Analytical Methods for PDEs (SoSe 2018)

Hometask N 5

Ex. 14 Let $\Omega \subset \mathbb{R}^{2}$ be the circle of radius R with center at the origin. Solve the following boundary-value problems:
(a) $\quad \Delta u=0$ in $\Omega, \quad u(x, y)=A+B x$ on $\partial \Omega$.
(b) $\quad \Delta u=0$ in $\Omega, \quad u(x, y)=A x y$ on $\partial \Omega$.
(c) $\Delta u=0$ in $\Omega,\left.\quad \frac{\partial u}{\partial r}\right|_{r=R}=A \cos \varphi$.

Ex. 15 Let $\Omega \subset \mathbb{R}^{2}$ be the complement of the circle of radius 1 with center at the origin. Solve the following boundary-value problems:
(a) $\Delta u=0$ in $\Omega,\left.\quad u\right|_{r=1}=\cos ^{2} \varphi$.
(b) $\Delta u=0$ in $\Omega, \quad u(x, y)=A x y$ on $\partial \Omega$.
(c) $\quad \Delta u=0$ in $\Omega,\left.\quad \frac{\partial u}{\partial r}\right|_{r=1}=A \cos \varphi$.

Ex. 16 Let $\Omega \subset \mathbb{R}^{2}$ be the ring between circles with radius 1 and 2 with center at the origin. Solve the following boundary-value problems:
(a) $\Delta u=0$ in $\Omega,\left.\quad u\right|_{r=1}=u_{1} \equiv$ const, $\left.\quad u\right|_{r=2}=u_{2} \equiv$ const.
(b) $\quad \Delta u=0$ in $\Omega,\left.\quad \frac{\partial u}{\partial r}\right|_{r=1}=0,\left.\quad u\right|_{r=2}=\cos \varphi$.
(c) $\quad \Delta u=0$ in $\Omega,\left.\quad u\right|_{r=1}=0,\left.\quad \frac{\partial u}{\partial r}\right|_{r=2}=A \sin 2 \varphi$.

Ex. 17 Let $\Omega \subset \mathbb{R}^{2}$ be the sector $0<r<R, 0<\varphi<l$. Solve the following boundary-value problems for the Laplace equation in Ω :
(a) $\quad l:=\frac{\pi}{3}, \quad u(r, 0)=u(r, \pi / 3)=0, \quad u(R, \varphi)=\sin 6 \varphi$.
(b) $\quad l:=\frac{\pi}{2}, \quad u(r, 0)=u(r, \pi / 2)=0, \quad u(R, \varphi)=\varphi$.

$$
\text { (c) } \quad l:=\frac{\pi}{4}, \quad \frac{\partial u}{\partial \varphi}(r, 0)=u(r, \pi / 4)=0, \quad u(R, \varphi)=\cos 2 \varphi \text {. }
$$

Ex. 18 Let $\Omega \subset \mathbb{R}^{2}$ be the circle of radius r_{0} with center at the origin. Solve the following initial-boundary value problem for the wave equation:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=a^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right), \quad(x, y) \in \Omega, t>0 \\
& \left.u\right|_{r=r_{0}}=0 \\
& \left.u\right|_{t=0}=J_{0}\left(\frac{\mu}{r_{0}} r\right), \quad \mu:=\mu_{0}^{0} \text { is the first zero of } J_{0}, \\
& \left.\frac{\partial u}{\partial t}\right|_{t=0}=0
\end{aligned}
$$

Ex. 19 Let $\Omega \subset \mathbb{R}^{2}$ be the circle of radius 1 with center at the origin. Solve the following boundary value problem for the Helmholtz equation:

$$
\begin{aligned}
& \Delta u+4 u=0, \quad \text { in } \Omega, \\
& \left.u\right|_{r=1}=11 \sin 3 \varphi .
\end{aligned}
$$

