Stochastik

12. Übungsblatt

Aufgabe 1

a) Es seien $\mathcal{P} := \{P_n; n \in \mathbb{N}\}$ eine Familie von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}, \mathcal{B})$ und $F_n(x) := P_n((-\infty, x])$ zugehörigen Verteilungfunktionen. Zeigen Sie:

$$\mathcal{P}$$
 ist straff $\iff \lim_{x \to +\infty} F_n(x) = 1$ und $\lim_{x \to -\infty} F_n(x) = 0$ gleichmäßig in n.

b) Seien P_{α} normalverteilte Wahrscheinlichkeitsmaße mit Parametern μ_{α} und σ_{α}^2 , $\alpha \in A$. Zeigen Sie:

$$\mathcal{P} := \{ P_{\alpha}; \alpha \in A \} \text{ ist straff } \iff \exists \ a, b \in \mathbb{R}, \ s.d. \ |\mu_{\alpha}| \leq a, \ \sigma_{\alpha}^{2} \leq b, \ \alpha \in A.$$

6 Punkte

Aufgabe 2 Es seien $(X_n)_{n\in\mathbb{N}}$, $(Y_n)_{n\in\mathbb{N}}$ Folgen von reellwertigen Zufallsvariablen, die auf einem gemeinsamen Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) definiert sind, und $(P_{X_n})_{n\in\mathbb{N}}$, $(P_{Y_n})_{n\in\mathbb{N}}$ die Folgen der Verteilungen von X_n , bzw., Y_n . Ferner sei $X_n - Y_n \to 0$ in Wahrscheinlichkeit bezüglich P und $P_{X_n} \to Q$ schwach. Zeigen Sie, dass $P_{Y_n} \to Q$ schwach.

5 Punkte

Aufgabe 3 Sei X binomial (n, p)-verteilte Zufallsvariable auf (Ω, \mathcal{A}, P) . Berechnen Sie:

- a) die charakteristische Funktion von X.
- b) E[X] und $E[X^2]$ mit Hilfe des Satzes 4.6.5.

5 Punkte

Abgabe Freitag, den 29.01.10 in der Übung.