UNIVERSITÄT DES SAARLANDES

Fakultät für Mathematik und Informatik

Fachrichtung Mathematik

PD Dr. Yana Kinderknecht

Analytical Methods for PDEs (SoSe 2018)

Hometask N 10

Ex. 36 Sei u(x,y) die charakteristische Funktion des Quadrats $(-1,1)\times(-1,1)\subset\mathbb{R}^2$. Finden Sie die schwache Ableitung $\frac{\partial^2}{\partial x \partial y}$ von u.

Ex. 37 Bestimmen Sie Fundamentallösungen der folgenden Operatoren:

- a) $L = \frac{d^2}{dt^2} + 4\frac{d}{dt};$
- b) $L = \frac{d^2}{dt^2} 4\frac{d}{dt} + 1;$
- c) $L = \frac{d^2}{dt^2} + 3\frac{d}{dt} + 2;$
- d) $L = \frac{d^2}{dt^2} 4\frac{d}{dt} + 5;$
- e) $L = \frac{d^3}{dt^3} a^3$, a > 0;
- f) $L = \frac{d^3}{dt^3} 3\frac{d^2}{dt^2} + 2\frac{d}{dt}$;
- g) $L = \frac{d^4}{dt^4} a^4, \quad a > 0;$
- h) $L = \frac{d^4}{dt^4} 2\frac{d^2}{dt^2} + 1;$

Ex. 38 Finden Sie eine Fundamentallösung $\mathcal{E}(x,y) \in \mathcal{D}'(\mathbb{R}^2)$ des Operators

$$L = \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}$$

mit der Eigenschaft, dass $\mathcal{E}(x,y) = 0$ für y < 0.

Ex. 39 Finden Sie eine Fundamentallösung $\mathcal{E}(x) \in \mathcal{D}'(\mathbb{R}^n)$ des Operators

$$L = a^2 \Delta, \quad a > 0.$$

Ex. 40 Zeigen Sie, dass

$$\mathcal{E}(x) := -\frac{e^{ik\|x\|}}{4\pi\|x\|}, \quad \overline{\mathcal{E}}(x) := -\frac{e^{-ik\|x\|}}{4\pi\|x\|}, \quad \mathcal{E}_o(x) := -\frac{\cos(k\|x\|)}{4\pi\|x\|}$$

Fundamentallösungen des Helmholtz-Operators $\Delta + k^2$ in \mathbb{R}^3 sind (k > 0). *Hinweis:* Die Fundamentallösung des Laplace-Operators ist schon bekannt.

Ex. 41 Zeigen Sie, dass

$$\mathcal{E}(t,x) = \frac{\theta(t)}{\sqrt{4\pi t a^2}} e^{-\frac{(x+bt)^2}{4a^2t} + ct}$$

eine Fundamentallösung des Operators L ist, wobei

$$L = \frac{\partial}{\partial t} - a^2 \frac{\partial^2}{\partial x^2} - b \frac{\partial}{\partial x} - c.$$

Ex. 42 Zeigen Sie, dass

$$\mathcal{E}(t,x) = -\frac{i\theta(t)}{\sqrt{4\pi t}} e^{i\left(\frac{\|x\|^2}{4t} - \frac{\pi}{4}\right)}$$

eine Fundamentallösung des Schrödinger-Operators $L=i\frac{\partial}{\partial t}+\frac{\partial^2}{\partial x^2}$ ist. Hinweis: Benutze die Gleichheit

$$\int_{0}^{\infty} e^{iz^2} dz = \frac{\sqrt{\pi}}{2} e^{i\pi/4}.$$

Ex. 43 Sei L_x ein linearer Differentialoperator der Variablen $x \in \mathbb{R}$. Sei $\mathcal{E}(t,x)$ eine Fundamentallösung des Operators $\mathbb{L} := \frac{\partial}{\partial t} + L_x$. Zeigen Sie, dass

$$\mathbb{E}(t,x) := \frac{t^{k-1}}{\Gamma(k)} \mathcal{E}(t,x)$$

eine Fundamentallösung des Operators \mathbb{L}^k ist $(k \in \mathbb{N})$.

Ex. 44 Für welche $a \in \mathbb{R}$ ist die Funktion

$$u(t,x) := \begin{cases} 1, & t \leq ax, \\ 0, & t > ax, \end{cases} \qquad (t,x) \in \mathbb{R}^2,$$

eine schwache Lösung der Gleichung $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}$?

Ex. 45 Lösen Sie die folgenden Anfangswertprobleme mittels der Methode des Einbeziehens von Anfangsbedingungen in Momentanstörungen:

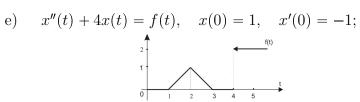
a)
$$x''(t) + x(t) = 2\cos t$$
, $x(0) = 0$, $x'(0) = -2$;

b)
$$x''(t) + 2x'(t) = t \sin t$$
, $x(0) = 0$, $x'(0) = 0$;

c)
$$x''(t) + 3x'(t) = e^t$$
, $x(0) = x'(0) = 1$;

d)
$$x^{(4)}(t) - x''(t) = \cos t$$
, $x'(0) = -1$, $x(0) = x''(0) = x'''(0) = 0$;

e)
$$x''(t) + 4x(t) = f(t), \quad x(0) = 1, \quad x'(0) = -1;$$



f)
$$x''(t) - x(t) = \frac{1}{1+e^t}, \quad x(0) = -2, \quad x'(0) = 1;$$

g)
$$x''(t) + 2x'(t) + x(t) = \frac{e^{-t}}{(1+t)^2} + t$$
, $x(0) = 0$, $x'(0) = -1$;

h)
$$x''(t) - x'(t) = \frac{e^{2t}}{(1+e^t)^2}, \quad x(0) = 0, \quad x'(0) = 1;$$