

Robert Knobloch, Department of Mathematical Sciences, University of Bath, Bath, UK

Homogenous fragmentation processes

Let \mathcal{P} denote the space of of partitions $\pi := (\pi_n)_{n \in \mathbb{N}}$ of \mathbb{N} , ordered such that

$$\forall i \leq j \in \mathbb{N}$$
: $\inf \pi_i \leq \inf \pi_j$,

where $\inf \emptyset := \infty$.

Definition We call a
$$\mathcal{P}$$
-valued Markov process $\Pi := (\Pi(t))_{t \in \mathbb{R}^+_0}$, being continuous
in probability, homogenous \mathcal{P} -fragmentation process if
 $\bullet \Pi(0) = (\mathbb{N}, \emptyset, ...)$.

• For any $s, t \in \mathbb{R}^+_0$, given that $\Pi(t) = (\pi_n)_{n \in \mathbb{N}}$, we have

$$\Pi(s + t) \stackrel{d}{=} (\pi_n \cap \Pi^{(n)}(s))_{n \in \mathbb{N}}$$

reordered to be an element of \mathcal{P} , where the $\Pi^{(n)}$ are i.i.d. copies of Π .

Let $\mathscr{F} := (\mathscr{F}_t)_{t \in \mathbb{R}^+}$ denote the filtration generated by the process Π .

In [Ber01] it is shown that the blocks of Π have asymptotic frequencies, that is

$$|\Pi_n(t)| := \lim_{k \to \infty} \frac{\operatorname{card}(\Pi_n(t) \cap \{1, \dots, k\})}{k}$$

exist \mathbb{P} -a.s. for all $n \in \mathbb{N}$ and $t \in \mathbb{R}_0^+$.

\$

Set

$$\mathcal{S} := \left\{ \mathbf{s} := (s_n)_{n \in \mathbb{N}} \subseteq [0, 1] : \sum_{n \in \mathbb{N}} s_n \le 1, \, s_i \ge s_j \, \forall i \le j \right\}$$

and consider a measure ν , called *dislocation measure*, on $\mathcal S$ that satisfies the following conditions:

$$\int_{\mathcal{S}} (1-s_1)\nu(\mathrm{d}\mathbf{s}) < \infty \qquad \text{and} \qquad \nu(\{a,0,\ldots\}) = 0 \quad \forall \, a \in [0,1].$$

Further, define

$$\underline{p} := \inf \left\{ p \in \mathbb{R} : \int_{\mathcal{S}} \left| 1 - \sum_{n \in \mathbb{N}} s_n^{1+p} \right| \nu(\mathrm{d}\mathbf{s}) < \infty \right\} \in (-1,0].$$

It is well known that

$$\Phi:(\underline{p},\infty)\to\mathbb{R},\quad p\mapsto\Phi(p)=\int_{\mathcal{S}}\left(1-\sum_{n\in\mathbb{N}}s_n^{1+p}\right)\nu(\mathrm{d}\mathbf{s})$$

is strictly monotonically increasing and concave.

Bertoin [Ber01] showed that the process $(-\ln(|\Pi_1(t)|))_{t \in \mathbb{R}^+_0}$ is a killed subordinator with Laplace exponent Φ . Its killing rate ζ is exponentially distributed with parameter $\Phi(0)$. Hence,

$$\forall p \in (\underline{p},\infty): \quad \Phi(p) = -\frac{1}{t} \ln \left(\mathbb{E} \left(e^{p \ln(|\Pi_1(t)|)} \mathbbm{1}_{\{t < \zeta\}} \right) \right) = -\frac{1}{t} \ln \left(\mathbb{E} \left(|\Pi_1(t)|^p \mathbbm{1}_{\{t < \zeta\}} \right) \right).$$

In view of [Ber03] let \bar{p} be the unique solution to

$$(1 + p)\Phi'(p) = \Phi(p)$$

Web page: http://www.maths.bath.ac.uk/~rk243

where Φ' denotes the derivative of Φ . Define

E-mail: r.knobloch@bath.ac.uk

$$c_{\bar{p}} := \Phi'(\bar{p}) = \frac{\Phi(\bar{p})}{1 + \bar{p}}.$$

Intrinsic killed spectrally negative Lévy processes

For any $t \in \mathbb{R}_0^+$ let $B_n(t)$ denote the block of $\Pi(t)$ that contains the element $n \in \mathbb{N}$.

Figure 1: Illustration of $(|B_n(t)|)_{t \in \mathbb{R}^+_0}$ incl. the killing line with slope c > 0 starting at $x \in \mathbb{R}^+_0$. The black dots show particles alive in the killed process as their paths are below the killing line. For all $n \in \mathbb{N}$ and $x \in \mathbb{R}^+_1$ set

 $\tau_{n,x}^{-} := \inf\{t \in \mathbb{R}_{0}^{+} : -\ln(B_{n}(t)) > x + ct\}.$

For any $n \in \mathbb{N}$ and $x \in \mathbb{R}^+_0$ consider the process $X_n^x := (X_n^x(t))_{t \in \mathbb{R}^+}$ given by

 $\forall t \in \mathbb{R}^+_0$: $X_n^x(t) := (x + ct + \ln(|B_n(t)|)) \mathbb{1}_{\{\tau_n^- > t\}}.$

The process X_n^x is a spectrally negative Lévy process shifted by x and killed on hitting the interval $(-\infty, 0)$. We denote the unkilled version of this process by X_n , i.e. $X_n(t) = X_n^x(t)$ for all $t < \tau_{n.x}^-$.

Figure 2: Illustration of X_n^x . Between the jumps the slope c of X_n^x is the same c as in Figure 1. At time $\tau_{n,x}^-$ the unkilled process X_n hits the interval $(-\infty, 0)$, thus $X_n^x(t) = 0$ for all $t \ge \tau_{n,x}^-$.

A block $\Pi_n(t)$ of Π is killed at the moment $t\in \mathbb{R}^+_0$ of its creation if

 $|\Pi_n(t)| < e^{-(x+ct)}.$

A block that is killed is set to be $(0, \ldots) \in S$ and the killed process is denoted by $\Pi^x := (\Pi^x_n)_{n \in \mathbb{N}}$.

For any $x \in \mathbb{R}^+_0$ the, not necessarily finite, extinction time of Π^x is given by

 $\zeta^x := \sup_{n \in \mathbb{N}} \tau_{n,x}^-.$

For all $n \in \mathbb{N}$ and $t, x \in \mathbb{R}_0^+$ set

For any $t, x \in \mathbb{R}^+_0$ define

$$\kappa_{x,n,t} := \inf \prod_{n=1}^{x} (t)$$
 as well as $\mathcal{N}_{t}^{x} := \left\{ k \in \mathbb{N} : t < \tau_{\kappa_{x,k,t},x}^{-} \right\}$

That is, \mathcal{N}_t^x consists of all the indices of blocks that are not yet killed by time t.

 $\chi X(4)$ $|\Pi X(4)|$

$$\lambda_1^x(t) := \sup_{n \in \mathbb{N}} |\Pi_n^x(t)|$$

Note that $\lambda_1^x(t) = 0$ for all $t \ge \zeta^x$.

$$\begin{array}{l} \label{eq:proposition} \mbox{If } c \leq c_{\bar{p}}, \mbox{ then } \mathbb{P}(\zeta^x < \infty) = 1 \mbox{ for all } x \in \mathbb{R}^+_0. \mbox{ If } c > c_{\bar{p}}, \mbox{ then } \\ x \mapsto \mathbb{P}(\zeta^x < \infty) \end{array}$$

where W_p is the scale function of X_1 under the changed measure $\mathbb{P}^{(p)}$ given by

$$t \in \mathbb{R}_0^+$$
: $\frac{\mathrm{d}\mathbb{P}^{(p)}}{\mathrm{d}\mathbb{P}}\Big|_{\mathscr{F}_t} = e^{\Phi(p)t + p\ln(|B_1(t)|)}.$

Theorem Let $c > c_{\bar{p}}$ and let $p \in (\underline{p}, \bar{p})$ be such that $c > \Phi'(p)$. Then the process $M^x(p)$ is a nonnegative \mathscr{F} -martingale with \mathbb{P} -a.s. limit $M^x_{\infty}(p)$ that satisfies

 $\mathbb{P}\left(\{M^x_\infty(p)=0\} \triangle \{\zeta^x < \infty\}\right) = 0,$

where \triangle denotes the symmetric difference.

For any function
$$f : \mathbb{R}^+ \to [0, 1]$$
 let $Z^{x, f} := (Z_t^{x, f})_{t \in \mathbb{R}^+}$ be given by

$$Z_t^{x,f} = \prod_{n \in \mathcal{N}_t^x} f\left(X_{\kappa_{x,n,t}}^x(t)\right).$$

 $\begin{array}{ll} \textbf{Theorem} & Let \ c > c_{\overline{p}}. \ \text{Then there exists a unique monotone function } f: \mathbb{R}^+_0 \to [0,1],\\ \text{given by} & \forall x \in \mathbb{R}^+_0: \quad f(x) = \mathbb{P}\left(\zeta^x < \infty\right),\\ \text{for which } Z^{x,f} \text{ is an } \mathscr{F}\text{-martingale for any } x \in \mathbb{R}^+_0 \text{ and that satisfies } \lim_{x \to \infty} f(x) = 0. \end{array}$

Proposition Let $c > c_{\overline{p}}$ and $x \in \mathbb{R}^+_0$. Then we have

$$\lim_{t\to\infty}\frac{-\ln(\lambda_1^x(t))}{t}=c_{\bar{p}}$$

 $\mathbb{P}(\cdot | \zeta^x = \infty)$ -almost surely.

Concluding remark In a forthcoming paper we use our results on killed fragmentation processes in order to obtain existence– and uniqueness results for one–sided FKPP travelling waves in the setting of fragmentation processes.

References

Obser

For p

[Ber01] J. BERTOIN. Homogeneous fragmentation processes, Probab. Theory Related Fields 121, pp. 301–318, 2001

[Ber03] J. BERTOIN. The asymptotic behavior of fragmentation processes, J. Europ. Math. Soc., 5, pp. 395–416, 2003

