

Analytical Methods for PDEs (SoSe 2018)

Hometask N 5

- **Ex. 14** Let $\Omega \subset \mathbb{R}^2$ be the circle of radius R with center at the origin. Solve the following boundary-value problems:
 - (a) $\Delta u = 0$ in Ω , u(x, y) = A + Bx on $\partial \Omega$.
 - (b) $\Delta u = 0$ in Ω , u(x, y) = Axy on $\partial \Omega$.
 - (c) $\Delta u = 0$ in Ω , $\frac{\partial u}{\partial r}\Big|_{r=R} = A \cos \varphi$.
- **Ex. 15** Let $\Omega \subset \mathbb{R}^2$ be the complement of the circle of radius 1 with center at the origin. Solve the following boundary-value problems:
 - (a) $\Delta u = 0$ in Ω , $u\Big|_{r=1} = \cos^2 \varphi$.
 - (b) $\Delta u = 0$ in Ω , u(x, y) = Axy on $\partial \Omega$.
 - (c) $\Delta u = 0$ in Ω , $\frac{\partial u}{\partial r}\Big|_{r=1} = A \cos \varphi$.
- **Ex. 16** Let $\Omega \subset \mathbb{R}^2$ be the ring between circles with radius 1 and 2 with center at the origin. Solve the following boundary-value problems:
 - (a) $\Delta u = 0$ in Ω , $u|_{r=1} = u_1 \equiv \text{const}, \quad u|_{r=2} = u_2 \equiv \text{const}.$
 - (b) $\Delta u = 0$ in Ω , $\frac{\partial u}{\partial r}\Big|_{r=1} = 0$, $u\Big|_{r=2} = \cos \varphi$.
 - (c) $\Delta u = 0$ in Ω , $u\Big|_{r=1} = 0$, $\frac{\partial u}{\partial r}\Big|_{r=2} = A\sin 2\varphi$.
- **Ex. 17** Let $\Omega \subset \mathbb{R}^2$ be the sector 0 < r < R, $0 < \varphi < l$. Solve the following boundary-value problems for the Laplace equation in Ω :

(a)
$$l := \frac{\pi}{3}, \quad u(r,0) = u(r,\pi/3) = 0, \quad u(R,\varphi) = \sin 6\varphi.$$

(b) $l := \frac{\pi}{2}, \quad u(r,0) = u(r,\pi/2) = 0, \quad u(R,\varphi) = \varphi.$

(c)
$$l := \frac{\pi}{4}, \quad \frac{\partial u}{\partial \varphi}(r,0) = u(r,\pi/4) = 0, \quad u(R,\varphi) = \cos 2\varphi.$$

Ex. 18 Let $\Omega \subset \mathbb{R}^2$ be the circle of radius r_0 with center at the origin. Solve the following initial-boundary value problem for the wave equation:

$$\begin{split} &\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \quad (x, y) \in \Omega, \ t > 0 \\ &u\big|_{r=r_0} = 0, \\ &u\big|_{t=0} = J_0 \left(\frac{\mu}{r_0} r \right), \quad \mu := \mu_0^0 \text{ is the first zero of } J_0, \\ &\frac{\partial u}{\partial t}\big|_{t=0} = 0. \end{split}$$

Ex. 19 Let $\Omega \subset \mathbb{R}^2$ be the circle of radius 1 with center at the origin. Solve the following boundary value problem for the Helmholtz equation:

$$\Delta u + 4u = 0, \quad \text{in } \Omega,$$
$$u\Big|_{r=1} = 11 \sin 3\varphi.$$