Analytical Methods for PDEs (SoSe 2018)

Hometask N 2

Ex. 6 Solve the following Cauchy problems:
(a) $\quad u_{t t}^{\prime \prime}-4 u_{x x}^{\prime \prime}=0, \quad u(0, x)=0, \quad u_{t}^{\prime}(0, x)=\sin x$.
(b) $\quad u_{t t}^{\prime \prime}-9 u_{x x}^{\prime \prime}=0, \quad u(0, x)=e^{-x^{2}}, \quad u_{t}^{\prime}(0, x)=\frac{1}{1+x^{2}}$.

Remark: (a) if φ and ψ are odd functions then the solution of the Cauchy problem (1) satisfies the condition $\quad u(t, 0)=0 \quad$ (Dirichlet condition at $x=0$);
(b) if φ and ψ are even functions then the solution of the Cauchy problem (1) satisfies the condition $u_{x}^{\prime}(t, 0)=0$ (Neumann condition at $x=0$).

Here

$$
\left\{\begin{array}{lc}
u_{t t}^{\prime \prime}-a^{2} u_{x x}^{\prime \prime}=0, & x \in \mathbb{R}, \quad t>0, \tag{1}\\
u(0, x)=\varphi(x), & x \in \mathbb{R}, \\
u_{t}^{\prime}(0, x)=\psi(x), & x \in \mathbb{R}
\end{array}\right.
$$

Vibrations of a half-infinite string ($a=1,0 \leqslant x<\infty$) can be described by the following initial-boundary value problem (with some α, β, ν):

$$
\left\{\begin{array}{l}
u_{t t}^{\prime \prime}-u_{x x}^{\prime \prime}=0, \quad x \in(0, \infty), \quad t>0, \tag{2}\\
u(0, x)=\phi(x), \quad x \in(0, \infty), \\
u_{t}^{\prime}(0, x)=\psi(x), \quad x \in(0, \infty) \\
\alpha u(t, 0)+\beta u_{x}^{\prime}(t, 0)=\nu(t)
\end{array}\right.
$$

In particular, the case of a string with the fixed end corresponds to the Dirichlet boundary condition $u(t, 0)=0$; the case of a string with the free end - to the Neumann boundary condition $u_{x}^{\prime}(t, 0)=0$.

Ex. 7 Draw the profile of a half-infinite string at the moments of time $t_{0}=0$, $t_{1}=0,5, t_{2}=1, t_{3}=2, t_{4}=3, t_{5}=3,5 . t_{6}=4, t_{7}=4,5, t_{8}=5$, $t_{9}=6$ for the following cases:
(a) $\quad \phi$ is given below, $\quad \psi \equiv 0, \quad u(t, 0)=0$;
(b) $\quad \phi$ is given below, $\quad \psi \equiv 0, \quad u_{x}^{\prime}(t, 0)=0$;
(c) $\quad \phi \equiv 0, \quad \psi$ is given below, $\quad u(t, 0)=0$;
(d) $\quad \phi \equiv 0, \quad \psi$ is given below, $\quad u_{x}^{\prime}(t, 0)=0$;

Hint: Reduce the considered initial-boundary value problems to the appropriate Cauchy problems for an infinite string by extending the initial conditions in a suitable way (making them odd or even functions).

Ex. 8 Solve the following initial-boundary value problems $(t \geqslant 0, x \geqslant 0)$:
(a) $\quad u_{t t}^{\prime \prime}-u_{x x}^{\prime \prime}=0, \quad u(0, x)=x^{3}, \quad u_{t}^{\prime}(0, x)=\cos x, \quad u_{x}^{\prime}(t, 0)=0$.
(b) $\quad u_{t t}^{\prime \prime}-16 u_{x x}^{\prime \prime}=0, \quad u(0, x)=0, \quad u_{t}^{\prime}(0, x)=x e^{-x^{2}}, \quad u(t, 0)=0$.

