

Michael Sagraloff Michael Hoff

Sommersemester 2016

Mathematik für Informatiker 2

https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer16/mathematik2/

Blatt 2 Abgabe: Mittwoch, 04. Mai

Aufgabe 1. (a) Sei K ein Körper. Beweisen Sie mit Hilfe der Körperaxiome, dass $0 \cdot a = 0$ $\forall a \in K \text{ und } (-1) \cdot (-1) = 1.$

- (b) Zeigen Sie: \mathbb{F}_p ist ein Körper genau dann, wenn p eine Primzahl ist.
- (c) Seien a_1, a_2 und n natürliche Zahlen mit $a_1, a_2 \leq 2^n$. Zeigen Sie: Ist $a_1 \equiv a_2 \mod p_i$ für paarweise verschiedene Primzahlen p_1, \ldots, p_n , dann ist $a_1 = a_2$.

Aufgabe 2. Gegeben sei das lineare Gleichungssystem mit Unbestimmten $x, y \in \mathbb{R}$

$$a_{11} \cdot x + a_{12} \cdot y = b_1$$

$$a_{21} \cdot x + a_{22} \cdot y = b_2$$

mit $a_{ij}, b_k \in \mathbb{R}$ für $1 \le i, j, k \le 2$.

- (a) Zeigen Sie, dass das lineare Gleichungssystem eine eindeutige Lösung besitzt genau dann, wenn $a_{11}a_{22} a_{12}a_{21} \neq 0$ ist.
- (b) Geben Sie eine Formel der Lösung an, falls das lineare Gleichungssystem eindeutig lösbar ist.

Aufgabe 3. Im Punkt $A = \begin{pmatrix} -3 \\ -3 \\ 5 \end{pmatrix}$ befinde sich ein Auge, mit Blickrichtung $v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

Ein Objekt habe sein Zentrum im Punkt $O = \begin{pmatrix} -3 \\ 3 \\ -1 \end{pmatrix}$.

Ferner genüge ein (unendlich großer) Spiegel der Gleichung x=0.

- (a) Fertigen Sie eine Skizze an.
- (b) Zeigen Sie, dass das Auge A das Objekt O im Spiegel sieht.
- (c) In welchem Punkt P des Spiegels sieht man das Objekt?
- (d) Wie groß ist der Winkel *OPA*?

Aufgabe 4.

Parity Check: Ist ein Daten-Wort $w = (w_1, w_2, \dots, w_{19}) \in (\mathbb{F}_2)^{19}$ gegeben, so setzen wir:

 $(v_1, v_2, \dots, v_{19}, v_{20}) := (w_1, w_2, \dots, w_{19}, p) \in (\mathbb{F}_2)^{20}$, wobei p die Parität des Wortes w ist, d.h.:

$$p = \begin{cases} 0, \text{ falls } w_1 + w_2 + \dots + w_{19} \equiv 0 \mod 2, \\ 1, \text{ falls } w_1 + w_2 + \dots + w_{19} \equiv 1 \mod 2. \end{cases}$$

Wir nehmen an, dass bei der Übermittlung eines Wortes $v \in (\mathbb{F}_2)^{20}$ höchstens ein Buchstabe fehlerhaft beim Empfänger ankommt. Zeigen Sie, dass der Empfänger unter dieser Annahme erkennen kann, welche Wörter nicht korrekt übertragen wurden und welche er daher nochmals anfragen muss.

Hamming Code: Für ein Daten-Wort $w=(w_1,w_2,w_3,w_4)\in (\mathbb{F}_2)^4$ werden beim Hamming-Code drei Parity-Check-Bits p_1,p_2,p_3 hinzugefügt, um einen Ein-Bit-Übertragungsfehler auch korrigieren zu können. Das übertragene Wort ist dann $v=(v_1,\ldots,v_7)=(p_1,p_2,w_1,p_3,w_2,w_3,w_4)\in (\mathbb{F}_2)^7$. Hierbei sind $p_i,\ i=1,2,3$, Paritäten gewisser Teil-Wörter von v. Das Teil-Wort t_i enthält 2^{i-1} Bits von v ab dem 2^{i-1} -ten Bit, enthält die nächsten 2^{i-1} Bits nicht, enthält die nächsten 2^{i-1} -ten Bits aber wieder, usw. t_1 ist also das Teil-Wort $(v_1,v_3,v_5,v_7)=(p_1,w_1,w_2,w_4),\ t_2=(v_2,v_3,v_6,v_7),\ t_3=(v_4,v_5,v_6,v_7)$. Lassen wir den ersten Buchstaben von t_i weg, so erhalten wir ein neues Wort, das wir s_i nennen. $p_i,\ i=1,2,3$, ist nun definiert als die Parität des Wortes s_i . Wie lauten die Daten, die als

$$a = (0, 0, 1, 1, 0, 1, 0), b = (1, 0, 1, 0, 1, 0, 1), c = (1, 1, 1, 1, 1, 1, 0)$$

empfangen wurden, unter der Annahme, dass maximal ein Bit falsch übertragen wurde?