Universität des Saarlandes Fachrichtung Mathematik

PD Dr. Yana Kinderknecht

WiSe 2018 / 19

Operatorhalbgruppen, Markovsche Prozesse und Evolutionsgleichungen Übungsblatt 2 (15 Punkte)

Abgabe: Vor der Vorlesung, 08.11.2018.

Aufgabe 4. (4 Punkte)

Betrachte den Banachraum $C_{\infty}(\mathbb{R}^d) := \{ \varphi \in C(\mathbb{R}^d) : \lim_{|x| \to \infty} \varphi(x) = 0 \}$ mit der Supremumnorm $\| \cdot \|_{\infty}$. Sei $v : \mathbb{R}^d \to \mathbb{R}$, $v \in C(\mathbb{R}^d)$. Betrachte den Multiplikationsoperator (V, Dom(V)) mit $(V\varphi)(x) := v(x)\varphi(x)$ für alle $\varphi \in \text{Dom}(V) := \{u \in C_{\infty}(\mathbb{R}^d) : vu \in C_{\infty}(\mathbb{R}^d)\}, x \in \mathbb{R}^d$.

- a) (2 Punkte) Zeige, dass der Multiplikationsoperator (V, Dom(V)) abgeschlossen und dicht definiert ist.
- b) (2 Punkte) Sei v nach oben beschränkt, d.h. $\exists C > 0$: $\sup_{x \in \mathbb{R}^d} v(x) \leq C$. Betrachte die Opertoren $(T_v(t))_{t \geq 0}$ mit $(T_v(t)\varphi)(x) := e^{tv(x)}\varphi(x)$. Zeige, dass $(T_v(t))_{t \geq 0}$ eine stark stetige Halbgruppe auf $C_{\infty}(\mathbb{R}^d)$ ist und finde den Erzeuger.

Aufgabe 5. (3 Punkte)

Sei $b \in \mathbb{R}^d$, $d \in \mathbb{N}$. Definiere $(T_b(t))_{t \geq 0}$ durch $(T_b(t)f)(x) := f(x+tb)$ auf den Banachräumen

- a) $C_{\infty}(\mathbb{R}^d)$ mit der Supremum-Norm $\|\cdot\|_{\infty}$;
- b) $C_{2\pi}(\mathbb{R}) := \{ f \in C(\mathbb{R}) : f(x+2\pi) = f(x) \, \forall \, x \in \mathbb{R} \}$ (wobei d = 1) mit der Supremum-Norm $\|\cdot\|_{\infty}$;
- c) $L^p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, mit der L^p -Norm.

Für jeden Raum: Finde den Erzeuger von $(T_b(t))_{t\geq 0}$.

Aufgabe 6. (2 Punkte)

Sei $X = \mathbb{R}^2$ mit der Summennorm, $L(x_1, x_2) := (x_2, 0)$ und $T_t := e^{tL}$. Bestimme die Wachstumsschranke von $(T_t)_{t \geq 0}$.

Aufgabe 7. (6 Punkte)

Beweisen Sie die folgende Behauptung:

Satz: Für eine stark stetige Halbgruppe $(T_t)_{t\geq 0}$ auf einem Banachraum X mit Erzeuger (L, Dom(L)) sind die folgenden Aussagen äquivalent:

- (i) $(T_t)_{t\geq 0}$ ist normstetig.
- (ii) L ist ein beschränkter linearer Operator.
- (iii) Dom(L) = X.

Hinweis: Zeige: (i) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i).

Für (i) \Rightarrow (iii): Betrachte $V(t):V(t)\varphi=\frac{1}{t}\int_{0}^{t}T_{s}\varphi\,ds$ für alle $\varphi\in X$. Zeige, dass $\|V(t)-\operatorname{Id}\|\to 0$ und deshalb V(t) für hinreichend kleines t invertierbar ist (benutze Eigenschaften Neumannscher Reihe).

Die Übungsblätter sind auf unserer Homepage erhältlich:

https://www.math.uni-sb.de/ag/fuchs/OHGMPEG/2018_index.html