Fachrichtung 6.1 - MathematikWintersemester 2015/16

Jun.Prof. Johannes Rau Michael Hoff

Übungen zur Linearen Algebra 1

Die Lösungen des Übungsblattes sind am 15.12.2015 vor der Vorlesung abzugeben. Alle Übungsblätter und Informationen zur Vorlesung sind auf der folgenden Seite zu finden: http://www.math.uni-sb.de/ag-rau/teaching/linalg1516/1516 linalg1.html

Blatt 8 08. Dezember 2015

Aufgabe 1. Lässt sich bei dem bekannten Schiebespiel die linke der folgenden Konfigurationen in die Ausgangsstellung (rechts) überführen?

2	1	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Aufgabe 2. Bestimmen Sie die Komplementärmatrix von

$$A_t = \begin{pmatrix} 5 - t & -2 & -6 \\ 0 & 1 - t & 0 \\ 4 & -2 & -5 - t \end{pmatrix}.$$

Für welche $t \in \mathbb{R}$ ist die Matrix A_t invertierbar?

Aufgabe 3. Seien n > 0 und $a_1, \ldots, a_n \in \mathbb{R}$. Sei $d_n(a_1, \ldots, a_n)$ die Determinante der Matrix

$$\begin{pmatrix} a_1 & 1 & 0 & \dots & 0 \\ -1 & a_2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & -1 & a_n \end{pmatrix}.$$

Für $n \geq 2$, zeigen Sie

$$\frac{d_n(a_1, \dots, a_n)}{d_{n-1}(a_2, \dots, a_n)} = a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_{n-1} + \frac{1}{a_n}}}}$$

Aufgabe 4. Sei n > 0 und $A \in \operatorname{Mat}(n \times (n+1), \mathbb{R})$ mit $\operatorname{Rang}(A) = n$. Sei $b = (b_1, \ldots, b_{n+1}) \in \operatorname{Mat}((n+1) \times 1, \mathbb{R})$ mit $b_j = (-1)^j \det A_j$ für $j = 1, \ldots, n+1$, wobei A_j aus A durch Streichen der j-ten Spalte entsteht. Zeigen Sie:

- (a) Die Matrix b ist nicht die Nullmatrix.
- (b) $Ker(A) = \langle b \rangle$.

Aufgabe 5 (Zusatzaufgabe). Lösen Sie eine der folgenden Aufgaben.

- (a) Basteln Sie einen (abstrakten) Weihnachtsbaum aus Papier, dessen Symmetriegruppe Ordung 24 hat. Die Oberfläche des Baumes soll aus Vielecken bestehen.
- (b) Dichten Sie eine Strophe zu der Melodie des bekannten Weihnachtsliedes O Tannenbaum. Benutzen Sie hierzu mathematische Begriffe aus der Vorlesung. Senden Sie Ihre Lösung an hahn@math.uni-sb.de.