Geometrische Eigenschaften holomorpher Funktionen, Umkehrfunktionen

Zu Beginn dieses Kapitels werden die geometrischen Eigenschaften holomorpher Funktionen als Abbildungen zwischen zwei Gaußschen Zahlenebenen studiert.

Ist beispielsweise $f: \mathbb{C} \to \mathbb{C}$, $f(z) = e^z$, so betrachte man die Bilder der Kurven $\gamma(t) = iy_0 + t$, $t \in \mathbb{R}$, $y_0 \in \mathbb{R}$ fixiert.

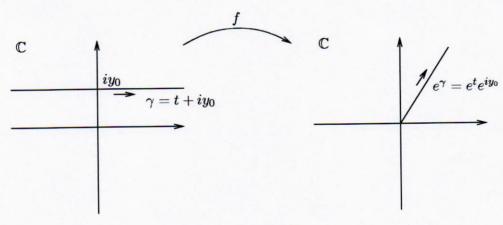


Abbildung 10.1. Die Kurve γ .

Analog betrachte man die Bilder der Kurven $\tilde{\gamma}(t) = x_0 + it$, $t \in \mathbb{R}$, $x_0 \in \mathbb{R}$ fixiert (vgl. Abbildung 10.2).

Beobachtung. Sowohl die Kurven γ , $\tilde{\gamma}$ sind orthogonal zueinander als auch die Bildkurven e^{γ} , $e^{\tilde{\gamma}}$.

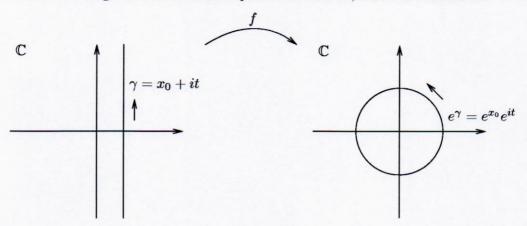


Abbildung 10.2. Die Kurve $\tilde{\gamma}$.

Zunächst muss aber die Frage untersucht werden, wie überhaupt der Schnittwinkel zweier Kurven definiert ist.

Idee. Man betrachtet die Tangenten an die Kurven im Schnittpunkt.

Definition 10.1.

- i) Es sei z_0 ein Punkt in der komplexen Ebene und γ eine von z_0 ausgehende reguläre glatte Kurve, d.h. (für ein $\varepsilon > 0$) eine stetig differenzierbare Abbildung $[0,\varepsilon) \to \mathbb{C}$ mit $\gamma(0) = z_0$ und $\dot{\gamma}(0) \neq 0$. Die Halbtangente an γ in z_0 ist der Strahl $s \mapsto z_0 + s\dot{\gamma}(0)$, $s \geq 0$.
- ii) Sind γ_1 , γ_2 zwei Kurven wie in i), so ist der orienterte Winkel $\angle(\gamma_1, \gamma_2)$ zwischen γ_1 und γ_2 (in z_0) definiert als der Winkel zwischen ihren Halbtangenten:

$$\angle(\gamma_1, \gamma_2) = \arg \frac{\dot{\gamma}_2(0)}{\dot{\gamma}_1(0)} = \arg \dot{\gamma}_2(0) - \arg \dot{\gamma}_1(0) .$$

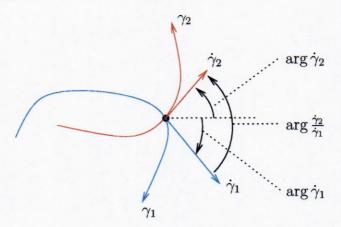


Abbildung 10.3. Der orientierte Winkel zwischen zwei Kurven.

Bemerkungen.

- i) Der orientierte Winkel ist nur bis auf Addition von ganzzahligen Vielfachen von 2π bestimmt.
- ii) Die Voraussetzung $\dot{\gamma}(0) \neq 0$ ist wesentlich, um arg $\dot{\gamma}$ überhaupt definieren zu können.
- iii) Ist f differenzierbar in $z_0 \in \mathbb{C}$, so folgt aus $f'(z_0) \neq 0$ für eine Funktion $w(t) = f(\gamma(t)), \gamma$ wie oben,

$$\dot{w}(t)_{|t=0} = f'(\gamma(t))\dot{\gamma}(t)_{|t=0}$$
.

Sind γ_1 , γ_2 zwei Kurven nach Definition 10.1, so gilt also für die Bildkurven $w_i = f \circ \gamma_i$, i = 1, 2, (vgl. Abbildung 10.4

$$\arg\frac{\dot{w}_2(0)}{\dot{w}_1(0)} = \frac{f'(z_0)\dot{\gamma}_2(0)}{f'(z_0)\dot{\gamma}_1(0)} = \arg\frac{\dot{\gamma}_2(0)}{\dot{\gamma}_1(0)} \ .$$

Satz 10.2.

Ist f differenzierbar in $z_0 \in \mathbb{C}$ mit $f'(z_0) \neq 0$, so ist f in z_0 orientierungs- und winkeltreu (konform), d.h. die Bildkurven $w_1(t)$, $w_2(t)$ zweier Kurven $\gamma_1(t)$, $\gamma_2(t)$ (nach Definition 10.1) schneiden sich in $f(z_0)$ unter dem gleichen orientierten Winkel wie γ_1 , γ_2 in z_0 .

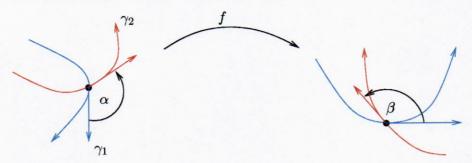


Abbildung 10.4. $\alpha = \beta$.

Bemerkungen.

- i) Orientierungs- und winkeltreue Abbildungen korrespondieren mit biholomorphen Abbildungen (d.h.: $f: U \to V, U, V \subset \mathbb{C}$ offen, f bijektiv, f, f^{-1} holomorph).
- ii) Eine Abbildung $f: U \to V$ ist genau dann biholomorph, wenn gilt: f ist holomorph, bijektiv, f^{-1} ist stetig, und auf ganz U ist $f'(z) \neq 0$. Dann ist

$$(f^{-1})'(w) = \frac{1}{f'(z)}$$
 mit $w = f(z)$.

Wie sieht es i.A. mit der Existenz einer Umkehrfunktion aus?

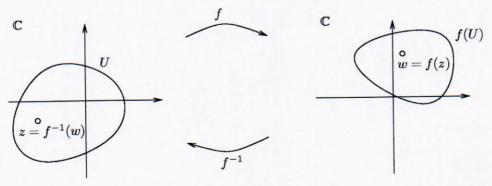


Abbildung 10.5. Zur Existenz einer Umkehrfunktion.

Es sei $U \subset \mathbb{C}$ offen, $f: U \to f(U) \subset \mathbb{C}$. Gibt es zu jedem $w \in f(U)$

genau ein $z \in U$ mit f(z) = w, so heißt f bekanntlich eine eine indeutige (bijektive) Abbildung auf f(U), es existiert die Umkehrfunktion f^{-1} : $w \in f(U) \mapsto z$ mit f(z) = w.

Beispiele.

i) Es sei f(z) = az + b, $\mathbb{C} \ni a \neq 0$, $U = \mathbb{C}$. Dann ist

$$f^{-1}(w) = \frac{1}{a}(w-b) , \quad f(U) = \mathbb{C} .$$

ii) Man betrachte jetzt die Funktion

$$f(z) = z^2$$
 auf $U = \mathbb{C}$.

Ist $z_1 = 1$, $z_2 = -1$, so gilt $f(z_1) = f(z_2) = 1$, die Funktion ist nicht eineindeutig, es existiert keine Umkehrfunktion.

Idee. Man schränkt den Definitionsbereich ein, man betrachtet etwa

$$f(z) = z^2$$
 auf $U := \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$.

Auf U eingeschränkt ist f eine
indeutig, die Wertemenge ist die aufgeschnittene komplexe Ebene

$$f(U) = \{ w \in \mathbb{C} : w = re^{i\varphi} \text{ mit } 0 < r < \infty, -\pi < \varphi < \pi \}$$
.

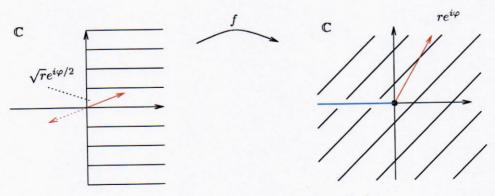


Abbildung 10.6. Zur Hauptwert der Wurzelfunktion.

Zur Eineindeutigkeit beachte man: Ist

$$w = re^{i\varphi} \; , \quad r > 0 \; , \quad -\pi < \varphi < \pi \; , \quad$$

$$z = \rho e^{i\theta} \;, \quad \rho > 0 \;, \qquad \qquad -\frac{\pi}{2} < \theta < \frac{\pi}{2} \;, \label{eq:zeta}$$

und ist $w = z^2$, so folgt

$$r^{iarphi} =
ho^2 e^{i2 heta} \; , \quad ext{d.h.} \quad
ho = \sqrt{r} \; , \; \; heta = rac{arphi}{2} \; .$$

Dabei ist θ eindeutig bestimmt durch die Definition von U, die Lösung $\theta = \frac{\varphi}{2} + \pi$ ist nicht zulässig.

Für $w=re^{i\varphi}$ aus der aufgeschnittenen komplexen Ebene ist die Umkehrfunktion von $f(z)=z^2$ also gegeben durch

$$f^{-1}(w) = \sqrt{r}e^{i\frac{\varphi}{2}} .$$

Der so definierte Wert $f^{-1}(w)$ heißt der Hauptwert von \sqrt{w} , der nicht für w=0 und nicht für negative reelle w definiert ist.

iii) Es sei

$$f(z) = e^z$$
 auf $U = \mathbb{C}$.

Dann ist $f(U) = \mathbb{C} - \{0\}$. Mit

$$\begin{split} w &= r e^{i\varphi} \;, \quad r > 0 \;, \quad 0 \le \varphi < 2\pi \;, \\ z &= x + iy \end{split}$$

folgt aus $w = re^{i\varphi} = f(z)$

$$re^{i\varphi}=e^xe^{iy}$$
,

also

$$x = \ln(r) = \ln(|w|), \quad r > 0,$$

$$y = \varphi + 2\pi k, \quad k \in \mathbb{Z}, \quad 0 \le \varphi < 2\pi.$$

Alle Punkte der Form $z_k = \ln(r) + i(\varphi + 2\pi k)$, $k \in \mathbb{Z}$, werden unter f auf $w = re^{i\varphi}$ abgebildet, f ist nicht eineindeutig, jeder Streifen der Breite 2π in der z-Ebene parallel zur reellen Achse wird auf die w-Ebene ohne w = 0 abgebildet.

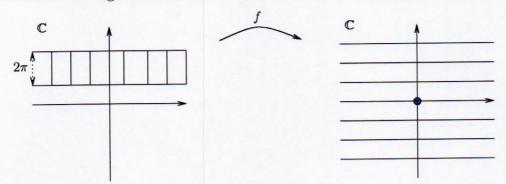


Abbildung 10.7. Zum komplexen Logarithmus.

Die Menge der Urbilder von $w=re^{i\varphi},\,r>0,\,0\leq\varphi<2\pi,$ heißt komplexer Logarithmus von w:

$$\{\ln(w)\} = \{z \in \mathbb{C} : z = \ln(r) + i(\varphi + 2\pi k), k \in \mathbb{Z}\}.$$

Zu beachten ist: $\{\ln(w)\}$ ist keine Funktion, es ist wieder eine Einschränkung des Definitionsbereichs notwendig. Dazu betrachtet man

$$f(z) = e^z$$
 auf $U := \{ z \in \mathbb{C} : -\pi < \text{Im } z < \pi \}$.

Dann ist f(z) eineindeutig auf U mit f(U) der längs der negativen reellen Achse aufgeschnittenen komplexen Ebene.

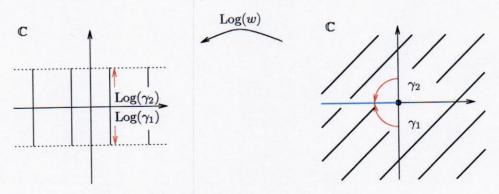


Abbildung 10.8. Zum "Sprung" des Logarithmus.

Die Funktion $f^{-1}(w) = \ln(r) + i\varphi$ für $w = re^{i\varphi}, r > 0, -\pi < \varphi < \pi$ heißt der Hauptwert Log(w) des Logarithmus von w.

Zu beachten ist der in der Abbildung angedeutete Sprung!

Bemerkungen.

- a) Für reelles $w \in \mathbb{R}$, w > 0, ist Log(w) = ln(w).
- b) Es ist $Log(i) = i\pi/2$.
- iv) Mit Hilfe von Logarithmus und Exponentialfunktion lassen sich allgemeine Potenzen z^a definieren. Dazu sei $a\in\mathbb{C}$ fixiert. Die a^{te} Potenz von $w\in\mathbb{C},\,w\neq0$ ist

$$\begin{split} \{w^a\} := \{z \in \mathbb{C} : \ z = e^{a[\ln(|w|) + i(\arg w + 2\pi k)]}, \ k \in \mathbb{Z}\} \\ = \{z \in \mathbb{C} : \ z = e^{a\log(w)}\} \ . \end{split}$$

Wieder ist $\{w^a\}$ keine Funktion, der Hauptwert ist gegeben durch

$$w^a = e^{a \operatorname{Log}(w)} = e^{a [\ln(w) + i \operatorname{arg} w]} \;, \quad -\pi < \operatorname{arg} w < \pi \;.$$

Beispiele.

- a) Ist w reell, w > 0, so ist der Hauptwert (wie in der reellen Definition) $w^a = e^{a \text{Log(w)}} = e^{a \ln(w)}$
- b) Es ist $\{i^4\}=\left\{e^{4i((\pi/2)+2\pi k)},\ k\in\mathbb{Z}\right\}=\left\{e^{i(2\pi+8\pi k)},\ k\in\mathbb{Z}\right\}=\left\{1\right\}.$
- c) Es ist (reell) $\{i^i\} = \{e^{ii((\pi/2)+2\pi k)}, \ k \in \mathbb{Z}\} = \{e^{-((\pi/2)+2\pi k)}, \ k \in \mathbb{Z}\} \ .$
- d) Es ist (vgl. Abbildung 10.9)

$$\begin{aligned} \{i^{\frac{1}{2}}\} &= \left\{e^{\frac{1}{2}i((\pi/2) + 2\pi k)}, \ k \in \mathbb{Z}\right\} = \left\{e^{i((\pi/4) + \pi k)}, \ k \in \mathbb{Z}\right\} \\ &= \left\{\frac{1}{2}\sqrt{2}(1+i), -\frac{1}{2}\sqrt{2}(1+i)\right\}. \end{aligned}$$

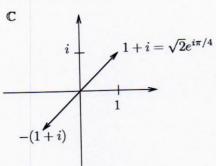


Abbildung 10.9. $i^{1/2}$.