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Many option pricing and portfolio selection problems in mathematical finance can be
reformulated in terms of backward SDEs (BSDEs). As the corresponding BSDE can
rarely be solved in closed form, simulation of BSDEs is of prime importance. However,
the quality of the simulated solution depends on the interplay of different error sources,
such as the time discretization error, the simulation error, and e.g. the choice of basis
functions (if the conditional expectations are estimated by least squares Monte Carlo).
In this paper we suggest error criteria which can be calculated explicitly in terms of
the simulated solutions. Under suitable conditions the convergence behaviour of these
observable error criteria can be linked to the approximation error between the simulated
solution and the unknown true solution. Finally, we illustrate how the error criteria can
be applied to judge the quality of simulated solutions for a non-linear option pricing
problem. We also suggest some kind of non-linear control variates which reduces the
numerical error considerably in our simulation results.
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1 Introduction

Backward stochastic differential equations (BSDEs) are a powerful tool to solve many option pricing
problems and related problems in mathematical finance, see the review paper [16] or e.g. [3, 6,
21, 27, 30] for some more recent results. Moreover, they can be considered as general adjoint
equations for stochastic optimal control problems, see [33] and the references therein, and yield
representation formulae for quasi-linear PDEs [29] and even some fully non-linear parabolic PDEs
[13]. Therefore the design of numerical schemes for BSDEs is an important task. Since BSDEs
are terminal value problems for stochastic differential equations, a natural time discretization for
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1 Introduction

BSDEs works backwards in time. However, the solution must be adapted to the information which
increases forwards in time, which makes the construction of numerical solutions to BSDEs a more
challenging problem compared to initial value problems for stochastic differential equations.

In recent years many approximation schemes for BSDEs have been suggested. One branch of
algorithms exploits the connection to parabolic PDEs via the Ma-Protter-Yong four step scheme
[25]. Here the numerical problem roughly reduces to the approximation of a quasi-linear parabolic
Cauchy problem, see [15, 26, 28]. This approach relies on some smoothness assumptions on the
coefficients of the BSDE, and the numerical solvability of the PDE may become difficult, if not
prohibitive, in high spatial dimensions.

A second branch of algorithms tackles the BSDE directly, see e.g. [5, 10, 14, 18, 22, 23]. These
algorithms generally can be divided into two steps. The first one is a time discretization and it
is based on a notion of L2-regularity introduced by Zhang [34] for terminal conditions, which are
Lipschitz continuous functionals of the paths of a forward SDE (under the assumption that the
solution of the BSDE does not couple into the coefficients of the SDE). These convergence results
for the time discretization were recently generalized to coupled systems of forward-backward SDEs
by Bender and Zhang [8] and to non-Lipschitz terminal conditions by Gobet and Makhlouf [19].
We note that all these results assume a Lipschitz continuous non-linearity of the BSDE, but refer
to Imkeller et al. [22] for a first approach to drivers with quadratic growth.

In order to keep the time discretized solution adapted to the filtration, the time discretization
scheme requires nestings of conditional expectation backwards in time (or forwards in the iterations
in the Picard type scheme of [5, 7, 17]). Therefore, in the second step, an estimator for the
conditional expectation has to be applied which can be nested several times without running into
exploding cost. Possible choices for these simulation based procedures are least-squares Monte
Carlo [5, 18, 23], quantization [2, 14], Malliavin Monte Carlo [10], or non-parametric regression
[10, 12].

These estimators for conditional expectations have been successfully applied to American option
pricing problems on many underlying securities, before they have been transferred to BSDEs. Due
to the structure of the American option pricing problem as a linear BSDE with reflection, its
connection to optimal stopping problems allows to numerically calculate solutions which have a
bias low by the Longstaff-Schwartz algorithm [24] and related algorithms [11, 12, 32]. Moreover, by
duality, upper biased numerical solutions can be obtained (see [1, 4, 20, 31]). In this way confidence
intervals on the price of the American option can be constructed, which allow to judge the success
of the numerical procedure which was applied. For general non-linear BSDEs a similiar way to
construct lower and upper approximations is not available. Nonetheless, the intricate interplay
between the time discretization and the design of the estimator for the conditional expectation
persists for non-linear BSDEs in a similar way as for American option problems (see e.g. the
analysis by Lemor et al. [23] for a least-squares Monte Carlo algorithm for BSDEs).

The aim of the present paper is to introduce some error criteria for numerical solutions of BSDEs,
which – to some extent – help to judge the quality of numerical solutions of BSDEs and indicate,
at which stages of the algorithms an estimation of the conditional expectations might have been
unsuccessful. Suppose (Y, Z) is the solution of the BSDE

Yt = ξ −
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T,

2



2 Global error criterion

where W is a Brownian motion and the data (ξ, f) are given. Then by the very definition the
solution satisfies, for every 0 ≤ t ≤ s ≤ T ,

Yt = Ys −
∫ s

t
f(s, Ys, Zs)ds−

∫ s

t
ZsdWs. (1)

We now assume that (y(π), z(π)) is some adapted approximation of the solution (Y,Z), which is
piecewise constant with respect to a time partition π of [0, T ]. If (y(π), z(π)) is a ‘good’ approxima-
tion of (Y,Z), Eq. (1) suggests that, for any ti < tj ∈ π,

y
(π)
tj
− y(π)

ti
−

∑
tk∈π;ti≤tk<tj

f(tk, y
(π)
tk
, z

(π)
tk

)(tk+1 − tk)−
∑

tk∈π;ti≤tk<tj

z
(π)
tk

(Wtk+1
−Wtk) ≈ 0. (2)

For the first error criterion we set ti = 0 and consider the maximum (over tj ∈ π) of the L2-
norms of the left-hand side of (2). We call this criterion a ‘global’ one, because violation of (1)
over the whole segment of the paths from 0 to tj is penalized. Our main result shows that, under
standard Lipschitz conditions, the global error criterion is equivalent to the L2-approximation error

between (y(π), z(π)) and the unknown solution (Y, Z) up to a term of the order |π|1/2, provided y
(π)
T

approximates the terminal condition ξ reasonably well. This result holds independently of the
algorithm which is used to create (y(π), z(π)).

The second criterion is based on the L2-norm of the left-hand side of (2) for the case tj = ti+1

and, hence, locally penalizes violation of (1) over one time step of the time partition. This ‘local’
error criterion is studied in the context of the least-squares Monte Carlo scheme of Lemor et al.
[23]. We link the local error criterion to the L2-error between the true time discretization of the
solution (Y,Z) and the best projection of this time discretization on the function basis, which is
applied for estimating conditional expectations. In this way, the local error criterion can help to
detect time steps at which a given function basis is inappropriately chosen.

The paper is organized as follows. In Section 2 we introduce the setting of our paper and study
the global error criterion. Section 3 explains how the global error criterion can be applied in the
context of the least-squares Monte Carlo framework, while Section 4 is devoted to the local error
criterion. A simulation study of a non-linear option pricing problem illustrates how information
about the numerical solutions can be extracted from the error criteria in practice. Finally, we
introduce a technique for non-linear BSDEs, which has a flavour of control variates, in Section 6.
We show that this technique can reduce the numerical error significantly for the non-linear option
pricing problem. Section 7 concludes.

2 Global error criterion

We consider a forward backward stochastic differential equation (FBSDE) with the following prop-
erties:

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs

Yt = ξ −
∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs,

(3)
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2 Global error criterion

where b : [0, T ] × RM → RM , σ : [0, T ] × RM × RM×D and f : [0, T ] × RM × R × RD → R are
deterministic functions and Wt = (W1,t, . . . ,WD,t)

∗ is a D-dimensional Brownian motion on [0, T ].
The initial condition of the forward SDE x ∈ RM and the FT -measurable and real valued terminal
condition of the backward SDE (BSDE) ξ are given. With these data, the solution of the forward
SDE X is an adapted RM -valued process. The solution of the BSDE consists of a pair of adapted,
square-integrable processes (Y, Z), where Yt is R-valued and Zt = (Z1,t, . . . , ZD,t) is RD-valued.
The FBSDE is decoupled in the sense that the coefficients of the forward SDE do not depend on
Y and Z. Our FBSDE fulfils the following assumptions:

Assumption 2.1. There is a constant K such that∣∣b(t, x)− b(t′, x′)
∣∣+
∣∣σ(t, x)− σ(t′, x′)

∣∣+
∣∣f(t, x, y, z)− f(t′, x′, y′, z′)

∣∣
≤ K

(√
t− t′ +

∣∣x− x′∣∣+
∣∣y − y′∣∣+

∣∣z − z′∣∣)
for all (t, x, y, z), (t′, x′, y′, z′) ∈ [0, T ]×RM ×R×RD. The terminal value ξ = φ(X) is a functional
on the space of RM -valued RCLL functions on [0, T ], that satisfies the L∞-Lipschitz condition∣∣φ(x)− φ(x′)

∣∣ ≤ K sup
0≤t≤T

∣∣x(t)− x′(t)
∣∣

for all RCLL functions x,x′. In addition to that

sup
0≤t≤T

(|b(t, 0)|+ |σ(t, 0)|+ |f(t, 0, 0, 0)|) + |φ(0)| ≤ K,

where 0 denotes the constant function taking value 0 on [0, T ].

Remark 2.2. Throughout the paper we will use generic constants C and c, that will be called
’depending on the data’ if they are influenced by T , K, X0 = x, M and D only. The constants
may vary from line to line.

In most cases it is not possible to find a closed-form solution (Y,Z) of (3). Hence, let (y(π), z(π))
be an approximation of the solution (Y,Z) such that (y(π), z(π)) is piecewise constant with respect
to a partition π = {0 = t0 < t1 < · · · tN = T} of [0, T ] and for all i = 0, . . . , N − 1

E

[∣∣∣y(π)
ti

∣∣∣2] <∞, E

[∣∣∣z(π)
ti

∣∣∣2] <∞.
Our aim is to judge the approximation error

sup
0≤t≤T

E

[∣∣∣Yt − y(π)
t

∣∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt.
Since the true solution (Y,Z) is typically not available in closed form, we cannot directly compute
the approximation error. Therefore we will introduce criteria, which allow simulation and from
which we can derive information about the approximation error. They are inspired by the identity

Yti − Yt0 −
∫ ti

0
f(t,Xt, Yt, Zt)dt−

∫ ti

0
ZtdWt = 0 (4)
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2 Global error criterion

for all i = 1, . . . , N . After replacing (Y, Z) by its approximation and the integrals by sums, the
equality does not hold anymore. We denote by

max
1≤i≤N

E

∣∣∣∣∣∣y(π)
ti
− y(π)

t0
−

i−1∑
j=0

f(tj , X
(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j −
i−1∑
j=0

z
(π)
tj

∆Wj

∣∣∣∣∣∣
2

= max
1≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

(
y

(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

)∣∣∣∣∣∣
2

a ’global’ error criterion, that penalizes violation of (4) along the time discretization from time 0
to ti, i = 1, . . . , N . Note that ∆Wi = Wti+1 −Wti and ∆i = ti+1 − ti. The next theorem states
that this global error is almost equivalent to the approximation error.

Theorem 2.3. Let Assumption 2.1 be fulfilled. Suppose further, there is a constant depending on
the data such that

max
0≤i≤N

E

[∣∣∣Xti −X
(π)
ti

∣∣∣2] ≤ const. |π| , E

[∣∣∣ξ − y(π)
T

∣∣∣2] ≤ const. |π| .
Then there are constants C and c depending on the data such that

sup
0≤t≤T

E

[∣∣∣Yt − y(π)
t

∣∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt
≤ C

 max
1≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

(
y

(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

)∣∣∣∣∣∣
2

+ C |π|

(
max

0≤i≤N
∆iE

[∣∣∣y(π)
ti

∣∣∣2]+

N−1∑
i=0

∆iE

[∣∣∣z(π)
ti

∣∣∣2])+ C |π|

(5)

and

max
1≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

(
y

(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

)∣∣∣∣∣∣
2

≤ c

(
sup

0≤t≤T
E

[∣∣∣Yt − y(π)
t

∣∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt)+ c |π| .

(6)

Remark 2.4. Under the assumptions of Theorem 2.3, let (y(πn), z(πn)) be a sequence of approxi-
mations of (Y, Z) with |πn| → 0 for n→∞. Then

sup
0≤t≤T

E

[∣∣∣Yt − y(πn)
t

∣∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(πn)
t

∣∣∣2] dt −−−→
n→∞

0

5



2 Global error criterion

if and only if

max
1≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

(
y

(πn)
tj+1
− y(πn)

tj
− f(tj , X

(πn)
tj

, y
(πn)
tj

, z
(πn)
tj

)∆j − z(πn)
tj

∆Wj

)∣∣∣∣∣∣
2 −−−→

n→∞
0

and

max
0≤i≤N

E

[∣∣∣y(πn)
ti

∣∣∣2]+

N−1∑
i=0

∆iE

[∣∣∣z(πn)
ti

∣∣∣2] ≤ const.
(Here, we suppressed that ti and N depend on n). In this case the convergence behaviour of the
approximation error is equivalent to the convergence behaviour of the global error criterion up to
a term of order |πn|, which matches the usual squared time discretization error.

The above remark in mind, the essence of Theorem 2.3 is that the approximation error can be
judged via the global error criterion. Contrary to the approximation error, the error criterion only
depends on the known approximative solutions. Since the criterion is a maximum of expectations,
it can be estimated by Monte Carlo simulations in practice. For more details, see Sections 3 and 5.

Proof of Theorem 2.3. We begin with the first inequality and define

Ȳt = y
(π)
t0

+

∫ t

0
f(s,X(π)

s , y(π)
s , z(π)

s )ds+

∫ t

0
z(π)
s dWs

= ȲT −
∫ T

t
f(s,X(π)

s , y(π)
s , z(π)

s )ds−
∫ T

t
z(π)
s dWs.

Employing Young’s inequality we achieve

sup
0≤t≤T

E

[∣∣∣Yt − y(π)
t

∣∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt
≤ C max

0≤i≤N
sup

ti≤t<ti+1

E
[
|Yt − Yti |

2
]

+ C max
0≤i≤N

E

[∣∣∣Ȳti − y(π)
ti

∣∣∣2]
+ C

(
max

0≤i≤N
E
[∣∣Yti − Ȳti∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt)
= (I) + (II) + (III).

The Assumptions 2.1 allow us to apply the following result of Zhang [34], that concerns the L2-
regularity of X and Y :

max
0≤i≤N−1

sup
t∈(ti,ti+1]

E
[
|Xt −Xti |

2 + |Yt − Yti |
2
]
≤ C |π| . (7)

Thus, (I) ≤ C |π|. Note that the pair (Ȳ , z(π)) is the solution of the BSDE with terminal condition

ȲT and generator g(t, y, z) = f(t,X
(π)
t , y

(π)
t , z). Hence, standard a-priori-estimates on the difference

of solutions of BSDEs (see e.g. El Karoui et al. [16], Section 2) yield

(III) ≤ C
(

E
[∣∣YT − ȲT ∣∣2]+

∫ T

0
E

[∣∣∣f(t,Xt, Ȳt, z
(π)
t )− f(s,X

(π)
t , y

(π)
t , z

(π)
t )
∣∣∣2] dt) .
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2 Global error criterion

Employing the Lipschitz condition of f together with the assumptions on the approximation error
regarding X and the terminal condition ξ we obtain

(III) ≤ C
(

E

[∣∣∣YT − y(π)
tN

∣∣∣2]+ E

[∣∣∣y(π)
tN
− ȲT

∣∣∣2]+

∫ T

0
E

[∣∣∣Ȳt − y(π)
t

∣∣∣2] dt
+

∫ T

0
E

[∣∣∣Xt −X(π)
t

∣∣∣2] dt)
≤ C

(
E

[∣∣∣ȲT − y(π)
tN

∣∣∣2]+
N−1∑
i=0

∫
∆i

E
[∣∣Ȳt − Ȳti∣∣2] dt+

N−1∑
i=0

∆iE

[∣∣∣Ȳti − y(π)
ti

∣∣∣2]+ |π|

)

≤ C max
0≤i≤N

E

[∣∣∣Ȳti − y(π)
ti

∣∣∣2]+ C

N−1∑
i=0

∫
∆i

E
[∣∣Ȳt − Ȳti∣∣2] dt+ C |π| ,

where
∫

∆i
is an abbreviation for

∫ ti+1

ti
. Now we make use of the definition of Ȳ and express the

difference in the second summand by integrals.

N−1∑
i=0

∫
∆i

E
[∣∣Ȳt − Ȳti∣∣2] dt

=
N−1∑
i=0

∫
∆i

E

[∣∣∣∣∫ t

ti

f(s,X(π)
s , y(π)

s , z(π)
s )ds+

∫ t

ti

z(π)
s dWs

∣∣∣∣2
]
dt

≤ 2
N−1∑
i=0

∫
∆i

E

[∣∣∣∣∫ t

ti

f(s,X(π)
s , y(π)

s , z(π)
s )ds

∣∣∣∣2
]
dt+ 2

N−1∑
i=0

∫
∆i

∫ t

ti

E

[∣∣∣z(π)
s

∣∣∣2] dsdt
≤ 2

N−1∑
i=0

∫
∆i

E

[∣∣∣∣∫ t

ti

f(s,X(π)
s , y(π)

s , z(π)
s )ds

∣∣∣∣2
]
dt+ 2

N−1∑
i=0

∆2
iE

[∣∣∣z(π)
ti

∣∣∣2] .

(8)

We approximate the first summand of the right-hand side of (8) separately. Because of the Lipschitz
condition of f and the boundedness of f(s, 0, 0, 0) we get

E

[∣∣∣∣∫ t

ti

f(s,X(π)
s , y(π)

s , z(π)
s )ds

∣∣∣∣2
]

≤ ∆i

∫ t

ti

E

[(
f(s,X(π)

s , y(π)
s , z(π)

s )
)2
]
ds

≤ 2∆i

∫ t

ti

E

[(
f(s,X(π)

s , y(π)
s , z(π)

s )− f(s, 0, 0, 0)
)2
]
ds+ 2∆i

∫ t

ti

f2(s, 0, 0, 0)ds

≤ C∆2
iE

[∣∣∣X(π)
ti

∣∣∣2 +
∣∣∣y(π)
ti

∣∣∣2 +
∣∣∣z(π)
ti

∣∣∣2]+ 2∆2
i sup

0≤t≤T
|f(t, 0, 0, 0)|2

≤ C∆2
i

(
max

0≤i≤N
E

[∣∣∣X(π)
ti
−Xti

∣∣∣2]+ E

[
sup

0≤t≤T
|Xt|2

]
+ E

[∣∣∣y(π)
ti

∣∣∣2]+ E

[∣∣∣z(π)
ti

∣∣∣2])+ C∆2
i .
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2 Global error criterion

As E
[
sup0≤t≤T |Xt|2

]
is finite and the approximation error of X converges with order |π|1/2, we

can simplify as follows:

E

[∣∣∣∣∫ t

ti

f(s,X(π)
s , y(π)

s , z(π)
s )ds

∣∣∣∣2
]
≤ C∆2

i

(
E

[∣∣∣y(π)
ti

∣∣∣2]+ E

[∣∣∣z(π)
ti

∣∣∣2]+ 1

)
.

Applying this approximation on (8) we receive

N−1∑
i=0

∫
∆i

E
[∣∣Ȳt − Ȳti∣∣2] dt ≤ C |π|

(
max

0≤i≤N
∆iE

[∣∣∣y(π)
ti

∣∣∣2]+

N−1∑
i=0

∆iE

[∣∣∣z(π)
ti

∣∣∣2]+ |π|

)
.

Hence,

(III) ≤ C max
0≤i≤N

E

[∣∣∣Ȳti − y(π)
ti

∣∣∣2]+ C |π|

(
max

0≤i≤N
∆iE

[∣∣∣y(π)
ti

∣∣∣2]+

N−1∑
i=0

∆iE

[∣∣∣z(π)
ti

∣∣∣2])+ C |π| .

The first summand of the last inequality matches with the term (II), which remains to be estimated.
To this end, we replace Ȳti by its definition and achieve

(II) = max
0≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

y
(π)
tj+1
− y(π)

tj
−
∫ tj+1

tj

f(s,X
(π)
tj
, y

(π)
tj
, z

(π)
tj

)ds− z(π)
tj

∆Wj

∣∣∣∣∣∣
2

≤ C max
0≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

y
(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

∣∣∣∣∣∣
2

+ C max
0≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

∫ tj+1

tj

(
f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)− f(t,X
(π)
tj
, y

(π)
tj
, z

(π)
tj

)
)
dt

∣∣∣∣∣∣
2

≤ C max
0≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

y
(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

∣∣∣∣∣∣
2

+ C max
0≤i≤N

E

 i−1∑
j=0

∫ tj+1

tj

√
t− tjdt

2
≤ C max

0≤i≤N
E

∣∣∣∣∣∣
i−1∑
j=0

y
(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

∣∣∣∣∣∣
2+ C |π| .
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2 Global error criterion

Thus,

sup
0≤t≤T

E

[∣∣∣Yt − y(π)
t

∣∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt
≤ C max

0≤i≤N
E

∣∣∣∣∣∣
i−1∑
j=0

y
(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

∣∣∣∣∣∣
2

+ C |π|

(
max

0≤i≤N
∆iE

[∣∣∣y(π)
ti

∣∣∣2]+

N−1∑
i=0

∆iE

[∣∣∣z(π)
ti

∣∣∣2])+ C |π| .

For the second inequality we make use of the identity

Yti − Y0 =

∫ ti

0
f(t,Xt, Yt, Zt)dt+

∫ ti

0
ZtdWt.

After inserting this identity we obtain by the Itô isometry, Young’s inequality and Jensen’s inequal-
ity

max
0≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

y
(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

∣∣∣∣∣∣
2

= max
0≤i≤N

E

[∣∣∣∣∣ (y(π)
ti
− Yti

)
+
(
Y0 − y(π)

t0

)

+
i−1∑
j=0

∫ tj+1

tj

(
f(t,Xt, Yt, Zt)− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)
)
dt+

∫ ti

0

(
Zt − z(π)

t

)
dWt

∣∣∣∣∣∣
2

≤ c

 max
0≤i≤N

E

[∣∣∣y(π)
ti
− Yti

∣∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt
+ max

0≤i≤N

i−1∑
j=0

∫ tj+1

tj

E

[∣∣∣(f(t,Xt, Yt, Zt)− f(tj , X
(π)
tj
, y

(π)
tj
, z

(π)
tj

)
)∣∣∣2] dt

 .

9



3 Application of the global error criterion

Due to the Lipschitz condition of f , we obtain

max
0≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

y
(π)
tj+1
− y(π)

tj
− f(tj , X

(π)
tj
, y

(π)
tj
, z

(π)
tj

)∆j − z(π)
tj

∆Wj

∣∣∣∣∣∣
2

≤ c max
0≤i≤N

E

[∣∣∣Yti − y(π)
ti

∣∣∣2]+ c

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt
+ c

N−1∑
i=0

∫
∆i

(
|t− ti|+ E

[∣∣∣Xt −X(π)
ti

∣∣∣2]+ E

[∣∣∣Yt − y(π)
ti

∣∣∣2] dt)
≤ c

(
max

0≤i≤N
E

[∣∣∣Yti − y(π)
ti

∣∣∣2]+

∫ T

0
E

[∣∣∣Zt − z(π)
t

∣∣∣2] dt)+ c max
0≤i≤N

E

[∣∣∣X(π)
ti
−Xti

∣∣∣2]
+ c

N−1∑
i=0

∫
∆i

(
E
[
|Xti −Xt|2

]
+ E

[
|Yti − Yt|

2
])
dt+ c |π| .

The second summand is bounded by c |π| on account of the assumptions of the theorem. For the
third summand we receive the same upper bound due to (7). Therefore, the proof is completed.

3 Application of the global error criterion

Many numerical schemes for BSDEs are based on a two-step procedure. In a first step a time dis-
cretization is performed pretending that conditional expectations can be computed in closed form,
e.g. in Bouchard and Touzi [10] or Gobet et al. [18]. In a second step conditional expectations
are replaced by some estimator. Different techniques, e.g. Malliavin Monte Carlo (see Bouchard
and Touzi [10]), nonparametric regression (see Carriere [12]) or quantization (see Bally and Pagès
[2] or Delarue and Menozzi [14]), have been applied in the literature to approximate conditional
expectations. Here we will concentrate on the least squares Monte Carlo approach, which is popular
in the context of American options pricing (see Longstaff and Schwartz [24]) and was applied
to BSDEs in Gobet et al. [18], Lemor et al. [23] and Bender and Denk [5]. We first turn to
the time discretization. Assuming that conditional expectations can be computed we define for
i = N − 1, . . . , 0

Y
(π)
tN

= ξ(π),

Z
(π)
d,ti

= Ei
[
Y

(π)
ti+1

∆Wd,i

∆i

]
, d = 1, . . . , D,

Y
(π)
ti

= Ei
[
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

]
,

(9)

where Ei [·] is the conditional expectation Ei [·] = E [· | Fti ] and X(π) a corresponding approximation
of X with respect to the partition π. This procedure is called backward scheme since it works
iteratively backward through time and therefore requires the computation of nested conditional
expectations. Note that it is explicit apart from the calculation of conditional expectations.

10



3 Application of the global error criterion

From now on we assume that

max
0≤i≤N

E

[∣∣∣Xti −X
(π)
ti

∣∣∣2] ≤ const. |π| , E

[∣∣∣ξ − ξ(π)
∣∣∣2] ≤ const. |π| .

Referring to Zhang [34] and Gobet et al. [18], the approximation error due to time discretization is

sup
0≤t≤T

E

[∣∣∣Yt − Y (π)
t

∣∣∣2]+ E

[∫ T

0

∣∣∣Zt − Z(π)
t

∣∣∣2 dt] ≤ C |π| . (10)

Hence, the global error criterion applied on the discretized solution (Y (π), Z(π)) converges to zero
as well, see (6) in Theorem 2.3. Clearly,

max
1≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

(
Y

(π)
tj+1
− Y (π)

tj
− f(tj , X

(π)
tj
, Y

(π)
tj

, Z
(π)
tj

)∆j − Z(π)
tj

∆Wj

)∣∣∣∣∣∣
2 ≤ C |π| .

In a next step, the conditional expectations Ei [·] are replaced by their least squares Monte Carlo
simulation based estimators. That means, that an estimation error concerning the conditional
expectations will add to the time discretization error. Lemor et al. [23] have chosen an orthogonal
projection on finite-dimensional subspaces of L2(Fti) as estimator for Ei [·]. Precisely, we denote
by Λd,i , 0 ≤ d ≤ D finite dimensional subspaces of L2(Fti) and by Pd,i the orthogonal projections
on these subspaces. The backward scheme reads then for all i = N − 1, . . . , 0 as follows:

Ŷ
(π)
tN

= ξ(π),

Ẑ
(π)
d,ti

= Pd,i

[
Ŷ

(π)
ti+1

∆Wd,i

∆i

]
, d = 1, . . . , D,

Ŷ
(π)
ti

= P0,i

[
Ŷ

(π)
ti+1
− f(ti, X

(π)
ti
, Ŷ

(π)
ti+1

, Ẑ
(π)
ti

)∆i

]
.

(11)

The estimators (Ŷ (π), Ẑ(π)) are extended by constant interpolation to RCLL processes. The ap-
proximation error in scheme (11) consists of the time discretization error and the estimation error,
that is bounded by terms of certain projection errors. The latter one makes the difference between
(Y (π), Z(π)) and (Ŷ (π), Ẑ(π)). Indeed, for j = 0, . . . , N − 1,

max
j≤i≤N

E

[∣∣∣Y (π)
ti
− Ŷ (π)

ti

∣∣∣2]+
N−1∑
i=j

∆iE

[∣∣∣Z(π)
ti
− Ẑ(π)

ti

∣∣∣2]

≤ C

N−1∑
i=j

E

[∣∣∣P0,i

(
Y

(π)
ti

)
− Y (π)

ti

∣∣∣2]+
D∑
d=1

N−1∑
i=j

∆iE

[∣∣∣Pd,i (Z(π)
d,ti

)
− Z(π)

d,ti

∣∣∣2]
 .

(12)

Combining the results in (10) and (12) we can derive an upper bound for the approximation error
between (Y,Z) and (Ŷ (π), Ẑ(π)). The projection errors in the above inequality are in terms of
the unknown solution (Y (π), Z(π)) of the time discretization scheme (9). Clearly, the errors are
expressed by the error between the discretized solution and their unknown best projection on the

11



3 Application of the global error criterion

subspaces Λd,i for all i = j, . . . , N − 1. Hence, the estimation error, that arises from the estimation
of conditional expectations, is mainly driven by the choice of basis functions of Λd,i. The better
the basis functions can describe the discretized solution, the smaller are the projection errors and
therefore the estimation error as well. For the proof of a slightly different statement from (12), see
Lemor et al. [23].

We now assume that the discretized BSDE is ’Markovian’ in the sense that there is a multivariate
Markov process (X̃

(π)
ti

)0≤i≤N such that the first components consist of the discretized SDE X(π)

and the approximative terminal condition is of the form ξ(π) = φ(π)(X̃
(π)
tN

). This setting covers

terminal conditions depending e.g. on the maximum max0≤t≤T Xt or the average 1
T

∫ T
0 Xtdt. The

discretized solutions Y
(π)
ti

and Z
(π)
ti

are then deterministic functions of time and X̃
(π)
ti

. Consequently,
we determine the projection subspaces Λd,i , 0 ≤ d ≤ D by function bases

ηd,i =
{
ηd,i1 (X̃

(π)
ti

), . . . , ηd,iK(d,i)(X̃
(π)
ti

)
}
,

respectively. K(d, i) denotes the dimension of the projection subspace Λd,i. Then the estimators

(Ŷ , Ẑ) can be written as linear combination of deterministic functions that depend on X̃(π). Given
the coefficients of the linear combination, we can calculate samples of the global error criterion just
by drawing samples of the Markov process X̃(π) and of the increments of the Brownian motion
∆Wi. Therefore, we can estimate the global error criterion by Monte Carlo simulation. Thanks to
the law of large numbers,

lim
M→∞

max
1≤i≤N

1

M

M∑
µ=1

∣∣∣∣∣∣
i−1∑
j=0

(
µŶ

(π)

tj+1
− µŶ

(π)

tj
− f(tj , µX

(π)
tj
, µŶ

(π)

tj
, µẐ

(π)

tj
)∆j − µẐ

(π)

tj
∆ µW j

)∣∣∣∣∣∣
2

= max
1≤i≤N

E

∣∣∣∣∣∣
i−1∑
j=0

(
Ŷ

(π)
tj+1
− Ŷ (π)

tj
− f(tj , X

(π)
tj
, Ŷ

(π)
tj

, Ẑ
(π)
tj

)∆j − Ẑ(π)
tj

∆Wj

)∣∣∣∣∣∣
2 ,

where the lower-left index µ denotes the samples and M the sample size. Note that the Monte Carlo
estimator is consistent, yet biased high since we draw the maximum of all timesteps. Nevertheless,
we can judge the approximation error via the global error criterion, as the approximation error is
bounded by a constant times the error criterion plus the time discretization error.

In practice, the coefficients of the linear combination of ηd,i cannot be computed, but have to be

estimated. Let α
(π)
0,i =

(
α

(π)
0,i,1, . . . , α

(π)
0,i,K(0,i)

)∗
and α

(π)
d,i =

(
α

(π)
d,i,1, . . . , α

(π)
d,i,K(d,i)

)∗
, 1 ≤ d ≤ D be the

coefficients related to the approximation of Ŷ
(π)
ti

and Ẑ
(π)
d,ti

. They solve the following minimisation
problems:

min
α
(π)
0,i

E

[∣∣∣Ŷ (π)
ti+1
− f(ti, X

(π)
ti
, Ŷ

(π)
ti+1

, Ẑ
(π)
ti

)∆i − η0,iα
(π)
0,i

∣∣∣2]
and for d = 1, . . . , D

min
α
(π)
d,i

E

[∣∣∣∣∆Wd,i

∆i
Ŷ

(π)
ti+1
− ηd,iα

(π)
d,i

∣∣∣∣2
]
.
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4 Local criterion

One way to tackle these tasks is to estimate the above expectations with Monte Carlo simulations
and to compute solutions of the least squares problems

min
α
(π,L)
0,i

1

L

L∑
λ=1

∣∣∣ λŶ (π)
ti+1
− f(ti, λX

(π)
ti
, λŶ

(π)
ti+1

, λZ
(π)
ti

)∆i − λη0,iα
(π,L)
0,i

∣∣∣2
and for d = 1, . . . , D

min
α
(π,L)
d,i

1

L

L∑
λ=1

∣∣∣∣∆ λW d,i

∆i
λŶ

(π)
i+1 − ληd,iα

(π,L)
d,i

∣∣∣∣2 ,
where the lower-left indicator λ marks the Monte Carlo samples of the random variables and L
is the number of samples drawn for the Monte Carlo simulation. Then we receive the simulation
based estimators

Ŷ
(π,L)
ti

=

K(0,i)∑
k=1

αL0,i,kη
0,i
k (X̃

(π)
ti

), Ẑ
(π,L)
d,ti

=

K̃(d,i)∑
k=1

αLd,i,kη
d,i
k (X̃

(π)
ti

). (13)

The approximation error between (Y,Z) and (Ŷ (π,L), Ẑ(π,L)), and hence the global error criterion as
well, are determined by the time discretization error, the estimation error concerning the conditional
expectations and a simulation error, which results from the simulation of the coefficients for the
linear combination of the basis functions of the projection spaces. The time discretization error
converges to zero with order 1/2 as the number of timesteps grows to infinity. The analysis of
the simulation error is rather intricate, but has already been done by Lemor et al. [23]. Their
results can be applied to choose the number of simulated paths in dependence of the timesteps and
the dimension of the function basis in a way that the simulation error matches the discretization
error. They explain in detail, how the simulation error converges to zero, if, given the dimension of
the function basis, the number of Monte Carlo samples are chosen suitably. Thus, both the time
discretization error and the simulation error can be controlled and the choice of the function basis
is the crucial step in designing the algorithm.

So, by and large, within the least-squares Monte Carlo backward scheme the global error judges
the quality of the function basis. If the global error is not sufficiently small, we require an additional
criterion for a more detailed analysis of the projection errors and their allocation over the period
[0, T ].

4 Local criterion

We define the local error criterion by

N−1∑
i=j

E

[∣∣∣y(π)
ti+1
− y(π)

ti
− f(ti, X

(π)
ti
, y

(π)
ti
, z

(π)
ti

)∆i − z(π)
ti

∆Wi

∣∣∣2] .
The next theorem gives information about the relation between the local error criterion applied on
the backward scheme and the projection errors.
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4 Local criterion

Theorem 4.1. Let Assumption 2.1 be fulfilled. Suppose further there exists a constant depending
on the data such that

max
0≤i≤N

E

[∣∣∣Xti −X
(π)
ti

∣∣∣2] ≤ const. |π| , E

[∣∣∣ξ − ξ(π)
∣∣∣2] ≤ const. |π| .

Then there is a constant C depending on the data such that for every j = 0, . . . , N − 1

N−1∑
i=j

E

[∣∣∣P0,i

(
Y

(π)
ti

)
− Y (π)

ti

∣∣∣2]+
D∑
d=1

N−1∑
i=j

∆iE

[∣∣∣Pd,i (Z(π)
d,ti

)
− Z(π)

d,ti

∣∣∣2]

≥ C
N−1∑
i=j

E

[∣∣∣Ŷ (π)
ti
−
(
Ŷ

(π)
ti+1
− f(ti, X

(π)
ti
, Ŷ

(π)
ti

, Ẑ
(π)
ti

)∆i

)
+ Ẑ

(π)
ti

∆Wi

∣∣∣2]− |π| .
Theorem 4.1 provides a lower bound on the error between the time discretized solution and the

unknown best approximation of the discretized solution in terms of the function basis. A large
summand in the local error criterion suggests that the choice of the basis functions at this time
step may be unsuccessful. In particular, for i = N − 1 we get

E

[∣∣∣P0,N−1

(
Y

(π)
tN−1

)
− Y (π)

tN−1

∣∣∣2]+ ∆N−1E

[∣∣∣P1,N−1

(
Z

(π)
tN−1

)
− Z(π)

tN−1

∣∣∣2]
≥ C(E

[∣∣∣Ŷ (π)
tN−1

−
(
Ŷ

(π)
tN
− f(tN−1, X

(π)
tN−1

, Ŷ
(π)
tN−1

, Ẑ
(π)
tN−1

)∆N−1

)
+ Ẑ

(π)
tN−1

∆WN−1

∣∣∣2])− |π| .
(14)

The following lemma is required for the proof of the theorem.

Lemma 4.2. Under the assumptions of Theorem 4.1 there is a constant C depending on the data
such that

N−1∑
i=0

E

[(
Y

(π)
ti
−
(
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

)
+ Z

(π)
ti

∆Wi

)2
]
≤ C |π| . (15)

Proof. We define

∆f
(π)
i (s) = f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)− f(s,Xs, Ys, Zs).

Step 1: We show

E

[∣∣∣∣∫
∆i

∆f
(π)
i (s)ds

∣∣∣∣2
]
≤ C

(
∆2
i |π|+ ∆2

iE

[∣∣∣Y (π)
ti+1
− Yti+1

∣∣∣2]+ ∆i

∫
∆i

E

[∣∣∣Z(π)
ti
− Zs

∣∣∣2] ds) .
(16)
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4 Local criterion

Due to Jensen’s inequality and the Lipschitz condition of f there is a generic constant C such that

E

[∣∣∣∣∫
∆i

(
∆f

(π)
i (s)

)
ds

∣∣∣∣2
]

≤ C∆3
i + C∆2

i

(
sup

ti≤s≤ti+1

E
[
|Xti −Xs|2

]
+ sup
ti≤s≤ti+1

E
[∣∣Yti+1 − Ys

∣∣2])

+ C∆2
iE

[∣∣∣X(π)
ti
−Xti

∣∣∣2]+ C∆2
iE

[∣∣∣Y (π)
ti+1
− Yti+1

∣∣∣2]+ C∆i

∫
∆i

E

[∣∣∣Z(π)
ti
− Zs

∣∣∣2] ds.
(17)

Again the Assumptions 2.1 allow us to employ the L2-regularity of X and Y , see inequality (7).
Hence, we can approximate the second summand of the right-hand side of (17) by C∆2

i |π|. Thanks
to the assumptions in the present lemma we have for the third summand the estimation C∆2

i |π|.
Putting these results together we obtain (16).

Step 2: We will insert the equality

Yti+1 − Yti =

∫
∆i

f(s,Xs, Ys, Zs)ds+

∫
∆i

ZsdWs

in the left-hand side of (15). Recall that

Yti = Ei
[
Yti+1 −

∫
∆i

f(s,Xs, Ys, Zs)ds
]
,

Y
(π)
ti

= Ei
[
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

]
.

The first equation arises from the formulation of the BSDE, the second from the backward scheme
(9). Together with Young’s inequality and the Itô isometry we get

N−1∑
i=0

E

[∣∣∣Y (π)
ti
−
(
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

)
+ Z

(π)
ti

∆Wi

∣∣∣2]

≤ 2

N−1∑
i=0

E

[∣∣∣∣Ei[Y (π)
ti+1
− Yti+1 −

∫
∆i

∆f
(π)
i (s)ds

]
−
(
Y

(π)
ti+1
− Yti+1 −

∫
∆i

∆f
(π)
i (s)ds

)∣∣∣∣2
]

+ 2

N−1∑
i=0

∫
∆i

E

[∣∣∣Z(π)
ti
− Zs

∣∣∣2] ds.
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4 Local criterion

By working out the quadratic term of the first sum and recalling the definiton of Y
(π)
ti

, we obtain

N−1∑
i=0

E

[∣∣∣Y (π)
ti
−
(
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

)
+ Z

(π)
ti

∆Wi

∣∣∣2]

≤ 2

N−1∑
i=0

E

[∣∣∣∣Y (π)
ti+1
− Yti+1 −

∫
∆i

∆f
(π)
i (s)ds

∣∣∣∣2
]

− 2
N−1∑
i=0

E

[
Ei
[
Y

(π)
ti+1
− Yti+1 −

∫
∆i

∆f
(π)
i (s)ds

]2
]

+ 2
N−1∑
i=0

∫
∆i

E

[∣∣∣Z(π)
ti
− Zs

∣∣∣2] ds
≤ 2

N−1∑
i=0

E

[∣∣∣∣Y (π)
ti+1
− Yti+1 −

∫
∆i

∆f
(π)
i (s)ds

∣∣∣∣2
]
− 2

N−1∑
i=0

E

[∣∣∣Y (π)
ti
− Yti

∣∣∣2]

+ 2

N−1∑
i=0

∫
∆i

E

[∣∣∣Z(π)
ti
− Zs

∣∣∣2] ds.
Then Young’s inequality leads to

N−1∑
i=0

E

[∣∣∣Y (π)
ti
−
(
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

)
+ Z

(π)
ti

∆Wi

∣∣∣2]

≤ 2

N−1∑
i=0

(1 + ∆i) E

[∣∣∣Y (π)
ti+1
− Yti+1

∣∣∣2]+ 2

N−1∑
i=0

(
1 +

1

∆i

)
E

[∣∣∣∣∫
∆i

∆f
(π)
i (s)ds

∣∣∣∣2
]

− 2

N−1∑
i=0

E

[∣∣∣Y (π)
ti
− Yti

∣∣∣2]+ 2

N−1∑
i=0

∫
∆i

E

[∣∣∣Z(π)
ti
− Zs

∣∣∣2] ds
≤ CE

[∣∣∣Y (π)
tN
− YtN

∣∣∣2]+ 2
N−1∑
i=0

∆iE

[∣∣∣Y (π)
ti
− Yti

∣∣∣2]

+ 2
N−1∑
i=0

(
1 +

1

∆i

)
E

[∣∣∣∣∫
∆i

∆f
(π)
i (s)ds

∣∣∣∣2
]

+ 2
N−1∑
i=0

∫
∆i

E

[∣∣∣Z(π)
ti
− Zs

∣∣∣2] ds.
Applying the assumption on the terminal condition and (16) we receive

N−1∑
i=0

E

[∣∣∣Y (π)
ti
−
(
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

)
+ Z

(π)
ti

∆Wi

∣∣∣2]
≤ C

(
max

0≤i≤N
E

[∣∣∣Y (π)
ti
− Yti

∣∣∣2]+

∫ T

0
E

[∣∣∣Z(π)
s − Zs

∣∣∣2] ds)+ C |π| .

Employing (10) completes the proof.

Proof of Theorem 4.1. Recall that within the backward scheme the generator f is applied on the

vector (ti, X
(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

) in the case of computable conditional expectations and on the vector
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4 Local criterion

(ti, X
(π)
ti
, Ŷ

(π)
ti+1

, Ẑ
(π)
ti

), when conditional expectations are estimated. Hence, we have to adapt the
local criterion concerning the time points, at which the Y -processes are evaluated.

N−1∑
i=j

E

[∣∣∣Ŷ (π)
ti
−
(
Ŷ

(π)
ti+1
− f(ti, X

(π)
ti
, Ŷ

(π)
ti

, Ẑ
(π)
ti

)∆i

)
+ Ẑ

(π)
ti

∆Wi

∣∣∣2]

≤ 2
N−1∑
i=j

E

[∣∣∣Ŷ (π)
ti
−
(
Ŷ

(π)
ti+1
− f(ti, X

(π)
ti
, Ŷ

(π)
ti+1

, Ẑ
(π)
ti

)∆i

)
+ Ẑ

(π)
ti

∆Wi

∣∣∣2]

+ 2

N−1∑
i=j

∆2
iE

[∣∣∣f(ti, X
(π)
ti
, Ŷ

(π)
ti

, Ẑ
(π)
ti

)− f(ti, X
(π)
ti
, Ŷ

(π)
ti+1

, Ẑ
(π)
ti

)
∣∣∣2]

= (I) + (II).

Step 1: Thanks to the Lipschitz condition of f we receive for summand (II)

(II) ≤ C
N−1∑
i=j

∆2
iE

[∣∣∣Ŷ (π)
ti
− Ŷ (π)

ti+1

∣∣∣2]

≤ C
N−1∑
i=j

∆2
iE

[∣∣∣Ŷ (π)
ti
− Yti

∣∣∣2 +
∣∣Yti − Yti+1

∣∣2 +
∣∣∣Yti+1 − Ŷ

(π)
ti+1

∣∣∣ 2]

≤ C |π| sup
tj≤t≤T

E

[∣∣∣Ŷ (π)
t − Yt

∣∣∣2]+ C |π| max
0≤i≤N−1

sup
t∈(ti,ti+1]

E
[
|Yt − Yti |

2
]
.

The first summand can be estimated due to the approximation error, see (10) and (12), whereas
we can apply on the second summand the L2-regularity of Y (see (7)). Thus,

(II) ≤ C |π|

N−1∑
i=j

E

[∣∣∣P0,i

(
Y

(π)
ti

)
− Y (π)

ti

∣∣∣2]+

D∑
d=1

N−1∑
i=j

∆iE

[∣∣∣Pd,i (Z(π)
d,ti

)
− Z(π)

d,ti

∣∣∣2]
+ C |π|2 .

Step 2: For the estimation of summand (I) define

∆fi := f(ti, X
(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)− f(ti, X
(π)
ti
, Ŷ

(π)
ti+1

, Ẑ
(π)
ti

)

and

ηi := Ŷ
(π)
ti+1
− Y (π)

ti+1
+ ∆fi∆i.

The orthogonal projections P0,i are maps from L2 (FT ) into a subspace Λ0,i of L2(Fti). We have,

P0,i

(
Y

(π)
ti

)
= P0,i

(
Ei
[
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

])
= P0,i

(
Y

(π)
ti+1
− f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i

)
.

(18)
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4 Local criterion

We use the relation in (18) to add a zero and then employ Young’s inequality.

(I) = 2
N−1∑
i=j

E

[ ∣∣∣[P0,i

(
Ŷ

(π)
ti+1
− Y (π)

ti+1
+ ∆fi∆i

)
−
(
Ŷ

(π)
ti+1
− Y (π)

ti+1
+ ∆fi∆i

)]
+
[
P0,i

(
Y

(π)
ti

)
− Y (π)

ti

]
+
[
Y

(π)
ti
− Y (π)

ti+1
+ f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i + Z
(π)
ti

∆Wi

]
+
[
Ẑ

(π)
ti

∆Wi − Z(π)
ti

∆Wi

]∣∣∣2]
≤ 8

N−1∑
i=j

E
[
|P0,i (ηi)− ηi|2

]

+ 8

N−1∑
i=j

E

[∣∣∣Y (π)
ti
− Y (π)

ti+1
+ f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i + Z
(π)
ti

∆Wi

∣∣∣2]

+ 8
N−1∑
i=j

E

[∣∣∣P0,i

(
Y

(π)
ti

)
− Y (π)

ti

∣∣∣2]+ 8
N−1∑
i=j

E

[∣∣∣(Ẑ(π)
ti
− Z(π)

ti

)
∆Wi

∣∣∣2] .
(19)

First we take a closer look at the first summand of the right-hand side of (19). Thanks to the

definitions of Ŷ
(π)
ti

and Y
(π)
ti

the following equality holds true for all i = 0, . . . , N − 2:

ηi = P0,i+1(ηi+1) + P0,i+1

(
Y

(π)
ti+1

)
− Y (π)

ti+1
+ ∆fi∆i. (20)

Due to the orthogonality of Pi we have

E [P0,i (ηi) ηi] = E
[
(P0,i (ηi))

2
]

and consequently

N−1∑
i=j

E
[
|P0,i (ηi)− ηi|2

]
=

N−1∑
i=j

E
[
|ηi|2

]
− E

[
|P0,i (ηi)|2

]
.

The following calculation takes place in view of (20), the orthogonality of the projections and the
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4 Local criterion

equality Ŷ
(π)
tN
− Y (π)

tN
= 0.

N−1∑
i=j

E
[
|P0,i (ηi)− ηi|2

]

≤
N−2∑
i=j

(1 + ∆i) E
[
|P0,i+1 (ηi+1)|2

]
+
N−2∑
i=j

(1 + ∆i) E

[∣∣∣P0,i+1

(
Y

(π)
ti+1

)
− Y (π)

ti+1

∣∣∣2]

+ (1 + ∆N−1) E

[∣∣∣Ŷ (π)
tN
− Y (π)

tN

∣∣∣2]+
N−1∑
i=j

(1 + ∆i) ∆iE
[
|∆fi|2

]
−
N−1∑
i=j

E
[
|P0,i (ηi)|2

]

≤ C
N−2∑
i=j

∆iE

[∣∣∣Ŷ (π)
ti+2
− Y (π)

ti+2

∣∣∣2]+
N−2∑
i=j

(1 + ∆i) E

[∣∣∣P0,i+1

(
Y

(π)
ti+1

)
− Y (π)

ti+1

∣∣∣2]

+ C
N−1∑
i=j

∆iE
[
|∆fi|2

]
.

Because of the Lipschitz condition of f we get

N−1∑
i=j

E
[
|P0,i (ηi)− ηi|2

]
≤ C

 max
j≤i≤N

E

[∣∣∣Ŷ (π)
ti
− Y (π)

ti

∣∣∣2]+
N−1∑
i=j

∆iE

[∣∣∣Ẑ(π)
ti
− Z(π)

ti

∣∣∣2]


+ C

N−2∑
i=j

E

[∣∣∣P0,i+1

(
Y

(π)
ti+1

)
− Y (π)

ti+1

∣∣∣2] .
(21)

Applying result (21) on (19) we achieve

(I) ≤ C

 max
j≤i≤N

E

[∣∣∣Ŷ (π)
ti
− Y (π)

ti

∣∣∣2]+
N−1∑
i=j

∆iE

[∣∣∣Ẑ(π)
ti
− Z(π)

ti

∣∣∣2]


+ C

N−1∑
i=j

E

[∣∣∣P0,i

(
Y

(π)
ti

)
− Y (π)

ti

∣∣∣2]

+ C
N−1∑
i=j

E

[∣∣∣Y (π)
ti
− Y (π)

ti+1
+ f(ti, X

(π)
ti
, Y

(π)
ti+1

, Z
(π)
ti

)∆i + Z
(π)
ti

∆Wi

∣∣∣2] .
By employing Lemma 4.2 and inequality (12) we obtain

(I) ≤ C

N−1∑
i=j

E

[∣∣∣P0,i

(
Y

(π)
ti

)
− Y (π)

ti

∣∣∣2]+
D∑
d=1

N−1∑
i=j

∆iE

[∣∣∣Pd,i (Z(π)
d,ti

)
− Z(π)

d,ti

∣∣∣2]
+ C |π| .

Summarizing the results on (I) and (II) completes the proof.
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5 Simulations

5 Simulations

In this section we illustrate the global and local error criteria by a numerical example. It concerns
a call-spread option within a money market with different interest rates for borrowing and lending
and was suggested in Lemor et al. [23]. The rate for borrowing will be denoted by R, the rate for
lending by r. The FBSDE reads then

Xt = x+

∫ t

0
µXsds+

∫ t

0
σXsdWs

Yt = ξ −
∫ T

t

(
rYs +

(µ− r)
σ

Zs − (R− r)
(
Yt −

Zt
σ

)
−

)
ds−

∫ T

t
ZsdWs,

ξ = (XT −K1)+ − 2 (XT −K2)+ ,

(22)

see also Bergman [9]. As parameters we choose x = 100, r = 0.01, R = 0.06, µ = 0.05, σ = 0.2 and
T = 0.25. The strike prices are fixed with K1 = 95 and K2 = 105. As basis functions we take the
payoff function together with indicator functions:

e1(X
(π)
ti

) = (X
(π)
ti
−K1)+ − 2(X

(π)
ti
−K2)+, e2(X

(π)
ti

) = 1[0,l](X
(π)
ti

),

e3(X
(π)
ti

) = 1[u,∞)(X
(π)
ti

),

ek(X
(π)
ti

) = 1[l+(k−4)(u−l)/(κ−3),l+(k−3)(u−l)/(κ−3)](X
(π)
ti

), 4 ≤ k ≤ κ,

where κ is the dimension of the function basis of Λ0,i = Λ1,i and l and u are defined as the empirical

mean of the samples ofX
(π)
ti

minus and plus the empirical standard deviation. The backward scheme
explained in Section 3 is repeated for an increasing number of timesteps, samples and dimension
of function basis, i.e. we set for j = 1, . . . , 9 and β = 3, 4, 5

N =
[
2 ∗
√

2
(j−1)

]
, κ =

[
14

5

√
2
j−1
]

+ 2, L = M =
[
2
√

2
β(j−1)

]
,

where [a] is the closest integer to a. Recall that L is the number of samples required for the Monte
Carlo simulation based least squares estimation of the projection coefficients and M is the number
of samples necessary for the Monte Carlo simulation of the error criteria. The following tabular
states the values for L considering the different values for β and j:

j

β 1 2 3 4 5 6 7 8 9

3 2 6 16 45 128 362 1,024 2,896 8,192

4 2 8 32 128 512 2,048 8,192 32,768 131,072

5 2 11 64 362 2,048 11,585 65,536 370,728 2,097,152

In Figure 1 the global error criterion is plotted on a logarithmic scale against the number of
timesteps N for β = 3, 4, 5. We observe that the global error decreases for all β, when N and the
sample sizes L and M are growing simultaneously. Moreover, increasing β from 3 to 5 significantly
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5 Simulations

reduces the global error criterion. We observe, however, that even in the case β = 5 the global
error is, despite the large simulation costs, still larger than one. A further error reduction requires
a finer time grid and hence increasing of j, which in turn leads to tremendous cost.

10
1

10
0

10
1

10
2

10
3

Number of timesteps N per partition, N = 2, ..., 32

β = 3

β = 4

β = 5

Figure 1: Development of the global error criterion for a call spread option

In Figure 2 we examine the case j = 9, where we have according to the above definition 32
timesteps. The figure shows how much every single timestep contributes to the local error criterion
for different β. The case β = 5, which yields the lowest local errors, is presented by the lowest solid
line.

For all β the local error related to each single timestep increases from timestep t0 = 0 to tN = T .
Recalling that the approximation scheme works backward through time, it strikes that the first
step of the algorithm is responsible for the highest local error per timestep. That means in view of
(14) that high projection errors already occur in the first step. This observation suggests that the
choice of the basis does not even fit well to the terminal condition.

In addition to this we present in Figure 3 the approximation of Ŷ
(π)
t0

. As one can see, good

convergence results for Ŷ
(π)
t0

are obtained already at relatively low cost (β = 3, j = 9). Higher
values for β boost the number of samples and thereby the computational costs, but do not improve
the estimation of Y0 significantly. When looking at Figure 3 it is tempting to conclude that a good
approximation is achieved for β = 3. However, an eximanation of the gobal error criterion in Figure
1 shows that it is not sufficient to set β = 3 for satisfactory results as far as one is interested in an
approximation of the whole solution processes (Y,Z).

In conclusion, we observe that theoretically the backward scheme with the indicator basis con-
verges thanks to the results in Gobet et al. [18], but the computational cost may become prohibitive,
if one is interested in a good approximation of the solution processes (Y,Z) and not in the option
price Y0 only.
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Figure 2: Contribution of the single timesteps to the local error criterion for a call spread option
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Figure 3: Development of Ŷ
(π)
t0

for a call spread option
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6 Non-linear control variates

In this section we propose a method for reducing the computational cost within the backward
scheme under suitable assumptions. Precisely, we propose to split the original BSDE into the sum
of two BSDEs and assume that one of them can be solved in closed form and only the other one
needs to be approximated numerically. We call this procedure non-linear control variate as it has a
flavor of the control variate technique for simulating expectations (i.e. the case of a linear BSDE).
Suppose the original BSDE is given by

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs

Yt = φ(XT )−
∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs.

(23)

Instead of (23), we examine the following FBSDEs:

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs

Ỹt = φ(XT )−
∫ T

t
Z̃sdWs,

yt = −
∫ T

t
f(s,Xs, ys + Ỹs, zs + Z̃s)ds−

∫ T

t
zsdWs.

(24)

Hence, we get the solution (Y,Z) of (23) by adding (Ỹ , Z̃) and (y, z). Note that Gobet and Makhlouf
[19] made use of this decomposition in their proof of the L2-regularity of Z in cases of irregular
terminal conditions. In many examples, closed form solutions or very accurate approximations of
(Ỹ , Z̃) are available (this BSDE corresponds to a linear option pricing problem). As far as (y, z)
are regarded we employ the algorithm proposed in Section 3. The simulation based estimators are
then defined by

Ŷ
(π,L,�)
ti

= ŷ
(π,L)
ti

+ Ỹti , Ẑ
(π,L,�)
ti

= ẑ
(π,L,)
ti

+ Z̃ti .

In some non-linear option pricing problems (e.g. the problem with different interest rates) the
non-linearity is typically ‘small’ compared to the terminal condition. So, heuristically, the ’main’
part of the solution (Ỹ , Z̃) is correctly computed and only a small part, here (y, z), is affected by
approximation errors.

We illustrate now the proposed procedure at the case of the call-spread option introduced in
Section 5. As function basis we fix the call-spread payoff and monomials, i. e.

e1(X
(π)
ti

) = (X
(π)
ti
−K1)+ − 2(X

(π)
ti
−K2)+, ek(X

(π)
ti

) = (X
(π)
ti
−X0)k−2, 2 ≤ k ≤ 6.

The sample sizes are L = M = 200, 000 and the simulation is repeated for N = 20, 25, . . . , 200,
where N is the number of timesteps. The next figures show the simulation results of our call-spread
option. First, we run the backward scheme to get (Ŷ , Ẑ). In addition to that, we use non-linear
control variates to generate (Ŷ (π,L,�), Ẑ(π,L,�)).
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Figure 4: Development of the global error criterion for a call-spread option
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Figure 5: Development of Ŷ
(π)
t0

for a call-spread option

Figure 4 compares the global error criterion for the original backward scheme and for the modified
one using non-linear control variates. In the original algorithm the global error roughly stays
constant as a function of the number of time steps. The reason is that the error in estimating
the conditional expectation with the simple basis functions and a moderate sample size dominates
the time discretization error. Contrarily, with non-linear control variates the global error decreases
almost with the best possible rate of order N−1 in the number of time steps (the slope of the line
in the logarithmic plot is -0.96). One also observes that the absolute size of the global error with
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6 Non-linear control variates

non-linear control variates is smaller by a factor 10 compared to the results in Section 5, which
were computed with much higher simulation cost.

In contrast to the global error, there is only a small difference between the estimation of Ŷ
(π)
t0

by the original algorithm on the one hand and with non-linear control variates on the other hand.
Since the global error in the latter case is smaller than in the case of the original algorithm, Figure

5 suggests that Ŷ
(π)
t0

is slightly underestimated without control variates. In accordance with the
simulation results in Section 5, we find that the option price Y0 is approximated well in all settings
which we implemented, even if the approximation of the whole solution (Yt, Zt) is not successful.
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Figure 6: Approximation of E [Yt] by unchanged backward scheme and with non-linear control
variates
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Figure 7: Approximation of E [Zt] by unchanged backward scheme and with non-linear control
variates
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7 Conclusion

The Figures 6 and 7 clarify the effect of introducing control variates. These figures show the
Monte Carlo approximations of E [Yt] and E [Zt] computed with and without non-linear control
variates. All in all, the difference between both approximation results for E [Yt] is very small. But
when turning to the estimation of E [Zt], we observe that the estimation without control variates
is oszillating very strongly, whereas the improved algorithm reduces these oszillations significantly.

7 Conclusion

In this paper we have introduced two error criteria in order to judge the quality of numerical
solutions of BSDEs. The global error criterion is basically equivalent to the approximation error
between the numerical solution and the unknown true solution. The local error criterion provides
bounds on the quality of the function basis in a least squares Monte Carlo framework for estimat-
ing conditional expectations. Numerical experiments illustrate that the initial value Y0 may be
estimated reasonably within the backward scheme, although the results of the local error criterion
indicate high projection errors and therefore a bad choice of basis functions. Hence, for sufficient
results on the approximation error of the entire processes Y and Z we have to improve the estima-
tion of conditional expectations. Two observations might help us to tackle this problem. On the
one hand it turned out that the projection errors are large especially at the terminal timestep of the
partition. An interesting question is therefore, which factors influence the projection errors in this
first step of the algorithm. Answering this question would improve the local error criterion related
to the entire period, since the projection errors propagate in time. This indicates that the choice
of the basis functions should be adjusted to the terminal condition, which we will discuss in detail
in future research. On the other hand it became evident that the approximation of the process
Z may strongly oszillate. These oszillations could be reduced by the introduction of non-linear
control variates.
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