃αs,t ∀w, x, y, z ∈ U :

pt(x, y)

pt(x, z)
≤ αs,t

ps(w, y)

ps(w, z)
and

p̃t(x, y)

p̃t(x, z)
≤ αs,t

p̃s(w, y)

p̃s(w, z)
, (3.19)

(iii) ∀ t > 0∃αt > 0∀w, x, y ∈ U :

pt(x, y)

Pt(x, U)
≤ αt

pt(w, y)

Pt(w,U)
and

p̃t(x, y)

P̃t(x, U)
≤ αt

p̃t(w, y)

P̃t(w,U)
, (3.20)

(iv) (Pt)t∈R+
0

is intrinsically ultracontractive.

Then the following implications hold true: (i) =⇒ (ii) =⇒ (iii) =⇒ (iv).

Proof We can prove these assertions along the lines of the proof of Theorem 3.11 by
applying the methods of that proof to both semigroups (Pt)t∈R+

0
and (P̃t)t∈R+

0
, and by refering

to Theorem 3.19 instead of Theorem 3.10. �

Remark 3.21 Note that in contrast to Theorem 3.10 and Theorem 3.11 we do not obtain
equivalent characterisations of intrinsic ultracontractivity if “only” Hypothesis (H2) is satis-
fied, since we cannot show that (3.18) or (3.19) or (3.20) implies that (P̃t)t∈R+

0
is intrinsically

ultracontractive. ♦

Theorem 3.22 If Hypothesis (H2) is satisfied, then (Pt)t∈R+
0

is intrinsically ultracontractive
if for each t > 0 there exist some compact Ct ⊆ U and a constant κt,Ct > 0 such that

P x(τC{
t
≤ t|τU > t) ≥ κt,Ct and P̃ x(τC{

t
≤ t|τU > t) ≥ κt,Ct

hold for all x ∈ C{
t , where C{

t := U \ Ct.

Proof We can prove the assertion on the lines of the proof of Theorem 3.12 by applying the
methods developed in that proof to both semigroups (Pt)t∈R+

0
and (P̃t)t∈R+

0
, and by refering

to Theorem 3.19 instead of Theorem 3.10. �
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Definition 3.23 If
∫

[0,∞]
pt(x, y)λ(dt) < ∞ for all x, y ∈ U , then we call the function

G : U × U → R+
0 , defined by

∀x, y ∈ U : G(x, y) =

∫
[0,∞]

pt(x, y)λ(dt),

the Green’s function for T on U .

Before we can proof our main theorem we will need some more auxiliary results, which we
will provide in the following lemmas.

Lemma 3.24 Let α > 0. Then there exists some ε > 0 such that∫
B(x,ε)

‖x− y‖1−d
2 λd(dy) ≤ α

for all x ∈ Rd.

Proof Let x ∈ Rd. We describe y ∈ B(0, ε) by d–dimensional spherical polar coordinates,
i.e.,

y1 = r cos θ1

y2 = r sin θ1 cos θ2

...

yd−1 = r sin θ1 . . . sin θd−2 cos θd−1

yd = r sin θ1 . . . sin θd−2 sin θd−1,

where θ1, . . . , θd−2 ∈ [0, 2π], θd−1 ∈ [0, π] and r = ‖y‖2 ∈ [0, ε). This results in∫
B(x,ε)

‖x− y‖1−d
2 λd(dy)

=

∫
B(0,ε)

‖y‖1−d
2 λd(dy)

(∗)
=

∫
[0,π]

. . .

∫
[0,2π]

∫
[0,ε)

rd−1

‖y‖d−1
2

sind−2 θ1 . . . sin θd−2λ(dr)λ(dθ1) . . . λ(dθd−1)

= επ

∫
[0,2π]

. . . ,

∫
[0,2π]

sind−2 θ1 . . . sin θd−2λ(dθ1) . . . λ(dθd−2),

which yields the assertion with

ε ≤ απ−1

[∫
[0,2π]

. . . ,

∫
[0,2π]

sind−2 θ1 . . . sin θd−2λ(dθ1) . . . λ(dθd−2)

]−1

.

Note that above we have used the transformation formula in order to obtain (∗). �
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Lemma 3.25 Let α > 0. Then there exists some compact K ⊆ U with

∀x ∈ U :

∫
U\K

‖x− y‖1−d
2 λd(dy) ≤ α.

Proof In view of Lemma 3.24 we choose some ε > 0 with
∫

B(x,ε)
‖x− y‖1−d

2 λd(dy) ≤ 2−1α

for all x ∈ U . In addition, for any x ∈ U we denote the complement of B(x, ε) by U{
‖·‖2(x, ε).

Then we infer that∫
U\K

‖x− y‖1−d
2 λd(dy)

=

∫
(U\K)∩B(x,ε)

‖x− y‖1−d
2 λd(dy) +

∫
(U\K)∩U{

‖·‖2
(x,ε)

‖x− y‖1−d
2 λd(dy)

≤ α

2
+ ε1−dλd(U \K)

holds true for all K ⊆ U and each x ∈ U . Note that ‖x− y‖1−d ≤ ε1−d for all y ∈ U{
‖·‖2(x, ε),

because 1−d < 0. By means of the regularity of λd we can choose some compact K ⊆ U with
λd(U \K) ≤ 2−1αεd−1, which yields the assertion. In conclusion we would like to emphasise
that in our considerations above the radius ε of B(x, ε) does not depend on x ∈ U . Therefore,
also the choice of K is independent of x. �

Lemma 3.26 Let t0 > 0, then there exists some ρt0 such that

P x(τU > t) ≥ ρt0e
−γtδ(x)

holds true for all x ∈ U and any t > t0. If Hypothesis (H2) is satisfied, then there also
exists a ρ̃t0 with

∀x ∈ U ∀ t > t0 : P̃ x(τU > t) ≥ ρ̃t0e
−γtδ(x).

Proof Confer (15) in Theorem 2 in [GQZ88]. �

For the time being, fix some t > 0. We infer from (3.3) Theorem (ii) in [GW82] in conjunction
with the theorem in [HS82] that the Green’s function G for T on U satisfies

G(x, y) ≤ κtδ(x)‖x− y‖1−d
2 (3.21)

for some κt > 0.

In view of Lemma 3.26 choose some ρt such that P x(τU > t) ≥ ρte
−γtδ(x) for all x ∈ U , and

furthermore let αt ≤ 2−1tκ−1
t ρte

−γt. In the light of Lemma 3.25 choose a compact Ct ⊆ U
with

∀x ∈ C{
t :

∫
C{

t

‖x− y‖1−d
2 λd(dy) ≤ αt, (3.22)

where C{
t := U \ Ct

Applying the set–up just established, we obtain the following lemma:
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Lemma 3.27 Let x ∈ C{
t and t > 0. Then

Ex(τC{
t
) ≤ αtκtδ(x),

where τC{
t

:= inf{t ∈ R+
0 : Xt 6∈ C{

t }. If Hypothesis (H2) is satisfied, then we also have

Ẽx(τC{
t
) ≤ α̃tκ̃tδ(x), where Ẽx denotes the expectation with respect to P̃ x, and where α̃t and

κ̃t are defined analogously to αt and κt.

Proof We have

Ex(τC{
t
) =

∫
Ω

τC{
t

dP x =

∫
[0,∞)

tP x
τ
C{

t

(dt) =

∫
[0,∞)

P x(τC{
t
> t)λ(dt)

≤
∫

[0,∞)

Pt(x,C
{
t )λ(dt) =

∫
[0,∞)

∫
C{

t

pt(x, y)λd(dy)λ(dt)

=

∫
C{

t

G(x, y)λd(dy)
(3.21)

≤ κtδ(x)

∫
C{

t

‖x− y‖1−d
2 λd(dy)

(3.22)

≤ αtκtδ(x).

On the lines of our above considerations we obtain Ẽx(τC{
t
) ≤ α̃tκ̃tδ(x) if Hypothesis (H2)

is satisfied. �

Now we are ready to prove the main result of this thesis, which states that Hypothesis (H1)
or Hypothesis (H2) is sufficient in order that (Pt)t∈R+

0
is intrinsically ultracontractive with

respect to some inner regular finite measure on (U,B(U)).

Theorem 3.28 If Hypothesis (H1) is satisfied, then (Pt)t∈R+
0

is intrinsically ultracontractive

on U with respect to m0, and if Hypothesis (H2) is satisfied, then (Pt)t∈R+
0

is intrinsically

ultracontractive on U [with respect to λd].

Proof Let t > 0. By Markov’s inequality and Lemma 3.27 we obtain that

P x(τC{
t
> t) ≤ t−1Ex(τC{

t
) ≤ 2−1ρte

−γt

for all x ∈ C{
t . Since P x(τU > t) ≥ ρte

−γtδ(x) for all x ∈ U , we infer that

P x(τC{
t
≤ t, τU > t)

P x(τU > t)
= 1−

P x(τC{
t
> t, τU > t)

P x(τU > t)
= 1−

P x(τC{
t
> t)

P x(τU > t)
≥ 1

2

holds true for all x ∈ C{
t . If Hypothesis (H2) is satisfied, then the same method as above

yields that P̃ x(τC{
t
≤ t, τU > t)P̃ x(τU > t)−1 ≥ 2−1 holds true for all x ∈ C{

t . By means of
Theorem 3.12 and Theorem 3.22 this yields the assertion. �

Now we discuss briefly the differences between the main result in [KS06a] and our main
result. Kim and Song consider a bounded Lipschitz domain D ⊆ Rd and an operator
L : C2

K(U) → CK(U) whose principal part is in divergence form, i.e.,

∀ f ∈ C2
K(Rd) : Lf =

1

2

d∑
i,j=1

∂

∂xi

[
aL

ij

∂

∂xj

f

]
+

d∑
i=1

bLi
∂

∂xi

f,
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The main result in [KS06a] states that the corresponding semigroup of transition kernels is
intrinsically ultracontractive on D if (aL

ij)i,j=1,...,d is symmetric as well as uniformly elliptic,
and aL

ij, b
L
i ∈ C∞

b (Rd), where ∂bL
i/∂xi is bounded, for all i, j ∈ {1, . . . , d}. Note that our result

cannot be compared directly with the result by by Kim and Song, because they do not prove
the existence of a positive continous λd|U–density under their assumptions. Many of our
conditions on the coefficients as well as on the domain are necessary in order to obtain the
function p(·)(·, ·) in Theorem 3.1, which is crucial for our considerations. Furthermore, Kim
and Song consider semigroups of transition operators on L 1(D,λd|D), whereas we consider
semigroups of transition operators on C0(U), i.e., they consider a different situation than
we do. In particular, this enables them to apply Jentzsch’s theorem in order to obtain a
positive normalised eigenfunction corresponding to the principal eigenvalue, whereas we refer
to Theorem 5.5 and Theorem 6.1 in Chapter 3 in [Pin95] for this purpose. That we use the
results by Pinsky is one reason why we cannot consider more general domains. However,
our method has the virtue that the diffusion and drift coefficients do not have to consist
of C∞(Ū)–functions, i.e., in this respect our main result is stronger than the main result
in [KS06a]. Here we would like to point out that when comparing the assumptions on the
coefficients one has to bear in mind that our operator T is given in nondivergence form,
whereas Kim and Song consider an operator whose principal part is in divergence form.
Finally, the method used by Kim and Song in [KS06a] is totally different from our approach,
and thus our work adds a new approach to tackle the question of intrinsic ultracontractivity.

At the end of this chapter we would like to discuss briefly the assumptions on the domain and
on the diffusion and drift coefficients of T . As we have seen in the previous chapter, we don’t
need such strong assumptions in order to obtain a diffusion. However, we need the conditions
on the coefficients in order that we can use the results from [Dyn65II], [Pin95], [GQZ88],
[HS82] as well as [Aro67]. The respective results are indispensable for our considerations,
and hence we cannot relax the conditions on the coefficients. Note that the restriction that
U is a bounded C2,1–domain is necessary in order that we can apply Theorem 0.6 in the
appendix of [Dyn65II], which requires a bounded C1,θ–domain for some θ > 0, and that we
can utilise the theorem in [HS82], which presumes a C1,1–domain, as well as Theorem 5.5
and Theorem 6.1 in Chapter 3 in [Pin95], which require a C2,θ–domain for some θ > 0.





Chapter 4

Uniform Conditional Ergodicity

The purpose of this chapter is to examine the significance of intrinsic ultracontractivity in
stochastics. We will start with a brief outline of the theoretical background in order to point
out the main underlying issues.

For the time being, consider a Markov semigroup (P ′
t)t∈R+

0
of kernels on some measurable

space (E,E ). Then a probability measure ν on (E,E ) is called stationary distribution if

∀ t > 0∀B ∈ E :

∫
E

ν(dx)P ′
t(x,B) = ν(B).

We say that (P ′
t)t∈R+

0
is ergodic if there exists a probability measure µ on (E,E ) with

∀x ∈ E ∀B ∈ E : P ′
t(x,B) → µ(B) as t→∞.

One can show that for any ergodic process the limit distribution µ is a stationary distribution.
By applying the Dominated Convergence Theorem we obtain that an ergodic stochastic
process has a unique stationary distribution, namely the limit distribution µ, since

ν(B) = lim
t→∞

∫
E

ν(dx)P ′
t(x,B)

DCT
=

∫
E

ν(dx) lim
t→∞

P ′
t(x,B) =

∫
E

ν(dx)µ(B) = µ(B)

for each B ∈ E and every stationary distribution ν on E .

Now we will consider the conditional case. To this end let (P ′
t)t∈R+

0
be a sub–Markov semi-

group of kernels on some measurable space (E,E ). Then we call a probability measure ν on
(E,E ) quasi–stationary distribution if

∀ t > 0∀B ∈ E :

∫
E
ν(dx)P ′

t(x,B)∫
E
ν(dx)P ′

t(x,E)
= ν(B),

Moreover, (P ′
t)t∈R+

0
is referred to as conditionally ergodic if there exists a probability

measure µ on (E,E ) with

∀x ∈ E ∀B ∈ E :
P ′

t(x,B)

P ′
t(x,E)

→ µ(B) as t→∞. (4.1)

71
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As in the ergodic case one can show that the limit distribution µ for a conditionally ergodic
semigroup is a quasi–stationary distribution. However, the main difference between the
ergodic case and the conditionally ergodic case is that now the quasi–stationary distribution
is not necessarily unique anymore. Indeed, S. Karlin, J. L. McGregor and E. van Doorn have
given an example of a birth–death process on N0 ∪ {−1} with absorption at −1 and linear
birth rates bn and death rates dn, given by

∀n ∈ N0 : bn = (n+ 1)cb and dn = (n+ 1)cd,

where 0 < cb < cd, whose corresponding semigroup of transition kernels is conditionally
ergodic but has a one–parametric family of quasi–stationary distributions. This example
has been considered in [Sch03].

The possible non–uniqueness of a quasi–stationary distribution leads to the question under
which assumptions does a unique quasi–stationary distribution exist. It will turn out that
this is the case if the convergence in (4.1) is uniform in x ∈ E and B ∈ E , i.e., if (P ′

t)t∈R+
0

is uniformly conditionally ergodic. Thus, the question is: When is the convergence
in (4.1) uniform in x ∈ E and B ∈ E ? The aim of this chapter is to show how intrinsic
ultracontractivity is related to this question.

Now we revert to the set–up of the previous chapter, which is a special case of the more
general theoretical background related to the conditional case outlined above. Recall that
U ⊆ Rd is a bounded C2,1–domain, and that the diffusion semigroup (Pt)t∈R+

0
is a sub–

Markov semigroup on (U,B(U)). This chapter is devoted to proving the following theorem,
which states that intrinsic ultracontractivity implies uniqueness of the quasi–stationary dis-
tribution. We will prove this theorem by showing that intrinsic ultracontractivity implies
that (Pt)t∈R+

0
is uniformly conditionally ergodic.

Theorem 4.1 If (Pt)t∈R+
0

is intrinsically ultracontractive, then we have

∃ t0 > 0∃ δt0 , ϑt0 > 0∀ t ≥ t0 ∀x ∈ U ∀B ∈ B(U) :

∣∣∣∣Pt(x,B)

Pt(x, U)
− ν(B)

∣∣∣∣ ≤ δt0e
−ϑt0 t,

where ν ∈ P(U) is defined by ν(B) =
∫

B
ψ dλd for all B ∈ B(U). Moreover, ν is the unique

quasi–stationary distribution on (U,B(U)).

Before we prove Theorem 4.1 we will provide some lemmas, which we will utilise in the proof.

Lemma 4.2 If the diffusion is uniformly conditionally ergodic, i.e., if there exists a proba-
bility measure µ on (U,B(U)) such that

Pt(x,B)

Pt(x, U)
→ µ(B) (4.2)

uniformly in x ∈ U and B ∈ B(U) as t → ∞, then the limit distribution µ is the unique
quasi–stationary distribution on (U,B(U)).
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Proof Let ε > 0, and in view of the uniformity of the convergence in (4.2) choose some
tε > 0 with

∀x ∈ U :

∣∣∣∣ Ptε(x, ·)
Ptε(x, U)

− µ

∣∣∣∣ ≤ ε.

Let υ be some quasi–stationary distribution on B(U), then

|υ(B)− µ(B)| =

∣∣∣∫U υ(dx)(Ptε (x,B)
Ptε (x,U)

− µ(B)
)
Ptε(x, U)

∣∣∣∫
U
υ(dx)Ptε(x, U)

≤

∫
U
υ(dx)

∣∣∣Ptε (x,B)
Ptε (x,U)

− µ(B)
∣∣∣Ptε(x, U)∫

U
υ(dx)Ptε(x, U)

≤ ε

holds true for all B ∈ B(U). Since ε > 0 was chosen arbitrarily, this yields the assertion. �

Lemma 4.3 If (Pt)t∈R+
0

is intrinsically ultracontractive, then we have

∀ s > 0∃ ρs > 0, %s > 0∀ t ≥ s ∀x ∈ U : ρs ≤
e−γtϕ(x)

Pt(x, U)
≤ %s.

Proof We have

∀ t > 0∀x ∈ U : e−γtϕ(x) =

∫
U

Pt(x, dy)ϕ(y) ≤ ‖ϕ‖∞Pt(x, U),

which gives an upper bound. By means of Theorem 3.8 (cf. the proof of “(i) =⇒ (ii)” in
Theorem 3.10) the intrinsic ultracontractivity of (Pt)t∈R+

0
yields

∀ s > 0∃Ks ⊆ U,Ks compact,∃κs,Ks > 0∀x ∈ U : Ps(x,Ks) ≥ κs,KsPs(x, U).

Moreover, in conjunction with the Chapman–Kolmogorov Equation this results in

Pt(x,Ks) =

∫
U

Pt−s(x, dy)Ps(y,Ks) ≥ κs,Ks

∫
U

Pt−s(x, dy)Ps(y, U) = κs,KsPt(x, U).

holds true for all 0 < s < t and any x ∈ U . Now, we obtain a lower bound, because

e−γtϕ(x) =

∫
U

Pt(x, dy)ϕ(y) ≥
∫

Ks

Pt(x, dy)ϕ(y)

≥ min
y∈Ks

ϕ(y)Pt(x,Ks) ≥ min
y∈Ks

ϕ(y)κt,KsPt(x, U).

holds for all 0 < s ≤ t and any x ∈ U . �

Until the end of this chapter we fix some arbitrary t0 > 0.
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Lemma 4.4 Let B ∈ B(U). If (Pt)t∈R+
0

is intrinsically ultracontractive, then we have

∀ s0 > 0∃ ηs0 > 0∀ s ≥ s0 ∀x, y ∈ U :

∫
U\B Pt0(x, dz)Ps(z, U)

Pt0+s(x, U)
+

∫
B
Pt0(y, dz)Ps(z, U)

Pt0+s(y, U)
≥ ηs0 ,

where ηs0 does not depend on B.

Proof Let s0 > 0, then we infer from the previous lemma and Theorem 3.8 that∫
U\B Pt0(x, dz)Ps(z, U)

Pt0+s(x, U)
+

∫
B
Pt0(y, dz)Ps(z, U)

Pt0+s(y, U)

T.3.8

≥ βt0e
γt0
e−γ(t0+s)ϕ(x)

Pt0+s(x, U)
eγs

∫
U\B

Ps(z, U)ψ(z)λd(dz)

+βt0e
γt0
e−γ(t0+s)ϕ(y)

Pt0+s(y, U)
eγs

∫
B

Ps(z, U)ψ(z)λd(dz)

L.4.3

≥ βt0e
γt0ρt0+s0

∫
U

eγsT ∗
s ψ dλd

≥ βt0e
γt0ρt0+s0

∫
U

ψ dλd =: ηs0

holds for all s ≥ s0. �

Lemma 4.5 If (Pt)t∈R+
0

is intrinsically ultracontractive, then we have

∃ δt0 , ϑt0 > 0∀ t ≥ t0 : sup
x,y∈U,B∈B(U)

∣∣∣∣Pt(x,B)

Pt(x, U)
− Pt(y,B)

Pt(y, U)

∣∣∣∣ ≤ δt0e
−ϑt0 t.

Proof Define a signed measure Qxy
s on B(U) by

∀B ∈ B(U) : Qxy
s (B) =

∫
B
Pt0(x, dz)Ps(z, U)

Pt0+s(x, U)
−
∫

B
Pt0(y, dz)Ps(z, U)

Pt0+s(y, U)
.

The Chapman–Kolmogorov Equation yields that

Qxy
s (U) =

Pt0+s(x, U)

Pt0+s(x, U)
− Pt0+s(y, U)

Pt0+s(y, U)
= 0. (4.3)

Moreover, we infer from Lemma 4.4 that

Qxy
s (B) = 1−

∫
U\B Pt0(x, dz)Ps(z, U)

Pt0+s(x, U)
−
∫

B
Pt0(y, dz)Ps(z, U)

Pt0+s(y, U)
≤ 1− ηs0

holds for all x, y ∈ U , every B ∈ B(U), any s0 > 0 and each s ≥ s0. We conclude that

∀ s0 > 0∀ s ≥ s0 : sup
x,y∈U,B∈B(U)

|Qxy
s (B)| ≤ 1− ηs0 =: ξs0 < 1. (4.4)
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The following idea goes back to J. L. Doob. Let B ∈ B(U) and consider f, g : R+ → R+
0 ,

defined by

∀ t > 0 : f(t) := sup
x∈U

Pt(x,B)

Pt(x, U)
and g(t) := inf

x∈U

Pt(x,B)

Pt(x, U)
.

Note that f is monotonically decreasing and g is monotonically increasing. Consequently,
h : R+ → R+

0 , defined by

∀ t > 0 : h(t) = f(t)− g(t) = sup
x,y∈U

∣∣∣∣Pt(x,B)

Pt(x, U)
− Pt(y,B)

Pt(y, U)

∣∣∣∣ ,
is monotonically decreasing. Now consider the Hahn dethesis of U with respect to Qxy

s , i.e.,
U = U+ ∪ U−, where Qxy

s (U+) ≥ 0, Qxy
s (U−) ≤ 0 and U+ ∪ U− = ∅. Note that U− = −U+.

We infer from the Chapman–Kolmogorov Equation that

Pt0+s(x,B)

Pt0+s(x, U)
− Pt0+s(y,B)

Pt0+s(y, U)

=

∫
U

Ps(z, B)

Ps(z, U)

Ps(z, U)Pt0(x, dz)

Pt0+s(x, U)
−
∫

U

Ps(z, B)

Ps(z, U)

Ps(z, U)Pt0(y, dz)

Pt0+s(y, U)

=

∫
U

Ps(z, B)

Ps(z, U)
Qxy

s (dz)

≤ f(s)Qxy
s (U+) + g(s)Qxy

s (U−)

(∗)
= h(s)Qxy

s (U+)

(4.4)

≤ h(s)ξs0

holds true for all x, y ∈ U , every s0 > 0 and any s ≥ s0. Therefore, h(t0 +s) ≤ h(s)ξs0 . Note
that (∗) holds true, because, by (4.3), Qxy

s (U+) +Qxy
s (U−) = Qxy

s (U) = 0. With s0 = t0 we
infer

∀n ∈ N : h(nt0) ≤ ξn−1
s0

h(t0) ≤ ξn−1
s0

.

Now let t ≥ t0 and choose nt ∈ N such that ntt0 < t ≤ (nt + 1)t0, then t/t0 − 2 ≤ nt − 1.
Thus, since h is monotonically decreasing and ξs0 < 1, we deduce

h(t) ≤ h(ntt0) ≤ ξnt−1
t0

≤ ξ−2
t0
ξ

t/t0
t0 .

With δt0 := ξ−2
t0 and ϑt0 := −(ln(ξ

1/t0
t0 ), this yields the assertion.

�

Lemma 4.6 If (Pt)t∈R+
0

is intrinsically ultracontractive, then the diffusion is conditionally

ergodic with limit distribution µ ∈ P(U). Moreover,

∃ δt0 , ϑt0 > 0∀ t ≥ t0 ∀x ∈ U :

∣∣∣∣ Pt(x, ·)
Pt(x, U)

− µ

∣∣∣∣ ≤ δt0e
−ϑt0 t,

which in particular yields that the diffusion is in fact uniformly conditionally ergodic.
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Proof We infer from the Chapman–Kolmogorov Equation and Lemma 4.5 that there exist
δt0 , ϑt0 > 0 such that∣∣∣∣Pt+s(x,B)

Pt+s(x, U)
− Pt(x,B)

Pt(x, U)

∣∣∣∣ =

∣∣∣∣∣
∫

U
Pt(x, dy)Ps(y,B)− Pt(x,B)

Pt(x,U)

∫
U
Pt(x, dy)Ps(y, U)

Ps+t(x, U)

∣∣∣∣∣
≤

∫
U

∣∣∣Pt(y,B)
Pt(y,U)

− Pt(x,B)
Pt(x,U)

∣∣∣Pt(x, dy)Ps(y, U)

Pt+s(x, U)
(4.5)

L.4.5

≤ δt0e
−ϑt0 t

holds true for all t ≥ t0, x, y ∈ U and B ∈ B(U), which shows that Pt(x,B)Pt(x, U)−1 is
Cauchy convergent as t→∞. Since R+

0 is complete, we deduce that there exists a measure
µ : B(U) → R+

0 with

∀B ∈ B(U) : lim
t→∞

Pt(x,B)

Pt(x, U)
= µ(B).

Now, our above considerations result in

∀ s, t > 0∀x ∈ U :

∣∣∣∣ Pt(x, ·)
Pt(x, U)

− µ

∣∣∣∣ ≤
∣∣∣∣ Pt(x, ·)
Pt(x, U)

− Pt+s(x, ·)
Pt+s(x, U)

∣∣∣∣+ ∣∣∣∣ Pt+s(x, ·)
Pt+s(x, U)

− µ

∣∣∣∣
(4.5)

≤ δt0e
−ϑt0 t +

∣∣∣∣ Pt+s(x, ·)
Pt+s(x, U)

− µ

∣∣∣∣ ,
which yields the assertion, because |Pt+s(x, ·)Pt+s(x, U)−1 − µ| → 0 as s→∞. �

Now we are in a position to reap the fruits of our work, because the previous lemmas enable
us to prove Theorem 4.1. Because we have already done all the hard work in the preparations
above, the proof of Theorem 4.1 is rather short.

Proof of Theorem 4.1 In view of Lemma 4.2 and Lemma 4.6 it only remains to show that
ν is quasi–stationary. Recall that

∫
U
pt(·, y)ψ dλd = T ∗

t ψ(y) = e−γtψ(y) for all y ∈ U . Thus,∫
U

ν(dx)Pt(x,B) =

∫
U

∫
B

pt(x, y)ψ(x)λd(dy)λd(dx) = e−γt

∫
B

ψ dλd = e−γtν(B)

holds true for every B ∈ B(U). Analogously we obtain by means of the normalisation of ψ
(cf. Theorem 3.3) that

∫
U
ν(dx)Pt(x, U) = e−γt

∫
U
ψ dλd = e−γt. It follows that

∀B ∈ B(U) :

∫
U
ν(dx)Pt(x,B)∫

U
ν(dx)Pt(x, U)

= ν(B),

which shows that ν is quasi–stationary. �

In conclusion we would like to point out that in Theorem 5 in [GQZ88] Gong, Qian and
Zhao have shown that under our assumptions on U and T the semigroup (Qt)t∈R+

0
, defined

by

∀ t > 0∀x, y ∈ U : Qt(x, y) = eγt pt(x, y)

ϕ(x)ψ(y)
,
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is uniformly ergodic. This result does not depend on intrinsic ultracontractivity. In fact,
their paper [GQZ88] does not deal with intrinsic ultracontractivity at all. That (Qt)t∈R+

0
is

uniformly ergodic under the assumption of intrinsic ultracontractivity was shown by Kim
and Song in Theorem 2.5 in [KS06a].





Appendix A

Definitions

In this appendix we will compile a few definitions which may be helpful for readers who
are not familiar with the concepts utilised in this thesis. Throughout this appendix let
(E,B(E)) be a measurable space, where (E, T ) is a Polish space and B(E) := σ(T ).

Definition A.1 Let X := (Xt)t∈R+
0

be a family of random variables on some measurable

space (Ω,F ) with values in (E,B(E)). Let (P ν)ν∈P(E) be a family of probability measures
on (Ω,F ). For any ν ∈ P(E) let σ(X)ν denote the completion of σ(X) with respect to
P ν. We denote by Nν the set of all P ν–null sets in σ(X), and for every t ∈ R+

0 we put
F ν

t := FX
t ∨Nν. Now we obtain a complete filtration G X := (G X

t )t∈R+
0
, defined by

∀ t ∈ R+
0 : G X

t :=
⋂

ν∈P(E)

F ν
t ,

which we call the completion of FX . Moreover, if X is right–continuous, then G X can be
shown to be right–continuous (cf. (2.10) Proposition in Chapter III in [RY99]), and in this
case we call it the complete right–continuous filtration generated by X.

Definition A.2 Let d ∈ N and α := (α1, . . . , αd)
T ∈ Nn

0 be a multi-index. For any x ∈ Rd

we put

|α| :=
d∑

i=1

αi, α! :=
d∏

i=1

αi!, xα :=
d∏

i=1

xαi
i .

Now for an arbitaray vector space X we define an d–dimensional polynomial ϕ : Rd → X
with degree k ∈ N by

∀x ∈ Rd : ϕ(x) =
∑

α:|α|≤k

xαaα,

where aα ∈ X for any multi-index α with |α| ≤ k and aα 6= 0 for some multi-index α
with |α| = k. If X = R, then we will write aαx

α instead of xαaα. Furthermore, for any
f ∈ C∞(Rd) we define the d–dimensional Taylor series of f at x0 ∈ Rn by

∀x ∈ Rd : f(x) =
∑

α

Dαf(x0)

α!
(x− x0)

α
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A.1 Kernels

Definition A.3 Let (U,U ) and (V,V ) be measurable spaces. A function µ : U × V → R̄+
0

is called a (Markov) kernel from (U,U ) to (V,V ) if

(i) µ(u, ·) is a (probability) measure on V for all u ∈ U ,

(ii) µ(·, B) is U –B(R̄+
0 )–measurable for all B ∈ V .

A (Markov) kernel from (U,U ) to (U,U ) is said to be a (Markov) kernel on (U,U ). Fur-
thermore, we call a kernel µ : U × V → [0, 1] sub–Markov kernel.

Definition A.4 Let (U,U ), (V,V ) and (W,W ) be measurable spaces. Furthermore, let µ
be a kernel from (U,U ) to (V,V ) and ν a kernel from (V,V ) to (W,W ). Then we call the
kernel µ ◦ ν from (U,U ) to (W,W ), defined by

∀u ∈ U ∀B ∈ W : µ ◦ ν(u,B) =

∫
V

µ(u, dv)ν(v,B),

the composition of µ and ν.

Definition A.5 Let (U,U ), (V,V ) and (W,W ) be measurable spaces. Furthermore, let ν
be a kernel from (U,U ) to (V,V ) and µ a kernel from (V,V ) to (W,W ). Then the kernel
ν ⊗ µ from (U,U ) to (V ×W,V ⊗W ), defined by

∀x ∈ U ∀A ∈ V ∀B ∈ W : ν ⊗ µ(x,A×B) =

∫
A

ν(x, dy)µ(y,B),

is called the product of ν and µ.

Definition A.6 Let (U,U ) and (V,V ) be measurable spaces. Furthermore, let ν be a mea-
sure on (U,U ) and µ a kernel from (U,U ) to (V,V ). Then we call the measure ν ⊗ µ on
(U × V,U ⊗ V ), defined by

∀A ∈ U ∀B ∈ V : ν ⊗ µ(A×B) =

∫
A

ν(dx)µ(x,B),

the product of ν and µ. Furthermore, we will use the following simplification:

∀B ∈ V : ν ⊗ µ(B) := ν ⊗ µ(E ×B).

Definition A.7 We say a family (µt)t∈R+
0

of kernels on (E,B(E)) satisfies the Chapman–
Kolmogorov equation if

∀ s, t ∈ R+
0 ∀B ∈ B(E) : µs+t(x,B) =

∫
E

µs(x, dy)µt(y,B)
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A.2 Semigroup Theory

Definition A.8 Let (S, ∗) be any pair where ∗ : S × S → S is a binary operation on
S, and S is a nonempty set containing an identity element, id , with respect to ∗, i.e.,

A ∗ id = id ∗ A = A for all A ∈ S. For any family (At)t∈R+
0
⊆ S the pair

(
(At)t∈R+

0
, ∗
)

is

called a semigroup if A0 = id and

∀ s, t ∈ R+
0 : As+t = As ∗ At.

Definition A.9 A semigroup (Tt)t∈R+
0

of B(E)–valued positive contraction operators on

some domain C0(E) ⊆ D ⊆ B(E) is called a Feller semigroup on D if

(i) ∀ t ∈ R+
0 : TtC0(E) ⊆ C0(E),

(ii) ∀ f ∈ D ∀x ∈ E : Ttf(x) → f(x) as t ↓ 0.

Definition A.10 Let (Tt)t∈R+
0

be a Feller semigroup on C0(E). For any α > 0 we call the

C0(E)–valued operator Rα on C0(E), defined by

∀ f ∈ C0(E)∀x ∈ E : Rαf(x) =

∫
R+

0

e−αtTtf(x)λ(dt).

the resolvent of (Tt)t∈R+
0
.

In addition, we call the operator T : D → C0(E), given by R−1
α = α · id − T on D for all

α > 0, the generator of (Tt)t∈R+
0
. Here D, given by D = RαC0(E) for some α > 0, denotes

the domain of T . Note that, by Theorem 17.4 in [Kal01] such an operator exists and D does
not depend on α > 0.

Definition A.11 Let T be a B(E)–valued linear operator with domain D ⊆ B(E). We say
that T satisfies the positive maximum principle if[

f ∈ D, x ∈ E : f+ ≤ f(x)
]

=⇒ [Tf(x) ≤ 0].





Appendix B

Useful Results

In this appendix we will present a few results to which we refer throughout this thesis, but
which are not directly relevant for our method. Many results will not be proven, but for
each result we give a reference where the respective proof can be found in the literature.

B.1 Stopping Times

Let (Ω,F ) be some measurable space and let G := (Gt)t∈R+
0

be a filtration on (Ω,F ). In
this section we won’t go into detail. The motivation for including this section is merely to
clarify the notion of stopping times.

Definition B.1 A G –B(R̄+
0 )–measurable random variable τ : Ω → R̄+

0 is referred to as
G –stopping time if

∀ t ∈ R+
0 : {τ ≤ t} ∈ Gt.

Definition B.2 For a G –stopping time τ ,

Gτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Gt ∀ t ∈ R+
0 }

is said to be the σ–algebra of the τ–past.

Lemma B.3 For any G –stopping time τ we have that

(i) Gτ is a σ–algebra.

(ii) τ is Gτ–B(R̄+
0 )–measurable.

(iii) Gτ = Gt for t ∈ R+
0 with τ ≡ t.

Proof Let t ∈ R+
0 .

(i) Ω ∈ Gτ , since Ω ∩ {τ ≤ t} = {τ ≤ t} ∈ Gt.
Let A ∈ Gτ . Then A{ ∩ {τ ≤ t} = (A ∪ {τ ≤ t}{){ = ((A ∩ {τ ≤ t}) ∪ {τ ≤ t}{){ ∈ Gt.
Let A1, A2, . . . ∈ Gτ . Then {τ ≤ t} ∩

⋃
n∈NAn =

⋃
n∈N(An ∩ {τ ≤ t}) ∈ Gt.
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(ii) We have to show that {τ ≤ α} ∩ {τ ≤ t} ∈ Gt for all α ∈ R, t ∈ R+
0 . Firstly assume

that t ≤ α. Then
{τ ≤ α} ∩ {τ ≤ t} = {τ ≤ t} ∈ Gt,

since τ is a G –stopping time. Conversely presume that α < t. Then

{τ ≤ α} ∩ {τ ≤ t} = {τ ≤ α} ∈ Gα ⊆ Gt.

(iii) It is easy to see that
Gt ⊆ Gτ ,

and thus we only have to show that Gτ ⊆ Gt. Let t ∈ R+
0 , τ ≡ t and A ∈ Gτ . Then

A = A ∩ {τ ≤ t} ∈ Gt.

�

B.2 Markov Processes

Markov processes play a crucial role troughout this thesis. Firstly because diffusion processes
are examples of Markov processes, and secondly because we deal with more general Markov
processes in Chapter 1 in order to develop Feller diffusions. However, many results, which
are helpful but not directly related to our proceeding in Chapter 1, will be presented here,
in order to focus on the main ideas in Chapter 1.

Throughout this section let (E,B(E)) be a measurable space, where (E, T ) is a Polish space
and B(E) := σ(T ).

B.2.1 Construction of Canonical Markov Processes

In Chapter 1 we provide the main concepts relating to the theory of Markov processes. Our
approach in Chapter 1 is to start with a Markov semigroup and to construct a corresponding
Markov process. The construction of canonical Markov processes, associated with Markov
semigroups, via Kolmogorov’s extension theorem is standard in the literature, but since
our considerations rest upon this construction, we will provide a brief presentation of that
approach.

Definition B.4 Let G := (Gt)t∈R+
0

be a filtration on some probability space (Ω,F , P ), and

let X := (Xt)t∈R+
0

be a G –adapted E–valued stochastic process. We say that (X,G ) is a

(i) Markov process if

∀B ∈ B(E)∀ s, t ∈ R+
0 , s ≤ t : P (Xt ∈ B|Gs) = P (Xt ∈ B|Xs) P–a.s.. (B.1)

(ii) strong Markov process if

∀B ∈ B(E)∀ τ ∈ Sf (P,G )∀ t ∈ R+
0 : P (Xτ+t ∈ B|Gτ ) = P (Xτ+t ∈ B|Xτ ) P–a.s..

(B.2)
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If (B.1) [resp. (B.2)] holds and if G is the natural filtration with respect to X, then we may
simply say X is a [strong] Markov process and omit mentioning the filtration.

Let ν be a measure on (E,B(E)), and let (µt)t∈R+
0

be a semigroup of kernels on (E,B(E)).

For every J = (t1, . . . , tn) ∈ H(R+
0 ) we define a measure µJ on (En+1,B(En+1)) by

µJ := ν ⊗ µt1 ⊗ µt2−t1 ⊗ . . .⊗ µtn−tn−1 . (B.3)

Then we have that

µJ(B) =

∫
E

. . .

∫
E︸ ︷︷ ︸

n+1 times

ν(dx0)µt1(x0, dx1) . . . µtn−tn−1(xn−1, dxn)1B(x0, . . . , xn)

holds for all B ∈ B(En+1).

Definition B.5 For any J,K ∈ H(R+
0 ), J ⊆ K, we define the projection πJ,K : EK → EJ

by
∀ (xi)i∈K ∈ EK : πJ,K((xi)i∈K) = (xi)i∈J ,

and for every J ∈ H(R+
0 ) we obtain the projection πJ : ER+

0 → EJ by

∀ (xt)t∈R+
0
∈ ER+

0 : πJ((xt)t∈R+
0
) = (xi)i∈J

In case that J = {t} for some t ∈ R+
0 we will also write πt instead of π{t}.

Definition B.6 A family (µJ)J∈H(R+
0 ) of probability measures µJ on (EJ ,B(EJ)) is called

projective if
∀ J,K ∈ H(R+

0 ), J ( K : µK ◦ π−1
J,K = µJ .

Theorem B.7 Let ν be a probability measure on some probability space (Ω,F ) and let
(Pt)t∈R+

0
be a Markov semigroup on (E,B(E)). The family (µJ)J∈H(R+

0 ) of probability mea-

sures on (En+1,B(En+1)) defined by (B.3) is projective.

Proof Let J := {t1 < . . . < tm}, K := (t1, . . . , tj, t, tj+1, . . . , tm) ∈ H(R+
0 ). We show that

µK ◦ π−1
J,K = µJ , which proves the assertion. Let B0, . . . , Bm ∈ B(E), then

µK ◦ π−1
J,K(B0 × . . .×Bm)

= µK(B0 × . . .×Bj × E ×Bj+1 . . .×Bm)

=

∫
Bm

. . .

∫
E

. . .

∫
B0

ν(dx0)Pt1(x0, dx1) . . . Pt−tj(xj, dx)Ptj+1−t(x, dxj+1) . . . Ptm−tm−1(xm−1, dxm)

(∗)
=

∫
Bm

. . .

∫
Bj+1

. . .

∫
B0

ν(dx0)Pt1(x0, dx1) . . . Ptj+1−tj(xj, dxj+1) . . . Ptm−tm−1(xm−1, dxm)

= ν ⊗ Pt1 ⊗ Pt2−t1 ⊗ . . .⊗ Ptm−tm−1(B0 × . . .×Bm)
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= µJ(B0 × . . .×Bm),

where (∗) holds, since we have by the Chapman-Kolmogorov equation that∫
E

Pt−tj(xj, dx)Ptj+1−t(x, dxj+1) = Ptj+1−tj(xj, dxj+1).

Now we obtain that µK ◦ π−1
J,K = µJ . �

Theorem B.8 (Kolmogorov’s Extension Theorem) Let (E,B(E)) be a Polish space.
For any projective family (µJ)J∈H(R+

0 ) of probability measures on (EJ ,B(EJ)) there exists a

uniquely defined probability measure P on (ER+
0 ,Z (ER+

0 )) such that P ◦ π−1
J = µJ for all

J ∈ H(R+
0 ).

Proof See 1.1.10 Theorem in [SV79]. �

Theorem B.9 Let (Pt)t∈R+
0

be a Markov semigroup on (E,B(E)), let ν ∈ P(E) and let

πt : ER+
0 → E, t ∈ R+

0 , be the projection as in Definition B.5. Then there exists a uniquely

defined probability measure P ν on (Ω,F ) := (ER+
0 ,Z (ER+

0 )) such that the finite dimensional
distributions of the coordinate mapping process (Xt)t∈R+

0
on (Ω,F , P ν), defined by Xt := πt,

are given by
P ν

(Xt1 ,...,Xtn ) = ν ⊗ Pt1 ⊗ Pt2−t1 ⊗ . . .⊗ Ptn−tn−1

for each (t1, . . . , tn) ∈ H(R+
0 ).

Proof For any J = (t1, . . . , tn) ∈ H(R+
0 ) consider µJ := ν ⊗ Pt1 ⊗ Pt2−t1 ⊗ . . . ⊗ Ptn−tn−1 .

Then Theorem B.7 yields that (µJ)J∈H(R+
0 ) is a projective family of probability measures,

and the assertion follows from Kolmogorov’s extension theorem (cf. Theorem B.8). �

The following theorem shows that the stochastic process which we have considered in the
previous theorem turns out to be a Markov process. We give a proof which is more circuitous
than necessary in order to prove the theorem itself, for that we prove an assertion for all
n ∈ N which in fact, for the time being, we only need to show for n = 1. The reason is that
later on we will need the result for all n ∈ N, and thus we do it in more detail now and we
will refer to this proof again at a later point of time.

Theorem B.10 Let (Pt)t∈R+
0

be a Markov semigroup on (E,B(E)), let ν ∈ P(E) and let

(Ω,F , P ν) as well as X := (Xt)t∈R+
0

be as in Theorem B.9. Furthermore, let (Ft)t∈R+
0

be
the natural filtration with respect to X. Then X is a Markov process with respect to P ν.

Proof For any J = (t1, . . . , tn) ∈ H(R+
0 ) choose some t0 ≤ t1. Firstly, we want to show

that

P ν((πJ ◦X)−1(B1, . . . , Bn)|Ft0) = Pt1−t0 ⊗ . . .⊗ Ptn−tn−1(Xt0 , B1 × . . .×Bn) P ν–a.s.

holds for all B1, . . . , Bn ∈ B(E). To this end observe that Pt1−s ⊗ . . . ⊗ Ptn−tn−1(Xt0 , B1 ×
. . .×Bn) is Ft0–B([0, 1])–measurable, and note that for every s ∈ R+

0 the σ–algebra Ft0 is
generated by

G≤t0 := {{Xt−m ∈ B−m, . . . , Xt−1 ∈ B−1} :
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m ∈ N, 0 < t−m < . . . < t−1 ≤ t0, Bj ∈ B(E), j = t−m, . . . , t−1},
which contains Ω and is closed under the formation of finite intersections. Thus, we have to
show that∫

G

1(πJ◦X)−1(B1,...,Bn) dP ν =

∫
G

Pt1−t0 ⊗ . . .⊗ Ptn−tn−1(Xt0 , B1 × . . .×Bn) dP ν (B.4)

holds for all G ∈ G≤t0 . Let G = {Xt−m ∈ B−m, . . . , Xt−1 ∈ B−1, Xt0 ∈ B0} ∈ G≤t0 , then∫
G

1(πJ◦X)−1(B1,...,Bn) dP ν

= P ν
(Xt−m ,...,Xt0 ,...,Xtn )(B−m × . . .×B0 × . . .×Bn)

=

∫
Bn

. . .

∫
B−m+1

∫
B−m

ν(dx−m)Pt−m+1−t−m(x−m, dx−m+1) . . . Ptn−tn−1(xn−1, dxn)

=

∫
B0

. . .

∫
B−m+1

∫
B−m

ν(dx−m)Pt−m+1−t−m(x−m, dx−m+1)

. . . Pt0−t−1(x−1, dx0)Pt1−t0 ⊗ . . .⊗ Ptn−tn−1(x0, B1 × . . .×Bn)

=

∫
G

Pt1−t0 ⊗ . . .⊗ Ptn−tn−1(Xt0 , B1 × . . .×Bn) dP ν .

Therefore, (B.4) holds true. Moreover, since σ(Xt0) ⊆ Ft0 , we infer from Pt1−t0 ⊗ . . . ⊗
Ptn−tn−1(Xt0 , B1 × . . .×Bn) being σ(Xt0)–B([0, 1])–measurable that

P ν((πJ ◦X)−1(B1, . . . , Bn)|Ft0) = Pt1−t0 ⊗ . . .⊗ Ptn−tn−1(Xt0 , B1 × . . .×Bn) P ν–a.s.

= P ν((πJ ◦X)−1(B1, . . . , Bn)|Xt0) P ν–a.s.. (B.5)

For n = 1 this yields (B.1). �

Utilising the denotations as above, we call (X,P ν) the canonical Markov process with
respect to (Pt)t∈R+

0
and with initial distribution ν ∈ P(E) (cf. Definition 1.6).

B.2.2 Results relating to Canonical Markov Processes

For the remainder of this section let (Pt)t∈R+
0

be a Markov semigroup on (E,B(E)), and for

any ν ∈ P(E) let (X,P ν) be the canonical Markov process on (Ω,F ) := (ER+
0 ,Z (ER+

0 ))
with respect to (Pt)t∈R+

0
and with initial distribution ν. In addition, let FX

≥t and the filtration

(Ft)t∈R+
0

be as in Definition 1.2. The aim of this subsection is to derive a few properties of
canonical Markov processes which are utilised throughout this thesis.

Remark B.11 For all x ∈ E, n ∈ N, t1, . . . , tn ∈ R+
0 and A,B1, . . . , Bn ∈ B(E) we have

P x
Xt1 ,...,Xtn

(A×B1 × . . .×Bn) = δx ⊗ Pt1 ⊗ . . .⊗ Ptn(A×B1 × . . .×Bn)
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=

∫
A

δx(dz)Pt1 ⊗ . . .⊗ Ptn(z, B1 × . . .×Bn)

= Pt1 ⊗ . . .⊗ Ptn(x,B1 × . . .×Bn)1A(x).

♦

Lemma B.12 Let P and Q be finite measures on some measurable space (Ω,F ). Further-
more, let A ⊆ F be closed under the formation of finite intersections, and presume that
P = Q on A ∪ {Ω}. Then P = Q on σ(A).

Proof See Theorem 3.3 in [Bil95]. There the assertion is shown for probability measures.
However, the proof of Theorem 3.3 in [Bil95] can be extended to the assertion of Lemma B.12.

�

For any t ∈ R+
0 we define

G≥t := {{Xt1 ∈ B1, . . . , Xtn ∈ Bn} : n ∈ N, t ≤ t1 < . . . < tn, Bj ∈ B(E), j = 1, . . . , n}.
Lemma B.13 For fixed ν ∈ P(E), the property (B.1), with P ν substituted for P , is equiv-
alent to any of the following statements:

∀ t ∈ R+
0 ∀A ∈ FX

≥t : P ν(A|Ft) = P ν(A|Xt) P ν–a.s., (B.6)

∀n ∈ N ∀B1, . . . , Bn ∈ B(E)∀ s1, . . . , sn, t ∈ R+
0 : (B.7)

P ν(θ−1
t (X−1

s1
(B1), . . . , X

−1
sn

(Bn))|Ft) = PXt(X−1
s1

(B1), . . . , X
−1
sn

(Bn)) P ν–a.s.,

∀A ∈ σ(X)∀ t ∈ R+
0 : P ν(θ−1

t (A)|Ft) = PXt(A) P ν–a.s., (B.8)

∀Y ∈ B(Ω, σ(X))∀ t ∈ R+
0 : Eν(Y ◦ θt|Ft) = EXt(Y ) P ν–a.s.. (B.9)

Proof “(B.1) =⇒ (B.6):” Let t ∈ R+
0 . According to (B.5) we have P ν(G|Ft) = P ν(G|Xt)

P ν–a.s. for all G ∈ G≥t. Hence the assertion follows from Lemma B.12.

“(B.6) =⇒ (B.7):” Let n ∈ N, B1, . . . , Bn ∈ B(E) and s1, . . . , sn, t ∈ R+
0 . Firstly, note that

PXt((Xs1 , . . . , Xsn)−1(B1 × . . .×Bn)) = Ps1 ⊗ . . .⊗ Psn(Xt, B1 × . . .×Bn)

(B.5)
= P ν((Xs1+t, . . . Xsn+t)

−1(B1 × . . .×Bn)|Xt)

holds true P ν–a.s.. Furthermore,

θ−1
t ◦ (Xs1 , . . . , Xsn)−1(B1 × . . .×Bn) = ((Xs1 , . . . , Xsn) ◦ θt)

−1(B1 × . . .×Bn)

= (Xs1+t, . . . , Xsn+t)
−1(B1 × . . .×Bn)

∈ FX
≥t,

and thus (B.6) yields the assertion.
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“(B.7) =⇒ (B.8):” Let A ∈ σ(X) and t ∈ R+
0 . Analoguously to above we infer from (B.7)

that PXt(G) = P ν(θ−1
t (G)|Ft) P

ν–a.s. for all G ∈ G≥0, and we obtain the assertion by means
of Lemma B.12.

“(B.8) =⇒ (B.9):” Let t ∈ R+
0 . Note that the left hand side in (B.9) is defined, because

Y ◦θt ∈ L 1(Ω) for any Y ∈ B(Ω, σ(X)). The assertion can be proven by algebraic induction.
By means of (B.8) the assertion is established if Y = 1A for some A ∈ σ(X), and thus the
assertion holds true if Y is a nonnegative simple function on (Ω, σ(X)). Now assume that
Y ∈ B(Ω, σ(X)) is nonnegative. Then there exists a sequence (ϕn)n∈N of nonnegative simple
functions on (Ω, σ(X)) such that ϕn ↑ Y as n→∞. Consequently,

Eν(Y ◦ θt|Ft) = lim
n→∞

Eν(ϕn ◦ θt|Ft) = lim
n→∞

EXt(ϕn) = EXt(Y ) P ν–a.s..

For arbitrary Y ∈ B(Ω, σ(X)) consider the positive part Y + := Y ∨ 0 and the negative part
Y − := (−Y ) ∨ 0. Then we have

Eν(Y ◦θt|Ft) = Eν(Y
+◦θt|Ft)−Eν(Y

−◦θt|Ft) = EXt(Y
+)−EXt(Y

−) = EXt(Y ) P ν–a.s.,

which proves the assertion.

“(B.9) =⇒ (B.1):” Let s, t ∈ R+
0 , B ∈ B(E) and Y := 1X−1

s (B) ∈ B(Ω, σ(X)). Then

Eν(Y ◦ θt|Ft) = EXt(Y ) P ν–a.s. =⇒ Eν(1θ−1
t ◦X−1

s (B)|Ft) = EXt(1X−1
s (B)) P ν–a.s.

=⇒ P ν(Xs+t ∈ B|Ft) = PXt(Xs ∈ B) P ν–a.s.,

and PXt(Xs ∈ B) = Ps(Xt, B)
(B.5)
= P ν(Xs+t ∈ B|Xt) P

ν–a.s.. �

Corollary B.14 In particular, Lemma B.13 shows that (P ν)ν∈P(E) satisfies the Markov
property.

Lemma B.15 Let ν ∈ P(E), n ∈ N and f ∈ B(En,B(En)). Then∫
A

f ◦ (Xt1+h, . . . , Xtn+h) dP ν =

∫
A

EXh
(f ◦ (Xt1 , . . . , Xtn)) dP ν .

holds for all h, t1, . . . , tn ∈ R+
0 and for each A ∈ Fh.

Proof Let h, t1, . . . , tn ∈ R+
0 , put Y := f ◦ (Xt1 , . . . , Xtn) and note that Y ∈ B(Ω, σ(X)).

Moreover, f ◦ (Xt1+h, . . . , Xtn+h) = Y ◦ θh, and thus we infer for any A ∈ Fh that∫
A

f ◦ (Xt1+h, . . . , Xtn+h) dP ν =

∫
A

Eν(Y ◦ θh|Fh) dP ν (B.9)
=

∫
A

EXh
(Y ) dP ν

=

∫
A

EXh
(f ◦ (Xt1 , . . . , Xtn)) dP ν .

�
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Corollary B.16 Let (Tt)t∈R+
0

be the semigroup of the transition operators Tt with respect to

Pt, t ∈ R+
0 , and let f ∈ B(E). Then

∀ ν ∈ P(E)∀ t, h ∈ R+
0 ∀A ∈ Fh :

∫
A

Ttf ◦Xh dP ν =

∫
A

f ◦Xt+h dP ν .

Proof Let t, h ∈ R+
0 . Then

Ttf ◦Xh =

∫
E

f(y)Pt(Xh, dy) =

∫
E

f dPXh
Xt

=

∫
Ω

f ◦Xt dPXh = EXh
(f ◦Xt),

and thus the assertion is a direct consequence of Lemma B.15. �

By means of Lemma 1.11 we have that Lemma B.15 und Corollary B.16 also hold if we
replace the determinstic times by stopping times which are P x–a.s. finite for any x ∈ E.

Lemma B.17 We have that

Eν(Y ) =

∫
E

ν(dx)Ex(Y ).

holds for any Y ∈ B(Ω, σ(X)) and every ν ∈ P(E).

Proof Let Y ∈ B(Ω, σ(X)) and ν ∈ P(E). Since P ν =
∫

E
ν(dx)P x, we deduce that

Eν(Y ) =

∫
Ω

Y dP ν DCT
=

∫
Ω

Y

∫
E

ν(dx)dP x =

∫
E

ν(dx)

∫
Ω

Y dP x =

∫
E

ν(dx)Ex(Y ).

�

B.3 Further Adjuvant Results

Theorem B.18 (Optional Sampling Theorem) Let F := (Ft)t∈R+
0

be a filtration on

some probability space (Ω,G , P ), and let X := (Xt)t∈R+
0

be a right–continuous martingale
with respect to F . Furthermore, let σ and τ be bounded F–stopping times with σ ≤ τ .
Then

E(Xτ |Fσ) = Xσ P–a.s..

The statement extends to unbounded stopping times iff (X+
t )t∈R+

0
is uniformly P–integrable.

Proof See Theorem 6.29 in [Kal01]. �

Theorem B.19 Let (Ω,F , P ) be a probability space. Furthermore, let (E,B(E)) be some
measurable space, where E is a Polish space. Let X : Ω → E be some random variable.
Then for every sub–σ–algebra G ⊆ F there exists a regular G –conditional distribution PX|G
of X. Moreover, if PX|G and P ′

X|G are regular G –conditional distributions of X, then there
exists some P–null set N ∈ F such that

∀ω ∈ Ω \N ∀B ∈ B(E) : PX|G (ω,B) = P ′
X|G (ω,B).
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Proof See 44.3 Theorem in [Bau02]. �

Lemma B.20 Let (Ω,F , P ) be some probability space, where Ω is a Polish space and where
F := B(Ω). Furthermore, let Y ∈ L 1(Ω) and let G be a sub–σ–algebra of F . Then we
have

∀A ∈ F :

∫
A

Y (ω)Pid |G (·, dω) = E(1AY |G ) P–a.s.,

where Pid |G denotes a regular G –conditional distribution of id : Ω → Ω (cf. Theorem B.19),
and

∫
A
Y (ω)Pid |G (·, dω) : Ω → R is given by

∫
A
Y (ω)Pid |G (·, dω)(η) =

∫
A
Y (ω)Pid |G (η, dω)

for all η ∈ Ω.

Proof Fix some A ∈ F . At first, consider a simple function ϕ =
∑n

i=1 ai1Ai
with ai ∈ R+

0

and Ai ∈ F for i = 1, . . . , n. Then∫
A

ϕ(ω)Pid |G (·, dω) =
n∑

i=1

αiPid |G (·, A ∩ Ai) = E

(
1A

n∑
i=1

αi1Ai

∣∣∣∣∣G
)

= E(1Aϕ|G ) P–a.s..

Now let (ϕn)n∈N be a sequence of nonnegative simple function with ϕn ↑ Y +. Then we
deduce from the above calculation that∫

A

Y +(ω)Pid |G (·, dω) =

∫
A

lim
n→∞

ϕn(ω)Pid |G (·, dω)

DCT
= lim

n→∞

∫
A

ϕn(ω)Pid |G (·, dω)

= lim
n→∞

E(1Aϕn|G )

DCT
= E

(
1A lim

n→∞
ϕn

∣∣∣G)
= E(1AY

+|G )

holds P–a.s.. Analogously, we obtain that
∫

A
Y −(ω)Pid |G (·, dω) = E(1AY

−|G ) holds true
P–a.s., and thus∫

A

Y (ω)Pid |G (·, dω) =

∫
A

Y +(ω)Pid |G (·, dω)−
∫

A

Y −(ω)Pid |G (·, dω)

= E(1AY
+|G )− E(1AY

−|G )

= E(1AY |G )

holds P–a.s., which proves the assertion. �

Lemma B.21 Let (E, ρ) be a metric space. Then for any nonempty and closed A ⊆ E there
exists a sequence (fA

n )n∈N of uniformly continuous functions fA
n : E → [0, 1] which converges

in a monotonically decreasing manner pointwise to 1A as n→∞.

Proof Let ϕ : R → [0, 1] be defined by
1, t < 0

1− t, 0 ≤ t ≤ 1

0, t > 1.
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Let ∅ 6= A ⊆ E be closed and consider dA : E → R+
0 , x 7→ inf{ρ(x, y) : y ∈ A}, the distance

between some x ∈ E and A, and fA
n : E → [0, 1], n ∈ N, defined by fA

n (x) = ϕ(n · dA(x)).

We have to show that dA is uniformly continuous. This can be seen as follows: Let (xn)n∈N
be a sequence in E converging to x ∈ E, ε > 0, δ := ε, and let n ∈ N be sufficiently large so
that ρ(xn, x) < δ. Then

|dA(xn)− dA(x)| =
∣∣∣∣ inf
y∈A

ρ(xn, y)− inf
y∈A

ρ(x, y)

∣∣∣∣ ≤ sup
y∈A

|ρ(xn, y)− ρ(x, y)|
(∗)
≤ ρ(xn, x) < δ = ε,

where (∗) holds because ρ(·, y) is uniformly continuous for all y ∈ E.

Therefore, every fA
n , n ∈ N, is uniformly continuous as a thesis of uniformly continuous

functions.

Let x ∈ E and firstly assume dA(x) > 0. Then x /∈ A and hence

|fA
n (x)− 1A(x)| = fA

n (x) = ϕ(n · dA(x)) ↓ 0 as n→∞.

In case that dA(x) = 0 we have that x ∈ A and hence

∀n ∈ N : |fA
n (x)− 1A(x)| = |1− 1| = 0.

�

Theorem B.22 Let E be a locally compact Polish space, and let T be the generator of a
Feller semigroup (Tt)t∈R+

0
on C0(E). Furthermore, let D denote the domain of T .

(i) Then we have

∀ f ∈ D ∀ t ∈ R+
0 : Ttf − f =

∫
[0,t]

(Ts ◦ T )fλ(ds). (B.10)

(ii) T(·)f is differentiable at 0 iff f ∈ D, and if one of these properties holds, then T(·) is
differentiable on R+

0 and

∀ f ∈ D ∀ t ∈ R+
0 :

d

dt
(Ttf) = TtTf = TTtf. (B.11)

Proof Confer Lemma 17.6 in [Kal01]. �

Theorem B.23 Let E be a locally compact Polish space, and let T be the generator of a
Feller semigroup (Tt)t∈R+

0
on C0(E). Then T satisfies the positive maximum principle (cf.

Definition A.11).

Proof Let D denote the domain of T . We firstly note that Tt, t ∈ R+
0 , is monotonically

increasing on C0(E), i.e., f ≤ g ∈ C0(E) =⇒ Ttf ≤ Ttg. This assertion holds, since Tt,
t ∈ R+

0 is a positive linear operator. Choose f ∈ D and x0 ∈ E such that f+ ≤ f(x0). Using
that Tt, t ∈ R+

0 , is a contraction operator we obtain

∀ t ∈ R+
0 : Ttf(x0) ≤ Ttf

+(x0) ≤ ‖Ttf
+‖∞ ≤ ‖f+‖∞ = f(x0).



B.3. FURTHER ADJUVANT RESULTS 93

Hence h−1(Thf − f)(x0) ≤ 0 for all h ∈ 0 and thus we get by Theorem B.22 (ii)

Tf(x0) = lim
h→0

(Thf − f)(x0)

h
≤ 0.

�

In conclusion we present a result from topology which is indispensable for our considerations.

Theorem B.24 Let E be a locally compact topological space. Then there exists a uniquely
(up to homeomorphisms) defined compact Hausdorff space Ê which contains a space Ẽ, which
is homeomorphic to E, such that there exists some ∆ with Ê\Ẽ = {∆}. If E is not compact,
then Ẽ is dense in Ê. The space Ê is called Alexandroff one–point compactification
of E.

Proof See 8.18 Theorem in [Que01]. �
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[Itô04] K. Itô. Stochastic processes – Lectures Given at Aarhus University. Springer, 2004

[Jän05] K. Jänich. Topologie (8th edition). Springer, 2005

[Kal01] O. Kallenberg. Foundations of Modern Probability (2nd edition). Springer, 2001

[KS91] I. Karatzas, S. E. Shreve. Brownian Motion and Stochastic Calculus (2nd edi-
tion). Springer, 1991

[KS06a] P. Kim, R. Song. Intrinsic ultracontractivity of Non-Symmetric Diffusion Semi-
groups in Bounded Domains. Preprint, 2006

[KS06b] P. Kim, R. Song. Two-sided estimates on the density of Brownian Motion with
Singular Drift. Illinois Journal of Mathematics, Vol. 50, No. 3, pp. 635–688, 2006

[Kle06] A. Klenke. Wahrscheinlichkeitstheorie. Springer, 2006

[Kön97] K. Königsberger. Analysis 2 (2nd edition). Springer, 1997

[KR62] M. G. Krein, M. A. Rutman. Linear operators leaving invariant a cone in a
Banach space. Amer. Math. Soc. Transl., Series 1, Vol. 10, pp. 199–325, 1962

[OW07] E. M. Ouhabaz, F.–Y. Wang. Sharp Estimates for Intrinsic Ultracontractivity
on C1,α-Domains. Manuscripta Math., Vol. 122, No. 2, pp. 229-244, 2007

[Par72] L. Partzsch. Some Limit Theorems for Markov Processes with Finite Lifetime (in
Russian). Dissertation, Lomonosov Moscow State University, 1972

[Pin85] R. G. Pinsky. On the Convergence of Diffusion Porocesses Conditioned to Re-
main in a Bounded Region for a Large Time to Limiting Positive Recurrent Duffusion
Processes. Ann. Prob., Vol. 13, No. 2, pp. 363–378, 1985

[Pin95] R. G. Pinsky. Positive Harmonic Functions and Diffusions. Cambridge University
Press, 1995



BIBLIOGRAPHY 97

[PS78] S. C. Port, C. J. Stone. Brownian Motion and Classical Potential Theory. Aca-
demic Press, Inc., 1978

[Que01] B. v. Querenburg. Mengentheoretische Topologie (3rd edition). Springer, 2001

[RY99] D. Revuz, M. Yor. Continuous Martingales and Brownian Motion (3rd edition).
Springer, 1999

[RW00] L. C. G. Rogers, D. Williams. Diffusions, Markov Processes and Martingales
Volume 2 (2nd edition). Cambridge University Press, 2000
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