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Chapter 1

Introduction

1.1 A priori and a posteriori conceptions.

In the 20th century, the theory of differential equations was mainly developed in the
context of
A Priori Conception
In it, for a problem

Au =f (1.1)
we must establish:

e I. Existence and uniqueness of u (mathematical correctness);

e II. Regularity (extra properties of u).

In the a priori conception, mathematical analysis of PDE’s is
concentrated on the EXACT solution u and its QUALITATIVE
PROPERTIES.

However, quantitative analysis of solutions to PDE’s generates new mathematical
problems that are often quite different from those in I and II.

Explicitly, exact solutions of real-life models are known in excep-
tional cases.

Therefore, approximation methods offer the only way of
QUANTITATIVE analysis of PDE’s.

5
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”Classical” way:
We study projections of (1.1) to sequences of finite-dimensional spaces

Apup, = f, isaprojectionof Au = fonV, CV, (1.2)

compute approximations u;, numerically and try to justify their convergence to w.
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In other words, in the a priori conception mathematical analysis
of errors is mainly reduced to the question: HOW TO APPROX-
IMATE EXACT SOLUTION ”IN PRINCIPLE”.

Classical approximation theory (60’-80’) says that
lu — uplly < Ch*, C >0,k>0 (1.3)
provided that
e (a) u has an extra regularity;
e (b) all V}, are "regular” in some sense;
e (c) uy is the exact finite dimensional solution.

In practice, (a), (b), and (c) are often violated.

Even if they are satisfied, the constant C is either unknown or highly
overestimated. In spite of that, it was often (implicitly) assumed that if
(I) and (II) have been positively solved and a priori convergence estimate
has been established then the model is valid for numerical analysis. In
other words, a priori conception views Numerical Experiment as the LAST
(and ”technical”) step more related to engineers and codemakers than to
mathematicians.

Another widely speared ”belief”, is that results obtained by combining
standard blocks (codes) give almost exact solutions provided that the di-
mensionality of the corresponding discrete problems is sufficiently large.
Numerous standard codes and program complexes produce such results
and represent them in a nice graphical form. We are suggested to believe
in these pictures/numbers. Should we always believe?
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The general principle of scientific objectivity suggests that the mathe-
matical experiment must obey the same strict authenticity rules as those
commonly accepted in natural sciences and we need to answer the question:

WHAT IS THE ACCURACY OF MATHEMATICAL
EXPERIMENTS?

THEN WE WOULD KNOW WHAT THE DATA COM-
PUTED INDEED MEAN.

To understand the importance of this question the reader is offered to solve the
problem below.
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A ”baby” coupled problem. Find z satisfying the differential equation

2" =97 —102=0, z=z(x), z€]|0,8],
2(0) =1, 2'(0) = an—1 — aw,

where a is a solution of the system Ba = f of the dimensionality N

™

2 a2

bij = QS;Sj / (sin(if) sin(j&) + sin(i + j2)£) d¢,
' +00 i k

i,j=12.N, fi=@{+1"% S=) (i—i—l) .

k=0

Task 1.1.1 For N = 10,50, 100, 200 find z(8) analytically and compare with numeri-
cal results obtained by computing the sums numerically, finding definite integrals with
help of quadratures formulas, solving the system of linear simultaneous equations by a

numerical method, and integrating the differential equation by a certain (e.g., Euler)
method.
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Errors arising in quantitative analysis of PDE’s

U  Physical object/process

U
€1 — ’ Error of a model ‘
\

u  Differential model Au=f
U
€9 — ’Approximation error‘
U

up  Discrete model Ahruy, = f,
Y
€3 — ’ Computational error‘
Y

u;, Numerical solution Al = fy + e
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MODELING ERROR

Let U be a physical value that characterizes some process and u be a respective value
obtained from the mathematical model. Then the quantity

€1 = |U - 11‘
is an error of the mathematical model.

Mathematical model always presents an ”abridged” version of a
physical object.
Therefore, ¢; > 0.

TYPICAL SOURCES OF MODELING ERRORS
e (a) "Second order” phenomena are neglected in a mathematical model.
e (b) Problem data are defined with an uncertainty.

e (c) Dimension reduction is used to simplify a model.
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APPROXIMATION ERRORS

Let uy be a solution on a mesh of the size h. Then, u; encompasses the approxima-
tion error
€3 = |u — uy|.

Classical error control theory is mainly focused on approximation errors.
In the next section, we give a concise overview of the a priori asymptotic
methods in error estimation.

NUMERICAL ERRORS

Finite—dimensional problems are also solved approximately, so that instead
of u;, we obtain u;. The quantity

€3 = |up — uj, |

shows an error of the numerical algorithm performed with a concrete com-
puter. This error includes

e roundoff errors,
® errors arising in iteration processes and in numerical integration,

e errors caused by possible defects in computer codes.

Roundoff errors. Numbers in a computer are presented in a

i i i .
x:f(al+q—22—|—...—|-q—i)q€, is < q.
These numbers form the set R, C R. ¢ is the base of the representation,
¢ € [0, (5] is the power.

Operations with plane vectors ARE RESTRICTED to those associated
with the dots marked! Certainly, in modern computers the amount of dots
is much bigger, but the principal structure is the same.
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Figure 1.1:

The set quk X Rqék

13
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Example.

k
a

3,
1
< +0+0>*25, b:<§+0+0>*21

1 1
b= <0+§+0>*22¢ <0+0+—) £2° = (0+ 0+ 0) %2

DO | —

2

Definition 1.1.1 The smallest floating point number which being added to 1 gives a
quantity other than 1 is called
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0.3

0.25

0.2

0.15

0.1

0.05
0

Numerical integration

n/2 1 5

/ f(X)dX = Z Cif(Xi)h = Z Cif(Xi)h + Cn/2+1f(Xn/2+1)h +...
b

i=1 i=1
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Two principal classes of problems in Mathematical Modeling

I. Computations on the basis of a reliable (certified) model.

Here modeling error ¢ is assumed to be small and uj gives a desired information
on U.

Then

U —ug| < e +|e+e) (1.4)

I1. Verification of a mathematical model.
Here physical data U and numerical data u;j are compared to judge on the quality
of a mathematical model

leal < MU — |l +[e2 + es). (1.5)

Thus, two major problems of mathematical modeling, namely, reliable computer
simulation, and verification of mathematical models by comparing physical
and mathematical experiments, require efficient methods able to provide COM-

PUTABLE AND REALISTIC estimates of [e; + 3
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SUMMARY: Reliable QUANTITATIVE ANALYSIS of PDE’s cannot be per-
formed without solving the following

MAIN ERROR CONTROL PROBLEM

Given the data (coefficients,a domain, boundary conditions) of a
boundary-value problem and a function v from the corresponding
(energy) space V', compute the radii r; and r, of two balls B(v, )
and B(v,r;) centered at v such that

u¢ B(v,ry) and  wu € B(v,r9). (1.6)

We say that a method used to solve the above problem is sharp if one can find r; and
ro such that ro — ry < e for any given e.
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If we wish to QUALITATIVELY analyze models based on PDE’s then in addition
to problems (I) and (II) we need to solve

e Problem III. Find computable estimates for NEIGHBORHOODS of a
generalized solution u.

If neighborhoods are generated by the topology of energy (Banach) space V, then
we need to have estimates

M (v,D) < flu—v|]ly <M (v,D), VveYV, (1.7)

where D denotes the set of known data and the functionals 9t (error majorant) and
Mt (error minorant) which must be

e directly computable;
e valid for any admissible approximations;

e do not attract special (e.g. extra regularity) properties of u or u,.

We call (1.7) guaranteed A POSTERIORI ESTIMATES or DEVIATION ESTIMATES.
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regularity estimates

deviation estimates

Physical model

Y

Mathematical model

¥

Existence

PN

19

Deviation estimates Regularity estimates

In a sense Problem III is opposite to the regularity analysis.
In spite of its clear practical meaning, it is much less investigated

than existence (I) and regularity (II).
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1.2 Mathematical background and notation

1.2.1 Vectors and tensors

By R? and M %> we denote the spaces of real d-dimensional vectors and d x d matrices,
respectively. The scalar product of vectors is denoted by -, and for the product of
tensors we use the symbol :, i.e.,

U-v = uv;, T .0 = Tij044,

where summation (from 1 to d) over repeated indices is implied. The norms of vectors
and tensors are defined as follows:

la| :=+/a - a, lo| :==+/o: 0.

Henceforth, the symbol := means ”equals by definition”. The multiplication of a
matrix A € M%7 and a vector b € R? is the vector, which we denote Ad. Matrixes
are usually denoted by capital letters (matrixes associated with stresses and strains
are denoted by Greek letters o and ). Any tensor 7 is decomposed into the deviatoric
part 7° and the trace tr 7 := 7;;, so that 7 := 7" + Cll]l tr 7, where I is the unit tensor.
It is easy to check that

T:I=trr, 71°:1=0, (1.8)
1
7|2 = |TD|2+C—itr72, (1.9)
so that 7 is decomposed into two parts (which sometimes are called deviatorical and

spherical).
We will use the algebraic Young’s inequality

1
2ab5§ﬁa2+-5b{ (1.10)

which is valid for any 3 > 0.
For any pair of vectors a and b and any [ > 0 we have a similar estimate

1
mpbgﬁmﬁ+gwﬁ (1.11)
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which implies the inequalities

1+

ja+b* < (1+B)|al® + 3 b, (1.12)
a4 > —— a2 — L2, (1.13)
140 &
Similarly, for a pair of tensors ¢ and 7 we have
1
21 10 < B|T]* + B\UP, (1.14)
1+
[T+ o < (1+ﬁ)|7\2+7ﬁ|0|2. (1.15)
If H is a Hilbert space with scalar product (.,.) and norm || .|| associated with the

product, then it is easy to extend (1.11)—(1.13) to the elements of H.
The inequality (1.8) is a particular form of the more general Young’s inequality

1 1 /b\” 1 1
abg—ﬁap+—<—> , -+—-=1. 1.16
p( ) P \p p P (1.16)

Another integral relation is

/curla-vdx:/a-curlvda:—/(a><n)~vds. (1.17)
T

Q Q

In the above relations, we assume that the functions are sufficiently regular so that
the corresponding volume and surface integrals exist.”

1.2.2 Spaces of functions

We denote a bounded connected domain in R? by Q and its boundary (which is
assumed to be Lipschitz continuous) by I'. Usually, w stands for an open subset of €.
The closure of sets is denoted by a bar and the Lebesgue measure of a set w by the
symbol |w].
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By LP(w) we denote the space of functions summable with power p with norm

1/p

lpw = /\w\pdfv
w

Also, we use the simplified notation

[

lwlly = llwllpo;

The vector-valued functions with components that are square summable in 2 form
the Hilbert space L*(2,R?). Analogously, L?(€2, M9*9) is the Hilbert space of tensor-
valued functions (sometimes we use the special notation ¥ for this space). If tensor-

valued functions are assumed to be symmetric, then we write M9*? (and ¥, instead
of L*(Q, M%), For v € L*(,RY) and 7 € L*(2, M?*?) the norms are defined by

the relations
Jol? = / o2dz and [lo]? == / odz.

Since no confusion may arise, we denote the norm of L*(2) and the norm of the space
L*(Q,RY) by || - ||. The space of measurable essentially bounded functions is denoted
by L>°(Q2). It is equipped with the norm

|t]| 0.0 = esssup |u(z)].
zef

By C*°(€2) we denote the space of all infinitely differentiable functions with compact
supports in 2. The spaces of k-times differentiable scalar- and vector-valued functions

are denoted by C*(Q2) and C*(£2, R?), respectively; 5”“(9) is the subspace of C*(€2) that
contains functions vanishing at the boundary; P*(2) denotes the set of polynomial
functions defined in Q C R?, i.e., v € P¥(Q) if

where o := (o, ..., qq) is the so-called multi-index,

‘a‘ :041—|—052—|—...+Oéd, Qo = Qqy,...ay>
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and 2% = x®x®*? ... g™,

For partial derivatives we keep the standard notation and write
of
8@-

Usually, we understood them in a generalized sense: a function g = f; is called the
generalized derivative of f € L'(Q) with respect to the z; if it satisfies the relation

or f,i .

/ fwdr = —/ gwdz, vw € Cj(9). (1.18)
0 0

Generalized derivatives of higher orders are defined by similar integral relations.
By {¢}}s we denote the mean value of a function g on 9, i.e.,

1
{g]}s = ms/gdl’

and gs := g — {g}} 5. The functions with zero mean form the space

~

L2 :={q€ Q| faho=0}.

The space H(Q,div) is a subspace of L*(Q, R?) that contains vector-valued func-
tions with square-summable divergence, and H (€2, Div ) is a subspace of ¥ that con-
tains tensor-valued functions with square-summable divergence, i.e.,

H(Q,div) = {v e L*(Q,RY) | dive:= {v;;} € L*(Q)},
H(Q,Div) :={r € L*(Q,M™) | Divr := {r;;;} € L*(Q,RY)}.

Both spaces H(€2,div ) and H ({2, Div ) are Hilbert spaces endowed with scalar products
(u, ) gy = / (u-v+divudive)dz
Q
and

(0, T)piv = / (0 : 74 Divo - Div 7)dz,
0
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respectively. The norms || - ||gsy and || - ||piy are associated with the above-defined
scalar products.

Similarly, H (€2, curl) is the Hilbert space of vector-valued functions having square-
summable rotor, i.e.,

H(Q,curl) := {v € L*(Q,RY) | curlv € L*(Q)},

where curlv = ("03’2 — V3;V13 — U31;V21 — ’01,2). This space can be defined as the
closure of smooth functions with respect to the norm

1/2
Nwllews = (w3 + [[curl w]|3) ">,

The Sobolev spaces! W™?(Q) (where m and p are positive integer numbers) contain
functions summable with power p the generalized derivatives of which up to order [
belong to LP. For a function f € W™P(Q), the norm is defined as usual:

1/p

s = | [ 32 Doy o

0 |a|<m
Here a = {ay,...as} is the multi index and

dloly

D% =
ozt ... 0xy"

is the derivative of order |a/.
The Sobolev spaces with p = 2 are denoted by the letter H, i.e.,

H™(Q):={ve L*(Q) | D e L*Q), Vm: |a] <m}.

These spaces belong to the class of Hilbert spaces. A subset of H™(€)) formed by the
functions vanishing on I' is denoted by o m(8).

Introduced in S. L. Sobolev. Some Applications of Functional Analysis in Mathematical Physics, Izdt. Leningrad.
Gos. Univ., Leningrad, 1955,
English version: Translation of Mathematical Monographs, Volume 90, American Mathematical Society, Providence, RI,
1991.
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Embedding Theorems

Relationships between the Sobolev spaces and LP(€2) and C*(€2) are given by Embed-
ding Theorems.

Theorem 1.2.1 Ifp,q > 1, £ > 0 and { + 7 > . then WEP(QQ) is continuously
embedded in L1(Q2). Moreover, if { + % > %, then the embedding operator is compact.

Theorem 1.2.2 [f{ —k > %, then WEP(Q) is compactly embedded in C*(1Q).

1.2.3 Boundary traces

The functions in Sobolev spaces have counterparts on I' (and on other manifolds of
lower dimensions) that are associated with spaces of traces. Thus, there exist some
bounded operators mapping the functions defined in 2 to functions defined on the
boundary. For example, the operator » : H'(Q2) — L*T) is called the trace operator
if it satisfies the following conditions:

w=uvlr, YvelCHQ), (1.19)
12,05 (1.20)

2T < CTFHU

lvv

where ¢, is a positive constant independent of v. From these relations, we observe
that yv is a natural generalization of the trace defined for a continuous function (in
the pointwise sense). The image of ~ is a subset of L*(T'), which is the space H/?(T).
The functions from other Sobolev spaces are also known to have traces in Sobolev
spaces with fractional indices. Thus, v € £ (H*(Q2), HY/?(T')) and the space H{(f) is
the kernel of +.

Also, for any ¢ € H'?(I'), one can define a continuation operator

v € LOHY(D), H'(Q))

such that
up = w, we HY (), yw=¢  onl
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and

< cullll g - (1.21)

Using the operator 4, we define subspaces of functions vanishing on I' or on some

1l p <

part I'y of I'. Usually, such subspaces are marked by the zero subindex, e.g.,
Voi={veV | w=0aeonl},

Henceforth, we understand the boundary values of functions in the sense of traces, so
that the phrase "u = ¢ on I'” means that the trace yu of a function u defined in 2
coincides with a given function ¢ defined on I' (for the sake of simplicity, we usually
omit ~). If for two functions u and v defined in Q we say that u = v on I', then we
mean that v(u —v) =0 on I.

1.2.4 Generalized derivatives and Sobolev spaces with negative indexes

For f € L*(), the functional

dp
(fir) /fa% dx (1.22)

is linear and continuous not only for functions in C'*°(£2) but also for all functions of

the space H'(€2) (this fact follows from the density of smooth functions in F*(2) and
known theorems on the continuation of linear functionals). Such functionals can be
viewed as generalized derivatives of square summable functions. They form the space

H7YQ) dual to ]31(9) It is easy to see that the quantity

[(fi,9)]
| fil = sup —=—— (1.23)
4/961(-}1(9) HVSOHQ
p#0

is nonnegative and finite. It can be used to introduce the norm for H~1().
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1.2.5 Functional inequalities

In the subsequent chapters, we use several inequalities well known in functional anal-
ysis. For convenience of the reader, we collect and discuss them below.
First, we recall the inequality

ja-b] < (Zdja)

1=1

Q=

d o
(2:mw> , (1.2

i=1
where é + é = 1 and a,b € R% It is known as the discrete Holder inequality. The
Holder inequality in functional form is as follows:

/ wvdr < ||ul|a.0llv]o .0 (1.25)
Q

Let u and v be two functions in L*(£2). Then

/ (u 4 v)%dx = / w(u +v)* tdr + / v(u4v)* dr <
0 0 0

1/0/ 1/0/
<t ([ e ) ol ([ oot =
{ Q

(e
=uwm@+nﬂmm([ku+ww-”>

and we arrive at the Minkovski inequality

(lju+vwmjwagum

For the functions in Ff 1(Q2), we have the Friedrichs inequality

where Cpq is a positive constant independent of w. It is not difficult to observe that
the constant in (1.27) satisfies the relation

1
—— = A\g = inf M (1.28)
Cra = e Tl
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Let Q c Q. For any w € ;[1(9), we can define W = w in Q and w(z) = 0 for any
z € Q\ Q. Obviously, @ € H 1(€)). Therefore,

v 1
Az inf VO
weH;éQ) @]l Cra

and we conclude that Cpg < Cpg.
Assume that

QCHZ:{SIZERd|CLZ‘<I<bZ‘, bZ—aZ:lZ}

1
Moz =7 > 5

and we obtain an explicit upper bound for Cpq.
For w € H'(Q), the Friedrichs inequality has a more general form

Then,

lwlg < o [ Vw0l + / wl?ds | | (1.20)

where C%, can be estimated from above by the quantity

1
Z%max{l,é}, where E:mretx{$|v¢-n|}

and ¢(x) is the first eigenfunction of the Laplace operator in I The reader can find
estimates of the constants in Friedrichs inequality in the books by S. Mikhlin.
For w € HY(Q), the Poincaré inequality reads

2
Jully < o 17wl + ([ wds) ). (1.30
Q
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From (1.30) it follows that

lwllo < CpalVwlla — Yw e LASQ). (1.31)
If
Q=1I, .= {SC € Rd x; € (O,lz), l; > O},

then the Poincaré inequality takes the form

Jw||f < i (ﬂ/wdaﬁ +— /;z widz. (1.32)

1T,

In continuum mechanics, of importance is the following assertion known as the
Korn’s inequality. Let 2 be an open, bounded domain with Lipschitz continuous
boundary. Then

[ (P +e@)P) do = Crallwlfon Vo HHQRY, (133
Q

where Cq is a positive constant independent of w and e(w) denotes the symmetric
part of the tensor Vw, i.e.,

( )_1 8wi+8wj
6” v _2 851:]- 8% '

It is not difficult to verify that the left-hand side of (1.33) is bounded from above
by the H'-norm of w. Thus, it represents a norm equivalent to ||.|[12.0. The kernel
of e(w) is called the space of rigid deflections and is denoted by R(Q2). If w € R(£2),
then it can be represented in the form w = wy+ wpx, where wy is a vector independent
of x and wy is a skew-symmetric tensor with coefficients independent of x. It is easy
to understand that the dimension of R({2) is finite and equals d + @.

For the functions in H1(£2), the Korn’s inequality is easy to prove. Indeed,

1
le(w)|” = Z(wm +w;ji) (wij +wj;) =
1 1
= Z(wz‘,jwi,j + wjwj; + 2w jw;;) = 5(\VW\2 + w; jw; i),
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where the summation over repeated indices is implied. Therefore, for any w € C?(Q)
we have

1 1
/ le(w) |*da 25/ (|Vw|2 + wi7jwj,z-)das =3 / <|Vw\2 — wiwj’ij>dx =
0 0 0
1

1 1
_ _/(\w\? i ) di = _/ (1V0f + fwi ) dz > 2]
2/, 2/, 2

Hence,
IVl < V2lle(w)l|  Vw e CA(Q). (1.34)

Since 5’2(9) is dense in F 1(Q), this inequality is also valid for functions in i 1(Q).
The proofs of the Korn’s inequality (1.33) are much more complicated.

1.2.6 Convex analysis

Convex sets and functions

Consider a Banach space V. A set K C V is called convex if \jv1 + Agvy € K for all
v1,v9 € K and all A\, \y € Ry such that \; + Ay = 1.
Convex hull convK is the set of all convex combinations of all the elements of K,

le.,
COHVK—{’UGV|U—Z)\Z'U¢, v; € K, Z/\Z:L /\220}

i=1 i=1
It is obvious that K = convK if and only if K is a convex set. Let K be a convex set.
A functional J : K — R is said to be convex if

J()\l’Ul + )\2’02) S /\1J(Ul) + )\QJ('UQ) (135)

for all v1,v9 € K and all A\;, Ay € R, such that \; + Ay = 1. A functional J is called

strictly convex if
J()\lvl + /\2?)2) < )\1J(’01) + /\QJ(UQ) (136)

for all vy, vy € K (such that v; # vg) and A € (0,1).
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A functional J is called concave (resp., strictly concave) if the functional (—J) is
convex (resp., strictly convex).
The functional

0 ifvekK,
e ={

+oo ifvg K

is called the characteristic functional of the set K. It is clear that it is convex if and
only if the set K is convex.

Definition 1.2.1 A functional J : V — R is called proper if J(v) > —oo for any
veV and J # +oo.

Any functional J : V' — R is characterized by two sets:

domJ :={veV|J(w) < +oo},
epiJ :={(v,a) |veV, aeR, Jv) < a}.

The first set contains elements (functions) that give finite values to J. The second one
(called supergraph or epigraph) consists of “points” (v,a) € V x R that lie “above”
the graph.

The set epiJ is convex if and only if J is a convex functional.

Proposition 1.2.1 If J is a proper convex functional, then
Voi={veV]|Jw) <a, acR}

1S CONVEL.

Operations with convex sets and functionals

Intersection of convex sets K7 and K> is a convex set K1 N K. If J; and Js are two
convex functionals defined on a convex set K then the functionals a;J; + asJy (for
ag,as € Ry) and max{.Jj, Jo} are also convex. It is worth noting that the latter fact
remains valid for any amount of convex functionals, i.e., the upper bound taken over
any set of convex functionals is a convex functional. Therefore, convex functionals are
often represented as upper bounds of affine functionals.
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By definition, the space V* consists of all linear continuous functionals on V. It is
called topologically dual to V. The value of v* € V* on v € V is denoted by (v*, v).
This product generates a duality pairing of the spaces V and V*. If V is a Banach
space, then V* can also be normed by setting

(v, v)
v¥||, = sup :
[o"l, Sup

(1.37)

Henceforth, we assume that the supremum (or infimum) of a quotient is taken with
respect to all elements of V', except for the zero element Oy .

Any affine functional defined on elements of V' has the form (v*,v) — «, where
v* e V*and a € R.

A functional space is called reflexive if it coincides with the bidual space V** (i.e., if
there exists a one-to-one mapping of V' to V** and back that preserves the metric). All
the Hilbert spaces are reflexive. The same is true for the spaces L” with 1 < p < 4o00.

The theorem of F. Riesz asserts that for Hilbert spaces, any functional v* € V* can
be written in the form of a scalar product introduced in such a space, i.e.,

(u,v) = (v*,v), Yo eV, (1.38)

where u is uniquely determined.
The functional J* : V* — R defined by the relation

JH(v) = igg{w*,w - J(v)} (1.39)

is said to be dual (or conjugate) to J.

Remark 1.2.1 If J is a smooth function that increases at infinity faster than any
linear function, then J* is the Legendre transform of J. The dual functionals were
studied by Young, Fenchel, Moreau, and Rockafellar.

The functional J* is also called polar to J.

The functional
T (0) = sup {(v",v) — J*(v")} (1.40)

v*eEV*
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is called the second conjugate to J (or bipolar). If J is a convex functional attaining
finite values, then J coincides with J**.

To illustrate the definitions of conjugate functionals, consider functionals defined
on the Euclidean space E?. In this case, V and V* consist of the same elements:
d-dimensional vectors (denoted by & and &, respectively) and the quantity (£*, &) is
given by the scalar product £* - €.

Let A = {ai;} be a positive definite matrix. We have the following pair of mutually
conjugate functionals:

1 * * 1 — * *
J(©) = 5AE-¢ and J(E) = 5ATE € (1.41)
Another example is given by the functionals
1 1 /
= —|&|1* d J(E) ==& 1.42
JE€) = —lel" and J(E) = I, (1.42)

where 1 + L = 1. If ¢ is an odd convex function, then (o(||ullv))* = ¢ (||u*|lv+).

Subdifferential

Let a functional J : V — R takes a finite value at vy € V. The functional J is called
subdifferentiable at vy if there exists an affine minorant [ such that J(vy) = l(vg). A
minorant with this property is called the exact minorant at vy.

Obviously, any affine minorant exact at vy has the form

[(v) = (v, v—vg)+J(vg), (v) < J(v), YveV.= @ v)—({(v"v)—J(vg)). (1.43)
From this relation, we see that if
J* (") < 400, (1.44)

then the quantity (v*,vy) — J(vg) is also finite, so that such a minorant exists. The
element v* is called a subgradient of J at vg. The set of all subgradients of J at vy
forms a subdifferential, which is usually denoted by 0J(vg). It may be empty, may
contain one element or infinitely many elements.
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An important property of convex functionals follows directly from the fact that
they have an exact affine minorant at any point (at which the functional attains a
finite value). Assume that J is a convex functional and v* € 90J(vg). Then there exists
an affine minorant such that

(v, v) —a < J(v), YveV,
and (v*,v9) —a = J(vy). Hence, we obtain
J(v) — J(vg) > (v*, v — vy). (1.45)

The inequality (1.45) represents the basic incremental relation for convex functionals.
For proper convex functionals, there exists a simple criterion that enables one verify
whether or not an element v* belongs to the set 0.J(v).

Proposition 1.2.2 The following two statements are equivalent:

J(v) + J*(v*) = (v*,v) =0, (1.46)
v* e 8J(v), (1.47)
v € OJ*(v"). (1.48)

Proof. Assume that v* € 0J(v). In accordance with (1.45), we have
J(w) > J(v)+ (v w—v), YwelV.

Hence,

(v*,v) — J(v) > (v w) — J(w), YweV

and, consequently,

(v*,v) — J(v) > sup{{(v*,w) — J(w)} = J*(v*). (1.49)

weV

However, by the definition of J*, we know that for any v and v*
J*(v*) > (v, v) — J(v). (1.50)

We observe that (1.49) and (1.50) imply (1.46).
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Assume that v € 0J*(v*). Then J*(w*) > J*(v*) + (w* — v*,v), so that

(v, 0) = J*(v") = sup {(w*,0) = J (w")} = J*(v).

w*eV*

On the other hand,
(v*,v) = J*(v*) > T (v) = J(v),

and we again arrive at (1.46).
Assume that (1.46) holds. By the definition of J*, we obtain

0=J(w)+ JW) — (v,v) > J(v) = J(w) — (v*, v — w),
where w is an arbitrary element of V. Thus,
J(w)—Jw) > @w—v), YweV,

which means that J(v) + (v*,v — w) is an exact affine minorant of J (at v) and,
consequently, (1.47) holds.
The proof of (1.48) is quite similar.

Definition 1.2.2 Let J and J* be a pair of conjugate functionals. Then
Dj(v,v") = J(v) + J*(v*) — (v*,v)
is called the compound functional.

From Proposition 1.2.2 it follows that D is nonnegative and vanishes only if the
arguments satisfy (1.47) and (1.48), which are also called the duality relations and very
often represent the constitutive relations of a physical model. Compound functionals
play an important role in the a posteriori error estimation of nonlinear problems.
They serve as penalty functionals that penalize errors caused by dissatisfaction of the
duality relations. For this reason, we denote the compound functionals by the letter
D.

Note that the relation D;(v,v*) > 0 generates inequalities that can be viewed as
generalizations of the Young’s inequality (cf. (1.10)—(1.16)):

(v*,v) < J(v) + J*(v"). (1.51)
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In particular, if V and V* coincide with R? and J(v) = %, then J*(v*) = |Ua, and
(1.37) implies the estimate
v < i + v |, : Vo,v* € R (1.52)
« «

For convex functions we have the Jensen’s inequality

Proposition 1.2.3 Assume that J is a proper convex functional defined on V, v,

1=1,2,...,d, are given elements of V and \; € R, meet the condition
d
dn=1
i=1
Then

d d

This inequality also has an integral form. Let J : R — R be a convex function,
Q Cc RY v:Q — R be a continuous function, and \ : Q — R be an integrable function
that satisfies the conditions

/)\(x) de=1, Ax)>0 in .

Then, the inequality reads as follows:
J</ Az)v(x) dx) §//\(x)J(v(x))d:U. (1.54)
Q Q

Gateaux differentiation

Finally, we recall some basic notions related to the differentiation of convex functionals.

Definition 1.2.3 We say that J has a weak derivative J'(vy) € V* (at the point vy)
in the sense of Gateaux if
. J(vg + Aw) — J(vy)
lim
A—+0 A

= (J'(v),w), YweV. (1.55)
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Assume that J is differentiable in the above sense and v* € 9J(vy). Then for any
v € V we know that
J(v) — J(vg) > (v*, v — vp).
Set v = vy + Aw, where A > 0. Now, we have
J(vg + Aw) — J(vg) > A v*, w).

Therefore,
(J'(vo), w) = lim J(vg + Aw) — J(vp)

A—+0 A Z <U*’ w>,

and
(J'(vg) —v*,w) >0

for any w € V. This inequality means that, in such a case, the Gateaux derivative
coincides with v*.

1.2.7 Uniformly convex functionals

Consider a pair of topologically dual spaces ¥ and Y™ is its topologically dual coun-
terpart. Let T : Y — R be a nonnegative functional such that Y(y) = 0 if and only
if y = Oy (zero element of V).

Definition 1.2.4 A conver functional J : Y — R is called uniformly conver in
B(Oy, p) if there exists a functional T, # 0 such that for all yi,y2 € B(Oy,p) the
following inequality holds:

_|_
J <y1 y2> +Tp(y1 — y2) <

(J(y1) + J(2)) - (1.56)

| —

2

From (1.56) it is clear that any uniformly convex functional is convex in B(Oy, p).
Now we establish two important inequalities that hold for uniformly convex functionals
assuming that T, is even, i.e., T(y) = Y(—y) Vy € B(Oy,p).

Proposition 1.2.4 If J : Y — R is uniformly convex and Gdteauz differentiable in
B(Oy, p), then for any y,z € B(Oy, p) the following relations hold:

J(2) > J(y) +{(J'(y),z —y) + 2T, (2 — y) (1.57)
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and
(J'(2) = J'(y),z—y) 24T (2 —y).

Proof. By convexity and differentiability we have

T —y)+J ( . y) < I+ 5T0)
and
o+ (055 <4 (32).
Hence,

Ty(z =) < J() = I(0) = (Tw), 2~ y).
Analogously, we deduce the estimate
2T,(y —2) < J(y) = J(2) + (T(2), 2 — ).

It is easy to see that (1.58) follow from (1.59) and (1.60).

(1.58)

(1.59)

(1.60)
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1.3 Generalized formulations of BVP’s and existence of so-
lution

”Solution of a (boundary-value) problem
is a notion of indefinite meaning.”

H. Poincaré

Take the problem

Au+ f=0 in (1.61)
u = on 02 (1.62)

as the basic example.
How should we understand u?
In the 19th century the problem was understood in the classical sense:
find u € C*(Q) N C(Q) such that (1.62) is satisfied in the pointwise sense and

U +up+f=0

at ALL points of ), where u 45 is understood as the classical derivative.

Immediately the question rises: can we always find such «? Unlike for ODE’s, this
question occurred to be so difficult that the answer was found only about one hundred
years of studies that completely reconstructed the whole mathematical building. On
this way, a lot of mistakes was made and at the same time the fundament of modern
PDE was created by outstanding mathematicians as Weierstrass, Banach, Hilbert,
Poincaré, Sobolev, Courant, Ladyzhenskaya and many others.

The concept of generalized solutions to PDE’s came from Petrov-Bubnov-Galerkin
method?

N
The idea was to find uy = > aqw;
i=1

/ (Auy + flw;dx =0 Yw;, 1=1,2,..N
Q

2B. G. Galerkin. Beams and plates. Series in some questions of elastic equilibrium of beams and plates (approximate
translation of the title from Russian). Vestnik Ingenerov, St.-Peterburg, 19(1915), 897-908.
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Equivalently, it means that uy is such that the residual of the differential equation
is orthogonal to the finite dimensional space Vy formed by linearly independent w;.

The key idea of generalized solutionis a logical extension of the Petrov-Galerkin
idea, namely:

Generalized solution is a function that makes the residual orthogonal to V:

/(Au+f)wdx:0 Yw
0

Integration by parts leads to the so—called generalized formulation of the problem:
find u € H'(R2) + ug such that

/Vu-dea::/fwdx Vweﬁl(ﬁ)
0 Q

This idea admits wide extensions  to many differential problems representable in the

form: for a certain linear continuous functional f (from the space V* topologically
dual to V) find u such that

B(u,w) =< f,w > w e V.

Here a symmetric form B : V x V — R, where V is a Hilbert space, is called
V —elliptic if dcq > 0, ¢ > 0 such that

B(u,u) > ci|jul|?, YueV

| B(u,v) |< eof|ulll[o]l, Yu,veV

How to prove that such a statement is correct?

First proofs were based on

3see e.g., O. A. Ladyzhenskaya, The boundary value problems of mathematical physics. Springer-Verlag, New York,

1985
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Theorem 1.3.1 (Lax-Milgram Lemma) For a bilinear form B there exists a lin-
ear bounded operator A € L(V,V) such that

B(u,v) = (Au,v), Yu,v €V

It has an inverse A=t € L(V,V), such that |A]| < co, [|[A7Y] < -

_Cl'

Proof. 1. Take u € V' and consider a linear functional
v — B(u,v) = I(v),
where u is a given element in V. We have
| {(v) [=] B(u,v) |< ol ull[[v]]-
Therefore, [(v) € V* and there exists w € V, such that
l(v) = B(u,v) = (w,v). YveV
Set w = Au. Evidently, A:V — V is a linear operator and

B(u,v) = (Au,u), Yu,v eV
(Au, u) < coflulflv]]

Set v = Au, then
(Au, Au) < cof[ull[[v]] = cof ull]| Aull

and, consequently,
[Aul] < col|ul],

so that ||A|| < co.
2. Now we show that L = A(u) is a subspace in V' (i.e., close linear manifold). The
fact that L is a lineal follows from the linearity of A.
Note that
A(u,u) = B(u,u) > c;||ul*.

On the other hand,
(Au, u) < || Aulf[[ul]
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From here, we conclude that
[Aull > erfful, (1.63)

Next, L contains all limits of converging sequences. i.e., if w" — win V and w" € L,
then w € L.
Indeed, Ju™ € V, such that Au" = w". By (1.63), we have

m

lw™ = W™ = erf|u™ = u]

and u" is a fundamental sequence. Since V is a full space, this sequence converges to
u € V. Since A is a continuous operator, Au" — Au.

On the other hand, Au"™ = W" — w as n — oo. Thus, w = Au and, therefore,
w e L.

3. L is a subspace of V. Assume that Jug € V such that ug ¢ L.

By the Banach-Han theorem 3¢(v) € V* such that

lug) =1, l(v)=0. YveL
The functional ¢(u) admits the presentation ¢(v) = (v, w,), where w, € V. Hence,
(ug,wy) =1, (v,wy) =0 Yo e L

and
(ug,wi) =1, (Au,w,) =0 Yu eV

Set u = w,, then (Aw,,w,) = 0. On the other hand,
(Aw*vw*) Z Cle*H2

and w, = 0. But then (up,w,) = 1 is not true.

Hence, A(V') coincides with V' and, therefore A is a one-to-one mapping of V' to
V', which means that A~! exists.

In (1.63) ||Aul| > ¢1]|ul| we set v = Au. Then

1
[oll = e[ A7l or AT ]| < —[lv]l Yo eV
1

and we find that

1
AT < —
C
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Existence via LM Lemma

Consider the abstract problem: find u € V', such that
B(u,v) =1(v), Yo eV (1.64)
where [ € V*.

Theorem 1.3.2 Let B be a V-elliptic bilinear form and l € V*. Then, (1.64) has a
unique solution and

1
[l < —112]]- (1.65)
ci

Proof. There exists w € V' such that
[(v) = (v,w), YveEV
and ||u|| = ||I||. By LM Lemma, B(u,v) = (Au,v) and (1.64) is equivalent to
(Au,v) = (w,v), Yo eV

which is equivalent to Au = w or u = A~ w. Hence, u is unique. By LM Lemma, we
also conclude that

. . 1
lull = [A7 w]| < JJA7 | ]| < o el
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1.3.1 Variational approach to elliptic PDE’s

Variational approach arose in the 19th century shortly after the first PDE’s have been
presented.
It brings the origin from the Fermat theorem:

If f is a differentiable function which attains minimum at z, then
f'(z) = 0.
Later, when L. Euler created the calculus of variations he extended this principle to

1D variational problems and established that the minimizer of the integral [ g(¢,y, y)dt
0

is described by an ODE (later named Euler equation).

It is easy to show that this principle can be extended to multidimensional varia-
tional problems.

Consider the problem:

Find u(x) such that uw = uy on 02 and
J(u) = inf J(v), (1.66)

where infimum is taken over all admissible v (i.e., such that J(v) is finite) satisfying
v = ug on 0.
What is the relation that must satisfy u if

J(v) = /(%|Vv|2—fv)dsc ?
Q

Let w be an admissible (smooth) function vanishing at the boundary. Then, for
any A > 0 we have

J(u) < J(u+ Iw) = / —|IV(u+w)|” — flu+w))dx (1.67)
Q

Then
)\2
(AVu - Vw + E\VwP — Afv)dz >0

SR
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A
/(Vu -Vw — A\fv)dx > /—§|Vw\2dsc
0 0
Since A is arbitrary (1), we find that (1.67) can hold only if

/(Vu-Vw—fv)da: >0 Yw
9

Take —w instead of w, then we arrive at the conclusion that

/(Vu -Vw — fv)de =0 Yuw. (1.68)
0

In fact, we have derived the generalized formulation of a boundary-value problem
using the variational argumentation.

Regrettably, in the 19th century instead of paying attention to (1.68) they contin-
ued manipulations in order to obtain ”solutions” expressed in terms of the classical
derivatives.

Certainly, the classical statement also follows from (1.68) if we use the relations

a - Vw + wdiva = div (aw)

/Qdiv (aw)dx = /aQ(a -m)wds

and transform (1.68) as follows

/ Vu-Vwdr = —/(div Vu)wdz + / (Vu - n)wds.
0 0 o9

Since w = 0 on 0f), we arrive at

/(div Vu+ flwde =0 Yw (1.69)
0

Now, we use Du-Bois-Reymond Lemmathat says that if ¢ is continuous and

/ gwdr =0 V smooth w vanishing on 052,
)
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then g = 0.
Hence, we conclude that if the minimizer is sufficiently regular, then it is a solution

of the problem

Au+ f =0, in (1.70)
u = Uy on 0f. (1.71)



S. Repin. Lectures on A Posteriori Estimates.. University Saarbriiken, Germany, DAAD PROGRAM 2008 47

In 19th century this approach was believed to give a way of proving that the
classical solution (i.e., a function u satisfying (1.70)—(1.70)) indeed exists. This way
was strongly advocated by Reimann who offered the following simple ”existence proof”
for the case f = 0 and smooth 0€:

It is clear that for any smooth w satisfying w = ug on OS2 we have

1
J(w):ﬁ/Q\Vw\Qd:I:ZO.

Hence, values of the (energy) functional are bounded from below and we can
construct a sequence of smooth functions {ws} such that

J(ws) —  exact lower bound.

From here, it was concluded that there exists a smooth function that corre-
sponds to the minimal value of the functional.

However, shortly Karl Weierstrass discovered a logical gap in this argumentation:
a sequence of smooth functions may have a nonsmooth limit, for which the equation
Au = 0 has no sense.

In spite of that this simple "proof” have failed, it occurred to be very thought-
provoking, especially for Weierstrass, who started his fundamental studies of varia-
tional problems.

Regrettably, at that time proper understanding of existence problems was hardly
possible because one of the main parts of modern mathematics, namely, FUNC-
TIONAL ANALYSIS, did not exist. Weierstrass was one of those have created its
fundament.

Theorem 1.3.3 (Weierstrass 1) Let K be a closed bounded set R? and J be a con-
tinuous function defined on K. Then, the problem

inf J(0) (1.72)

has a solution uw € K such that J(u) gives the infimum.
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Proof. Let {v;} be a minimizing sequence, i.e., J(vy) — i?{f J. We can extract

a converging subsequence out of it (Boltzano-Weierstrass Lemma), which we denote
{vk, }. Since K is closed we know that the limit of this sequence (we denote it by u)
belongs to K. Since J is continuous, we find that

i%fJ = lim J(vg,) = J(u).

S— OO

Thus, u is the minimizer.
Regrettably this Theorem cannot be applied to our case. Our problem is as follows

AR T
inf / (5wl — fu)dr
9]

where V) = ;[1(9), ie.,
K = HY(Q).
This set is not bounded !

Theorem 1.3.4 (Weierstrass 2) Let V' be a full metric space, K C'V be a compact
set and J be a lower semicontinuous functional' defined and finite on K. Then, the
problem

gglf{ J(v) (1.73)

has a solution uw € K such that J(u) gives the infimum.

Proof. Let {v;} be a minimizing sequence, i.e., J(v;) — i?{f J. Since K is compact,
we can extract a converging subsequence out of it, which we denote {vj }. Since K
is closed we know that the limit of this sequence (we denote it by u) belongs to K.
Since J is lower semicontinuous, we find that

i%fj = lim J(vg,) > J(u).

S§— OO

4We recall that the functional is lower semicontinuous at vq if lim,,, ., J(vs) > J(vo)
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Thus, u is the minimizer.

In [Weierstrass 2] we have rather strong conditions for the set K (compactness).
Except some special cases, it is impossible to guarantee this property.

Therefore, the idea is to reduce requirements for K and strengthen for J.

Namely: we replace compactness by weak compactness.

This is a very practical change because any closed bounded subset of a Hilbert
space is weakly compact!

Theorem 1.3.5 (Weierstrass 3) Let K be weakly compact and J be a weakly lower
semicontinuous functional’ defined on K. Then, the problem

inf J(v) (1.74)

has a solution u € K such that J(u) gives the infimum.

Proof. Let {v;} be a minimizing sequence, i.e., J(vz) — i%f J. We can extract a

weakly converging subsequence
{Uk;s} —~u e K.
Since J is weakly lower semicontinuous, we find that

i%fj = lim J(vg,) > J(u).

S§— OO

Thus, u is the minimizer.
Theorem [Weierstrass 3] is more suitable for us because the set

K={weVy | Jw)<Jw)}
is bounded. Indeed,
1
SIvulP = [ fuds < ),
2 0

9wl < J(0) + 1l < J(on) + |1 Cxl| Vel
1 1
< (J(0) + 5CHIFI) + 51Vl

%i.e., the functional that possesses lower semicontinuity with respect to weakly converging sequences.
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and |[Vw|| < const.
How to verify weak lower semicontinuity ?
Hopefully, there is a simple rule:

Convex lower semicontinuous functional is weakly lower semicontinuous.

Typically, the functionals arising in variational formulations of boundary-value prob-
lems are continuous and convexity is easy to check.
We recall that J is convex if

J()\lvl + )\2?)2) S )\1J(Ul) + )\QJ(UQ), )\1 + )\2 = 1, >‘2 Z 0

Since

()\11)1 + )\21)2)2 = )\%U% + 21 Aov1v9 + )\%U%
< A20% 4 A dov? + M Avs + Aud
S >\1’U% + )\2’03

we observe that quadratic functionals are convex.

Thus, for our particular problem [Weierstrass 3] is enough to establish existence of
a minimizer and, consequently, existence of a solution to PDE.

However, the method is extendable to a much wider class of problems.

Definition 1.3.1 The functional J is called coercive on K C V if
J(vp) — +oo as  |vg|ly = +oo (1.75)
Coercivity plays an important role in establishing existence results.
Lemma 1.3.1 Let J is coercive, then the set
Vor={veV | JW)) <a}

18 bounded.
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Proof. Assume the opposite, i.e., that V,, is unbounded and it is not contained in any
ball

B(0,d) ={veV | |vllv < d}.

This means that for any integer k, one can find v, € V,, such that ||vg||y > k. Then,
b the coercivity we conclude that

J(vg) — +o0 as k — 4o0.

But this is impossible because the elements of V,, are such that the functional does
not exceed a.

Theorem 1.3.6 (Weierstrass 4) 5 Let J : K — R be convez, continuous and co-
ercive, i.e., and K be a convex closed subset of a Hilbert space V. Then the problem

inf J(w)

wekK

has a minimaizer w. If J is strictly convex, then the minimizer is unique.

Proof. Let {v;} be a minimizing sequence, i.e., J(v;) — i%f J. The set

K ={veK | Jw) <Juw)}

is bounded (see Lemma). Evidently, it is also closed. In a Hilbert space all closed
bounded sets are weakly compact. Therefore, we can extract a weakly converging
subsequence

{Uks} —u e K.

Since J is convex and continuous, it is weakly lower semicontinuous, we find that

i?(fJ = lim J(vg,) > J(u).

S§— OO

Hence u is the minimizer.

6

see, e.g., L. Ekeland and R. Temam. Convezr analysis and variational problems. North-Holland, Amsterdam, 1976.
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Assume that J is strictly convex, i.e.,
J()\lvl + )\2?)2) < )\1J(Ul) + )\QJ(UQ), )\1 + )\2 = 1, )\z > 0.

If u; and us are two different minimizers, then we immediately arrive at a contradiction

because
J()\lul + )\QUQ) < )\1J(U1) + )\QJ(UQ) = i?{f J.
Example 1.
Take J(w) = 3B(w,w)— < f,w >and let K = V.
Then
1
5B, w) = alwly, < fiw>] < [fllvllwll.
We see, that

J(w) > erflwli —IIf

v [wlly — 400 as ||wlly — 400

Since J is strictly convex and continuous we conclude that a minimizer exists
and unique.

Example 2.
Take J(w) = |, (%\Vw]p — fw)dx
and let
K = Wio(Q),
where p > 1.
This functional is convex and continuous on W1?. Its coercivity is also obvious
(indeed a|z|P — bz tends to infinity if x — —+00).
This variational problem is related to a nonlinear PDE called p — Laplacian.
Example 3 Consider the problem
J(w) = [, 5|Vwl* + k. |Vw| — fw)dx
and let
K =H'Q).
This nonlinear model is related to the so-called Bingham fluid (u, k. are positive
constants defined by viscosity and plasticity properties of the fluid).
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Task 1.3.1 Using Theorem [Weierstrass 4] prove that this variational problem has a
unique solution.
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Example 4. Consider the problem
J(w) = [, G|Vwl? — cw)dx
and let .
K={we 7Y Q) | |Vw| < k.}.
This nonlinear model is related to the so-called elasto-plastic torsion of a long bar.

Task 1.3.2 Using Theorem [Weierstrass 4] prove that this variational problem has a
unique solution.

Comment. Limits of applicability: Violations of the conditions in [Weierstrass
4] that arise in practical problems are due to:

e 1. Nonconvexity of the functional J.
e 2. Nonconvexity of K.

e 3. Nonreflexivity of V.

1. Nonconvex problems.Phase transitions in solids:

/Q (9(Vw) — fuw)dzs, g=min{g, g}

Here ¢g; and g9 are two energy functionals related to two different phases. In these
problems a minimizing sequence may (strongly) converge to nothing and ”solutions”
are presented by structures with rapidly oscillating layers.

Lower semicontinuous reqularization is required, which amounts constructing CON-

VEX or QUASICONVEX envelope of g.
2. Optimal control problems with control in the main operator part.

i%f J(n,w)
K :={(nw) | A(nw + f =0}

The set K may be nonconvex and, therefore, may be not weakly compact. Nonex-
istence arises in the form of the so called ”sliding regimes”.



S. Repin. Lectures on A Posteriori Estimates.. University Saarbriiken, Germany, DAAD PROGRAM 2008 05

Mathematically, the so-called G-closure of the operator set is required.
3. Problems with linear growth.
Typical problem is the nonparametric minimal surface problem

J(U):/Q\/lJr\Vdea:.

The functional J is defined on the Sobolev space V := W' so that we set
K :={weV | w=uyon d}.

This functional is conver and continuous on V. Since J(w) > ||[Vw|| it is coercive on
K. Also, K is convex and closed (with respect to convergence in V).

However, the variational problem may have no solution because W' is a nonre-
flezive space. For such spaces, we cannot say that CONVEXITY+BOUNDEDNESS
implies WEAK COMPACTNESS.

Practically important classes of engineering problems related to such problems are:

Capillary surface and perfect plasticity problems.

Here minimizing sequence may converge to a discontinuous function. There-
fore, special approximation methods are required.
1.3.2 PDE analysis via minimax theory

Henceforth, we will consider the problem

divAVu+ f=0 in Q,
U = Uy on 0111,
AVu -n = Fon 0,1,

AlEF < A(z)¢ - € < a3l Ve € R, for ae. z € Q,

where
uy € H'(Q), f € Ly(Q), F € Ly(0:9).
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Notation.

V= HY(Q) basic space,
Voi={veV | v=0 on 0N},
Vo+tug:={veV | v=w+uy, weVy} energyspace

A~

V= Ly(Q) extended (nonconforming) energy space,

Q = Ly(RY) extended space for fluxes

Q:=H (Q; div ) space for fluxes

Qoo ={yeQ|y- n‘am € Ly(hQ)} reduced space for fluxes.

We recall that ||¢||ay is the norm in H(£2;div ):

lallaw = (lall® + lldivgl*)* ¥q e Q

and
1/2
lql:= /Aq-qda:  qeq
Q
1/2
g = / Alq-qdz
Q
Note that,

ElEP < AN x)E- <€) VEER?, forae €

with c] = 1/62, Cy = 1/01.
In the so-called mized formulations of PDE’s the solution can is viewed as a pair
of functions that give a saddle point to the Lagrangian

Lwa)= | (w g iag. q) de — £(v),

where £(v) = [, fvdx + f329 Fuds.
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The problem of finding (u,p) € Vi + ug x @ such that
L(u,q) < L(u,p) < L(v,p) VYqeQ,YveVy+ug (1.76)

leads to is the so-called Primal Mixed Formulation
Which relations follow from (1.76)7?
Take the left-hand inequality

L(u,p+An) < L(u,p), Yn€eQ, A>0
Then
)\2
/Q (AVu-n— ?4‘177 - — AATq - n)da <0;
A
/(VU-H—A‘lq-n)dx S/ SAT s
Q Q 2
/(Vu-n—Alq-n)dx:0 Vn e Q
Q
Take the right-hand inequality
L(u,p) < L(u+w,p), Yw e V.
Then

/(Vw-p—fw)da:—/ Fwds >0 Yw e V.
Q 8,0

Ifpe @329 then we conclude that
divp+ f=0 and p-n = F on 0.
Thus, we see that the saddle-point (u,p) € (Vo + ug) X Q satisfies the relations

/(Alp—Vu) cqdz=0 VgeQ, (1.77)
Q
/p’dex—E(w):O Yw e V. (1.78)

Q
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In the Primal Mixed Formulation the constitutive relation
p = AVu
is satisfied in Lo(£2)- sense and the conservation law
divp+f=0

and the boundary condition p-n= F on 0,() are satisfied in a weak sense.

An introduction to the theory of saddle-points.

Consider the abstract saddle-point problem. Let K C V and M C @ Find (u,p) €
K x M such that

L(u,q) < L(u,p) < L(v,p) VYge M ,YveK (1.79)

Which conditions could guarantee that the minimax problem is stated
correctly and the saddle point exists?
First, we assume that

e V and @ are reflexive Banach spaces (e.g., Hilbert spaces), K and M be convex
and closed subsets of V and M, respectively.

e The functional v — L(v,q) be conver and lower semicontinuous for any ¢ € M.

e The functional ¢ — L(v,q) be concave and upper semicontinuous for any v € K.

However, these conditions are not sufficient to guarantee that a saddle-point exists!
Note that L generates two functionals:

J(v) = Sélz\[; L(v,q) (1.80)
and
I"(q) :== viél}f{L(v,q). (1.81)

The functionals J and I* generate two variational problems.
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Problem P. Find u € K such that
J(u) = inf P := inf J(v). (1.82)

veK

Problem P*. Find p € M such that

I"(p) = sup P* := sup I"(q). (1.83)
qeM

Henceforth, Problems P and P* are called primal and dual, respectively. They are
closely related to the saddle-point problem.

How are these two problems related?

First, we establish one relation that holds regardless of the structure of the Lagrangian.

Sup Inf and InfSup

Lemma 1.3.2 Let L(x,y) be a functional defined on the elements of two nonempty
sets X and Y. Then

sup inf L(z,y) < inf sup L(z,y). (1.84)
yey reX rzeX yey

Proof. It is easy to see that

L(z,y) Zfin)f(L(f,y), Vee X, yev.
S

Taking the supremum over y € Y, we obtain

sup L(z,y) > sup inf L(&,y), Vz e X.
yey yey §€X

The left-hand side depends on x, while the right-hand side is a number. Thus, we
may take infimum over x € X and obtain the inequality

inf sup L(x,y) > sup inf L(&, y).
zeX yey yey §eX
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Therefore, we always have

sup P* < inf P (1.85)

Let us prove that if a saddle-point exists, then its components are solutions
of Problems P and P* and (1.85) holds as equality.

First, we present a simple saddle-point criterion.

Proposition 1.3.1 [f there exist a constant o such that

L(u,q) < @, Vg € M, (1.86)
and
L(v,p) > a, Vv € K, (1.87)
then (u,p) is a saddle point. Moreover, we have the relation
a = inf sup L(v,q) = sup inf L(v, q). (1.88)
veK ge )y qgeM vEK

From (1.86) and (1.87), we obtain
L(u,p) < a < L(u,p).
Therefore, L(u,p) = a and
L(u,q) < L(u,p) < L(v,p), Vv € K, Yy € M,
which means that (u,p) is a saddle point. Since

sup L(u, q) = L(u,p) = a
qeEM

and

inf L(v,p) = L(u,p) = «,
veK
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we have

inf P = inf sup L(v,q) < sup L(u,q) = a,

veK geps qeEM
sup P* = sup inf L(v,q) > inf L(v,p) = a.
geM VEK veK

In view of Lemma, we arrive at (1.88) .

Proposition 1.3.2 The set of all saddle points of the Lagrangian L has the form
Ky x My, where Ky and My are convex subsets of K and M, respectively.

Proof. Let (u1,p1) and (usg, p2) be two different saddle points. Then

L(u1,q) < L(u1, p1) = o = L(us, pa) < L(v,p1),
L(uz,q) < L(u1,p1) = a = L(uz, p2) < L(v, pa),
where v and ¢ are arbitrary elements of the sets K and M, respectively. From the

first relation, we obtain
L(“val) > a,

and from the second one we have
L(Uﬂapl) S Q.

Now, Proposition 1.3.1 implies that (uz, p;) is a saddle point. The same conclusion
is obviously true for (uy, p2). Let u; and uy be two different elements of K. Then,

L(“’l;Q) S L(ulnpl) = Q, vq S M?
L(“Q;Q) S L(u%pl) = O, vq S M.
We assumed that v — L(v,q) is convex. Therefore, for any positive A\; + Ay = 1 we

have
L (Mg + Aug, q) < M L(u1, q) + Mo L(ug,q) < a.

Since L(v,p1) > a, Vv € K, we deduce the opposite inequality
L ()\11&1 + )\Q'U/Q,pl) Z .

[t remains to conclude that L (Aju; + Aaug, p1) = . Hence, Ajuy + Auy € K.
Now we state the main theorem that establishes a link between the solutions of
Problems P and P* and the saddle points of Problems L.
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Theorem 1.3.7 The following two statements are equivalent:

1. there exists a pair of elements u € K and p € M such that

J(u) = inf P, (1.89)
I*(p) = sup P*, (1.90)
inf P = sup P~ (1.91)

2. (u,p) is a saddle point of the Lagrangian L on K x M.

Moreover, any of the above two assertions implies the principal relation
I"(p) = L(u,p) = J(u). (1.92)
Proof. Let the first assumption be true. Then

L(u,q) < sup L(u,q) = J(u) = a, Vg € M,
qeM

L(v,p) = inf L(v,p) = I"(p) = a, Vv € K.
Ve
According to Proposition 1.3.1, (u,p) is a saddle point. Let (u*,p) be a saddle point,
ie.,
L(u,q) < L(u,p) < L(v,p), Vv € K,q € M.

From this double inequality we obtain

J(u) = sup L(u, q) < L(u,p) <
qeM
< L(v,p) < sup L(v,q) = J(v), Vv € K,
qeEM

and

I'(p) = inf L(v,p) = L(u,p) >
ve

> L(u,q) > inf L(v,q) = I"(q), ¥q € M.
ve
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Hence, u € K and p € M are solutions. Furthermore,

Mwméiﬁﬂwwzﬂwéme,

L(u,p) 2 inf L(v,p) = I"(p) = L(u, p),
ve

and the relation (1.92) follows.

Before closing this concise review of saddle-point theory, we shall present two as-
sertions that may be useful in checking the correctness of particular saddle-point
problems.

Theorem 1.3.8 If the assumptions imposed on L hold and the sets K and M are
bounded, then L possesses at least one saddle point and

inf P = sup P*.

Theorem 1.3.9 If the assumptions imposed on L hold and the sets K hold and there
exist elements pg € M and ug € K such that

for any sequence {v;} € K

L(vg, po) — +00 such that ||vg|,, — +o0,

for any sequence {qx} € M

L _
(0, 1) — =00 such that ||qgl|ly- — +o0.

Then, L has at least one saddle point.

Combining the conditions of the above two theorems, one can prove, for example,
that a saddle point exists if K is bounded and the coercivity condition for ¢ holds (or
M is bounded and coercivity condition for v holds).

It is also worth noting that the basic relation

inf P = sup P*

is true even if only one of the coercivity conditions hold. Proofs of all these results
and a more detailed exposition of saddle-point theory can be found in Ekeland and
Temam.
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Now we apply the general theory to diffusion problem Take the Lagrangian
L(v,q) = / (Vo-q—Aq-q— fv)de — /des
o 022
It generates two functionals.
1
J() :=sup L(v,q) = 5 | Vo [ —£(v)
q€@

leads to minimization problem

inf J(w),

weVy+ug

which has a unique solution u (apply Theorem [Weierstrass 4]).
Consider another problem:

sup /(Vv-q—A_lq-q—fv)da:—/des
QO

veVytug 50
p)

We can represent v = uy + w, where w € Vj. Obviously this supremum is finite only
for

qEQg::{q€Q|/(Vw-q—fw)dx—/FwdSZO Vw € Vo}
: 8,02

and for such ¢ we have

. 1
Pl@)i=—5 a2~ + [ Vuy-qds.
Q

Hence, we arrive at the dual problem:

1
sup —5

qeEQy

qu—awyﬁ/vwwmx
Q
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Note that the functional —I* is convex and continuous on (). Moreover, it is coercive.
The set (), is an affine manifold, so that it is convex. It is easy to see that it is closed
with respect to convergence in Q).

By [Weierstrass 4] we establish existence of a maximizer p.

It remains to show that

J(u) = I"(p).
We know that J(u) > I*(p). Take § :== AVwu. Note that

/ AVu - Vwdzr = {(w) Yw € V.
Q
Thus ¢ € @y and
/ Vug - gdz — 0(up) :/ Vu-q—0(u)+
Q Q

/V(uo—u)-cj—€(uo—u):/Vu-AVu—K(u).
0 Q
Also

1 1 1
-5 ”| q ”ﬁ: ——/ AYAVu - Vude = ——/ AVu - Vu
2 2 Jq 2 Jq

and we find that
L1
'@ =5 I vu || =tu) = J(u).

Hence the saddle point formulation is correct!
Such a pair (u,p) exists and satisfies the relations

inf J(v) :=inf P = L(u,p) = sup P := sup I"(q), (1.93)
veVytug qEQe

We have found one more formulation of our boundary-value problem which
is mathematically correct. It can be used to find approximate solutions by
algorithms developed for saddle-point problems.

However, there exists ANOTHER saddle-point formulation of the same problem.
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Dual Mixed Method (DMM)

Another mixed formulation arises if we represent L in a somewhat different form.
First, we introduce the functional g : (Vj + ug) x @ — R by the relation

g(v,q) = /(VU -q+v(divg)) dz.
0

We have
M%@=i/<iv@—%A*q@>dx—aw=
Q

—gv.0)~ [ oldiva)do— 5 a2 —£(0).
Q

Introduce the set

Qr ={qeQ | g(w,q):/ Fwds Yw € Vp}.
GXY

Note that for ¢ € @F we have
9(v,q) = g(w + w, q) = g(w,q) + g(uo, q) =
= / Fwds + g(ug, q) Yw € V.
X

Therefore, if the variable ¢ is taken not from () but from the narrower set @\ r, then
the Lagrangian can be written as

~

Lwawamun—/wwwm—fww—équ—/’th:

022
Q

1 :
g hal = [oavads = [ ode— [ Puds+ glun.o)
Q

Q 02

We observe that the new Lagrangian L
is defined on a wider set of primal functions v € V', but uses a narrower set (Qr for
the fluxes.
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~

V x (Qr such that
< L@®,p) VGeQp,VoeV (1.94)

The problem of finding (u, p) €
L(a,9) < L(@,p)
lead to is the so-called Dual Mixed Method”
From (1.94) we obtain the necessary conditions for the dual mixed formulation.Since

L(a,q) < L(@,p) Ve Qr,
we have

1 AN AN . AN AN AN
—3 I o+ My 2 —/u(dlv D+ An) — fu)dflf—/ Fugds + g(ug,p+ An) <
Q 0200

1 AN
-3 151 - [ atdvp)ds - / fade— [ Fuods + glua.p)
Q 022

where A is a real number and 7 is a function in QO = Q r with ' = 0. Now, arrive at
the relation

)\2
—)\/(A_lﬁ- n + u(divn))dr+Ag(ug,n) < ?/ A_ln - ndzx.
J Q0
Rewrite it as

. . A _
/(A_lp -n + u(divn))dzr—g(ug,n) > 5/ A lp - ndz.
, )
Since A > 0 can be taken arbitrarily small, the latter relation may hold only if

/(A_lﬁ- n + udivn)dz—g(ug,n) > 0.
Q

But 7 is an arbitrary element of a linear manifold @0, so that +n can be replaced by
—n what leads to the conclusion that

/(A‘lﬁ- 0+ adivy)de—g(ue,n) =0 ¥y € Qo.
Q

see, e.g., F. Brezzi and M. Fortin
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From
L@p) < L{u+70,p) YoeV :=L*Q)

we observe that the terms of L linear with respect to the ”pressure” must vanish.
Namely, we obtain

/ (Bdivp+ f)de = 0
Q

Thus, we arrive at the system

[ (A5 G+ (divg)i) do = g(uo,q) Y € Qo, (1.95)
Q
[(divp + f)ode =0 VieV. (1.96)
Q

We observe that now the condition
divp+ f=0

is satisfied in a "strong” (Ls) sense, the Neumann type boundary condition is viewed
as the essential boundary condition, and the relation

b= AVa

and the Dirichlet type boundary condition are satisfied in a weak sense.

These properties of the DMM lead to that the respective finite dimensional formu-
lations are better adapted to the satisfaction of the equilibrium type relations for the
fluxes. This fact is important in many applications where a sharp satisfaction of the
equilibrium relations is required.

The Lagrangian L also generates two functionals

J(@) := sup L(0,4) and I*(q):= inf
The two corresponding variational problems are

inf J(@) and  sup I*(q).
veV GeQr
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Theyare called Problems P and 73*, respectively. Note that the functional J (unlikg
J) has no simple explicit form. However, we can prove the solvability of Problem P
by the following Lemma.

Lemma 1.3.3 For any v € V and F € Lo(0:X2) there exists p” € @F such that

divp’ +7 =10 in Q, (1.97)
I p° Il-< Ca (0] + [|F][ax0) - (1.98)

Proof. We know that the boundary-value problem

divAVu'+0 =0 inQ,
u’ =0 on 042,
AVuU’ -n=F on 0

possesses the unique solution v’ € Vj.
For this problem the energy estimate

| Vur < Ca ([[o]] + [[F']|o.0)
holds. Let p¥ := AVu". We have
divp'+v=0.

Obviously, p¥ € @F and, since

-

I " = / AN AVY) - (AVW) de =[] Vu' ||
Q

we find that (1.98) also holds.
O
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By the Lemma we can easily prove the coercivity of Jon V. Indeed,

1
12 —oz/@(divp”) dx — /f@\dx — /Fuo ds + g(ug, ap’) =
Q 82(2

Q
1 . N
o | p" 12 +alloll* = NP + g(uo, ap”) — /FuOdS-

)
0>0)

Here |g(ug, ap”)| < a[p”|laiv |uol|1.2,0 and

v vV . v 1 v ~
1P 1Ge = 11 + [ldivp" | < = [l p" IF +1I7]1* <
C1

< =G (101l + 1P lla,0)” + 11011

S~

Therefore |
J(0) > —504206H@H2 +al[@]* + e([[o]) + 6.

where O(]|v]|) contains the terms linear with respect to ||v]| and 6y does not depend

on U. Take o = 1/Cg. Then
~ 1 . R R
J(v) = WHUH2 +O(||o]) + 89 — +o0 as [v]| — oo.
Q
It is not difficult to prove that the functional 7T is convex and lower semicontinuous

Therefore, Problem P has a solution 4.

Inf-Sup condition for the dual mixed formulation

Lemma implies the inf-sup condition
[ edivgdr + [, ovq-nds

: Q
inf  sup 5 5 N1/2
L e gllaiv (1% + N1013,0)"

ZC()>0.
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The Dual Problem with respect to the Lagrangian L: Let us now construct

the dual functional I*. Tt is easy to see that

I*(Q) = inf L(7,9) =

1 ~
—inf {3 N TIE- [ oldivpde— [ fodo— [ Fundstglund)p =
Q

Q 022

1 AN AN
3 1T +5(u0. 0~ [ Funds
02

provided that div§+ f = 0 (in the Lo-sense). In all other cases I*(q) = —oo.
Since div g = —f, we find that the dual functional for such a case has the form

~ 1 R N
P =5 178+ [(Vun- 7= fudo— [ Fuds
Q 2

. L
— [ Vuo e = 5 171 £,
Q

Since ¢ € @F, we have (recall that divg= —f)

/Vw-qua::—/(diVE[)wdx—l—/ Fwds Ywel.
022
0 0

we see that ¢ satisfies the relation
/Vw-&\dxzﬁ(w) Yw e V.
Q

In other cases, f*(?j) = —00.
Thus, Problems P* and P* coincide and are reduced to the maximization of I* on
the set (Q¢. This means that

sup P* = sup P,
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Since the saddle point of L exists, we have
E(ﬂ, p) = inf P = sup 7/5*,
but
sup P* = sup P* = inf P.
Thus, we infer that
inf P = inf P.
Thus, we conclude that u € Vj + ug (minimizer of P) also minimizes Jon V.
Analogously, if p € Q¢ is the maximizer of Problem P*, then

/Vw-pda::/fwda:+/ Fwds Yw e V.
XY
Q Q

From here we see that divp+ f =0 a.e. in 2 and, hence,

/(Vw-p—l—(divp)w)dx:/ Fwds Yw eV,
0202
0

that is p € @ . Thus, p is also the maximizer of Problem P,
The reverse statement that the solutions of P, P* are also the solutions of P, P*
is not difficult to prove as well.

Hence, both mixed formulations have the same solution (u, p) which
is in fact the generalized solution of our problem.

1.4 A priori error estimation methods
First error relation

First we present the algebraic identity

1 1
§B(u — v, U — V) = §B(v,v)— < f,v>+ (1.99)

+ < fiu> —%B(u,u) — Bu,v—u)+ < f,o—u>=
=Jw)—Ju) — Blu,v—u)+ < f,o—u >
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From this identity we derive two important results:

e (a) Minimizer u satisfies B(u,w) =< f,w > Vw;

e (b) Error is subject to the difference of functionals.

Integral identity

Let us show (a), i.e., that from (1.99) it follows the identity
B(u,v —u) =< f,v—u> Vv € K.
Indeed, assume the opposite, i.e. dv € K such that
B(u,v —u)— < f,o—u>=9§>0 (0 # u!)

Set v:=u+ a(v —u), « € R. Then v —u = a(v — u) and

1 . ~ ~ ~
EB(U —v,u—0) 4+ Bu,v—u)— < f,o—u >=

042

:7B(T)—u,6—u)+oz5:<](5)—<](u) >0

However, for arbitrary o such an inequality cannot be true. Denote a = B(v—u,v—u).
Then in the left-hand side we have a function 1/202a® + «d, which always attains
negative values for certain a. For example, set o = —d/a?. Then, the left-hand side
is equal to —36%/a? < 0 and we arrive at a contradiction.

Error estimate

Now, we show (b). From

1
—B(u—v,u—v) =

2
=Jw)—Ju) — Blu,v—u)+ < f,o—u >
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we obtain the error estimate :

1

§B(u—v,u—v):J(v)—J(u). (1.100)
which immediately gives the projection estimate.

Projection estimate

Let u;, be a minimizer of J on V}, C V. Then
1
§B(u —up,u—up) = J(up) — J(u) < J(vp) — J(u) =

1
= §B(u —vp,u—vp) Yo, € V.

and we observe that

B(u — up,u —up) = inf B(u — vy, u — vp) (1.101)

vREV)

Projection type estimates serve a basis for deriving a priori convergence estimates.

Interpolation in Sobolev spaces

A priori rate convergence estimates are based upon two two key points:
PROJECTION ERROR ESTIMATE and INTERPOLATION OF FUNCTIONS IN
SOBOLEV SPACES.

Interpolation theory investigates the difference between a function in a Sobolev
space and its piecewise polynomial interpolant. Basic estimate on a simplex T}, is

AN
0~ Tyl g, < Clmon.t) (;) B2 ol

and on the whole domain

m,t,Qh S ChQ_m H v

lv — T |2.6.0,-

Here h is a the element size and p is the inscribed ball diameter.

8 S. G. Mikhlin. Variational methods in mathematical physics. Pergamon, Oxford, 1964.
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Asymptotic convergence estimates
Typical case is m = 1 and t = 2. Since

B(u —up,u —up) < Bu — Hyu, u — Iu) < cof|lu — Hyul|?
for

B(w,w) :/ Vw - Vwdx
0

we find that
IV(u = )| < Chluls2.0.
provided that
e Exact solution is H? — regular;
e v, is the Galerkin approximation;
e Elements do not "degenerate” in the refinement process.

A priori convergence estimates cannot guarantee that the error monotonically de-
creasesas h — 0.

Besides, in practice we are interested in the error of a concrete approximation on
a particular mesh. Asymptotic estimates could hardly be helpful in such a context
because, in general, the constant C' serves for the whole class of approximate solutions
of a particular type. Typically it is either unknown or highly overestimated.

Remark 1.4.1 A priori convergence estimates have mainly a theoretical value: they
show that an approximation method is correct ”in principle.

Remark 1.4.2 For these reasons, a quite different approach to error control is rapidly
developing. Nowadays it has already formed a new direction: A Posterio
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Chapter 2

A posteriori error estimation methods
developed in 1900-1975

2.1 Runge’s rule

At the end of 19th century a heuristic error control method was suggested by C. Runge
who investigated numerical integration methods for ordinary differential equations.

Heuristic rule of C. Runge If the difference between two approximate solu-
tions computed on a coarse mesh 7;, with mesh size h and refined mesh 7;, _,
with mesh size A,y (€.g., hrey = h/2) has become small, then both vy, , and
uy, are probably close to the exact solution.

In other words, this rule can be formulated as follows:

If Up — Up,,, 18 small then wuy, , is close to u
where - is a certain functional or mesh-dependent norm.
Also, the quantity up — Up,,, can be viewed (in terms of modern termi-

nology) as a certain a posteriori error indicator.

Runge’s heuristic rule is simple and was easily accepted by numerical analysts.

Remark 2.1.1 However, if we do not properly define the quantity Z-,
Jor which T-uj, — uy,,, is small, then the such a principle may be not true.

77
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One can present numerous examples where two subsequent elements of an ap-
proximation sequence are close to each other, but far from a certain joint limit. For
example, such cases often arise in the minimization (mazimization) of functionals
with "saturation” type behavior or with a “sharp—well” structure. Also, the rule may
lead to a wrong presentation if, e.g., the refinement has not been properly done, so that
new trial functions were added only in subdomains were an approximation is almost
cotncide with the true solution. Then two subsequent approximations may be very
close, but at the same time not close to the exact solution.

Remark 2.1.2 Also, in practice, we need to mow precisely what the word "close”
means, i.e. we need to have a more concrete presentation on the error. For example,
it would be useful to establish the following rule:

If up — up,,, <€ then |lu, —ull < d(e),
where the function 0(€) is known and computable.

In subsequent lectures we will see that for a wide class of boundary—value problems it
is indeed possible to derive such type generalizations of the Runge’s rule.

2.2 The estimate of Prager and Synge

Prager and Synge derived an estimate on the basis of purely geometrical grounds .
In modern terms, there result for the problem

Au+ f =0, in €2,
u =0, on 0f)

reads as follows:

IV(u =)l + | Vu = 7* = [Vv — 7|f%,

'W. Prager and J. L. Synge. Approximation in elasticity based on the concept of function spaces, Quart. Appl. Math.
5(1947)
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Figure 2.1: "Two blind men and their hypercircle”.

where 7 is a function satisfying the equation divr + f = 0.
We can easily prove it by the orthogonality relation

/V(u—v)-(Vu—T)da::O (div(Vu —7) =01).
Q
From here, it also follows that
IV (u—=v)|| = inf [[Vo—q]. (2.1)
q€Qy

This relation and its analogs for more complicated problems generate various a poste-
riori estimates that use equilibration of the dual variable (fluzx).
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2.3 Estimate of Mikhlin

A similar estimate follows from the First error relation and can be justified by wvari-
ational arguments®. It is as follows:

1
SV (= )| < J(v) —infJ,
where

1
J() = =||Vv||* = (f,v), infJ:= inf J(v).
2 veH ()

Dual problem

Since

1
infJ — sup {——HTH?},

TEQf 2

where

Qf = {TGLQ(Q,Rd) | /T-dex:/fwdx Vwé[f]l},
0 0

we find that

1 1
§HV(U —v)|P < J(v) + §HTH2, V1 € Qy.
Since
1(112 1 P Lo
J(v) + 5|7 =§||VUH - fvd:v+§|\7|\ =
Q0
1 P Lo o
= SI9el? ~ [ 7 Vode+ Sl =

2 0 2

1
= IV -]

2S. G. Mikhlin. Variational methods in mathematical physics. Pergamon, Oxford, 1964.
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we arrive at the estimate

1
SV (= I < SIVe -7l Vreqy. (2.2)

N | —

Comment. FEstimates of Prager and Synge and of Mikhlin are valid for any v €

]C—)h(Q), so that, formally, that they can be applied to any conforming approximation of
the problem. However, from the practical viewpoint these estimates have an essential
drawback:

they use a function T in the set Q)¢ defined by the differential relation,

which may be difficult to satisfy exactly. Probably by this reason further development
of a posteriori error estimates for Finite Element Methods (especially in 80°-90°) was
mainly based on different grounds.
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2.4 A posteriori estimates for iteration methods
2.4.1 Fixed point theorem
Consider a Banach space (X, d) and a continuous operator
T X - X
Definition 2.4.1 A point x is called a fized point of ¥ if
To = g . (2.3)
Approximations of a fixed point are usually constructed by the iteration sequence
T = ¥ 1=1,2,.... (2.4)
Two basic problems:
(a) find the conditions that guarantee convergence of x; to x,
(b) find computable estimates of the error e; = d(z;, z¢).

Definition 2.4.2 An operator ¥ : X — X is called g-contractive on a set S C X if
there exists a positive real number q such that the inequality

d(Tz, Ty) < qd(z,y) (2.5)

holds for any elements x and y of the set S.

2.4.2 Banach theorem

Theorem 2.4.1 (S. Banach) Let ¥ be a g-contractive mapping of a closed nonempty
set S C X toitself with g < 1. Then, ¥ has a unique fized point in S and the sequence
x; obtained by (2.4) converges to this point.
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Proof. It is easy to see that
d(wis, 2i) = d(Twy, Twiq) < qd(wi, 3-1) < ... < ¢'d(@1, m0).

Therefore, for any m > 1 we have

d('ri-l-ma 'CC’L) S
< d(Xigms Tigm—1) + A(Titm—1, Tixm—2) + ... + d(@iz1,2;) <
< qz(qm—l + qm—2 + ...+ 1)d(l‘1, ZU()) . (26)

Since

(2.6) implies the estimate

.

d(xier) 'CUZ) <

S qd(371, 0). (2.7)

Let i — oo, then the right-hand side of (2.7) tends to zero, so that {z;} is a Cauchy
sequence. It has a limit in y € X.
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Then, d(z;,y) — 0 and

so that d(Tx;, Fy) — 0 and Fz; — Ty. Pass to the limit in (2.4) as i — +00. We
observe that
Ty =uy.

Hence, any limit of such a sequence is a fixed point.
It is easy to prove that a fixed point is unique.
Assume that there are two different fixed points z}, and 2%, i.e.

‘Ix’é:xé, k=1,2.
Therefore,
d(z}, 22) = d(Tx, Tal) < qd(xl, 22) .

But ¢ < 1, and thus such an inequality cannot be true.

2.4.3 A priori convergence estimate

Let
€j = d(xjv :CG))

denote the error on the j-th step. Then
ej = d(Tz;_1,Txe) < qej1 < ¢ep.
and
e; < ¢’ep. (2.8)

This estimate gives a certain presentation on that how the error decreases. However,
this a priori upper bound may be rather coarse.
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2.4.4 A posteriori estimates for contractive mappings

A posteriori estimates

The proposition below furnishes upper and lower estimates of e;, which are easy to
compute provided, that the number ¢ (or a good estimate of it) is known.

Theorem 2.4.2 (*) Let {x;}22 be a sequence obtained by the iteration process
T, = ‘in—l 221,2,

with a mapping T satisfying the condition ||T|| = ¢ < 1. Then, for any x;, j > 1, the
following estimate holds:

. 1 . q
M izl—wd(ﬂ%hfﬂj) <e; < Mg ::1—_qd(xj,xj_1). (2.9)

Proof. The upper estimate in (2.9) follows from (2.7). Indeed, put ¢ = 1 in this
relation. We have

d($1+m,$1) S %d('xhx()) :

Since x1., — To as m — 400, we pass to the limit with respect to m and obtain
q
d(ze, 1) < qu(xl,xo).

We may view x;_1 as the starting point of the sequence. Then, in the above relation
xg = xj_1 and x1 = x; and we arrive at the following upper boundof the error:

d($@, Zl?j) < %d(xj, ZL’j_l) .
—q
The lower boundof the error follows from the relation
d(zj, xj-1) < d(zj, v0) + d(zj-1,70) < (1+q@)d(z)j-1,70),
which shows that
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Note that

% _ q(1+q) d(:z:j,a:j_l) > 1+q
M, 1—q d(zj,25) ~ 1—q°

we see that that the efficiency of the upper and lower bounds given by (2.9) deteriorates
as q — 1.
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If X is a normed space, then
d(wjs1, 25) = [[R(x;)]],

where
R(.CUJ) = ‘3:5(3]' — ﬂfj

is the residual of the basic equation (2.3). Thus, the upper and lower estimates
of errors are expressed in terms of the residuals of the respective iteration equation
computed for two neighbor steps:

1 q
IR € ¢ = dlaya) < |l

2.4.5 Corollaries
In the iteration methods, it is often easier to analyze the operator

T=T".=TT..T
n times

where T' is a certain mapping.

Proposition 2.4.1 (1) Let T : S — S be a continuous mapping such that ¥ is a
q-contractive mapping with ¢ € (0,1). Then, the equations

r="Tx and r=%x

have one and the same fixed point, which is unique and can be found by the above
described iteration procedure.

Proof. By the Banach Theorem, we observe that the operator ¥ has a unique fixed

point &g).
Let us show that £ is a fixed point of T'. First, we note that

Téy = T(TEy) = TF%y = ... = TTE, = THMg, = TTE,. (2.10)
Denote g = T§. By (2.10) we conclude that for any ¢
T¢o = T'ay. (2.11)
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Passing to the limit on the right-hand side in (2.11), we arrive at the relation T§; =
€, which means that £ is a fixed point of the operator T'.
Let x5 be a fixed point of T'. Then,

T =T = .. = T"Ts = ST

and we observe that x is a fixed point of ¥. Since the saddle point of T exists and
is unique, we conclude that

Remark 2.4.1 This assertion may be practically useful if it is not possible to prove
that T is g—contractive, but this fact can be established for a certain power of T.
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2.4.6 Iteration methods for bounded linear operators

Consider a bounded linear operator £ : X — X, where X is a Banach space. Given
b € X, the iteration process is defined by the relation

Ty = [,Ij_l -+ b. (212)
Let ¢ be a fixed point of (2.12) and
I£] =g <L

By applying the Banach Theorem it is easy to show that

{z;} — zo.
Indeed, let Z; = 2; — x¢. Then
Tj=Lrj1+b—2c=L(~rj1 —xc) =LTj_;. (2.13)
Since
Ox = L0y,

we note that the zero element Ox is a unique fixed point of the operator £. By the
Banach theorem Z; — Ox and, therefore, {z;} — 2.
Therefore, we have an a prior: estimate

L ¢
- |21 — Zol| x = T4 | R(z0)| x (2.14)

|z — zollx = [|Z; — 0x[|x <

and the a posteriori one

q
T—q [R(zj-1)|x (2.15)

where R(z) = Lz + b — z is the residual of the functional equation considered.
By applying the general theory, we also obtain a lower bound of the error

1 1

|z; — 20|y > T+q |zj1 — 4]l = g | R(z)|l 5 - (2.16)

lzj = 2ol x <
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Hence, we arrive at the following estimates for the error in the linear operator
equation:

1 —gq

lzj = zollx < 1R(zj-1)lx < (A +9)llzj-1 = zollx -

2.4.7 Iteration methods in linear algebra

Important applications of the above results are associated with systems of linear si-
multaneous equations and other algebraic problems. Set X = R¢ and assume that £
is defined by a nondegenerate matrix A € M?*? decomposed into three matrixes

A=A+ A+ A,

where Ay, A,, and A, are certain lower, upper, and diagonal matrices, respectively.
Iteration methods for systems of linear simultaneous equations associated with A

are often represented in the form

L

YTV L A, = (2.17)
.

B

In (2.17), the matrix B and the parameter 7 may be taken in various ways (depending
on the properties of A). We consider three frequently encountered cases:

(a) B = Ad,

(b) B=A;+ Ay,

(c) B=Ag+wAp, 7 =w.

For 7 =1, (a) and (b) lead to the methods of Jacobi and Zeidel, respectively. In (c),
the parameter w must be in the interval (0, 2). If w > 1, we have the so-called "upper
relaxation method”, and w < 1 corresponds to the ”"lower relaxation method”.



S. Repin. Lectures on A Posteriori Estimates.. University Saarbriiken, Germany, DAAD PROGRAM 2008 91

The method (2.17) is reduced to (2.12) if we set
L=1-7B7'A and b=71B"'f, (2.18)

where I is the unit matrix. It is known that x; converges to x. that is a solution of
the system

Az = f (2.19)

if an only if all the eigenvalues of £ are less than one.

Obviously, B and 7 should be taken in such a way that they guarantee the fulfill-
ment of this condition.

Assume that || £]| < ¢ < 1. In view of (2.14)-(2.16), the quantities

Mg = q(1=q)"" Rl (2.20)
MY = ¢'(1—q) [|R(z0)], (2.21)
ML= (14q) " [|R(z)]| (2.22)

furnish upper and lower bounds of the error for the vector z;.

Remark 2.4.2 [t is worth noting that from the practical viewpoint finding an upper
bound for |L|| and proving that it is less than 1 presents a special and often not easy
task.

If ¢ is very close to 1, then the convergence of an iteration process may be very
slow. As we have seen, in this case, the quality of error estimates is also degraded. A
well-accepted way for accelerating the convergence consists of using a modified system
obtained from the original one by means of a suitable preconditioner P~! and solving
the system

(P Az =P 'f
with a smaller condition number. Of cause, the best preconditioner is the unknown
matrix A~!. Therefore, a preconditioner is often constructed from the parts of A that
are not difficult to invert (e.g., in the simplest case it is taken as the matrix inverse to
the diagonal part of A). This iteration technique is well presented in the literature?

4see, e.g., O. Axelsson. Iterative solution methods. Cambridge University Press, Cambridge, 1994.
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Task 2.4.1 Consider the problem
Az = f

for a symmetric matrix A with coefficients
a;; =k/ij fi#j, k=01
Q;; = 1.

In this case \paz(A) = 200, A\pin(A) = 0.8224 and Cond(A) = 24L10.2030 Solve the
system by the iteration method

ti1=0—-7B'A)z; +7B'F
with B = Ap and xy = {0,0,...0}, determine q and define two—sided error bounds.

In this example n = 200, g= 0.662, and 7 = 0.760. The values of the error and the
estimates are presented below.

: _Table 2.1 ‘
r [e] T MY
1 187145E+03 .412471E+403 .245893E+404 .245893E+-04
2 452820E+02 .104019E+03 .610732E+03 .162904E+04
3 123433E+02 .311517E+02 .147774E+03 .107924E+04
4 405504E401 .116679E+02 .402813E+02 .714995E+03
5 .166633E+01 .517711E+01 .132333E+02 .473684E+03
6 .7T67379E+00 .244532E+01 .543792E+01 .313815E+03
7 .366283E+00 .117450E+01 .250428E+01 .207902E+03
8 .176340E+00 .566166E+00 .119533E+01 .137735E+03
16 .515722E-03  .165576E-02  .349042E-02 .511127E+01
17 .248671E-03  .798371E-03  .168302E-02 .338621E+01
18  .119903E-03  .384956E-03  .811515E-03 .224336E+01
19 .578146E-04  .185617E-03  .391295E-03 .148623E+01
20 .278769E-04  .895001E-04  .188673E-03 .984624E400
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2.4.8 Applications to integral equations

Many problems in science and engineering can be stated in terms of integral equations.
One of the most typical cases is to find a function z(t) € C|a, b] such that

b
rolt) = [ K(t5)wo()ds + 70, (2.23)
where A > 0, K (the kernel) is a continuous function for
(x,t) e Q@ ={a<s<b, a<t<b}
and
[K(t,s)| <M, V(ts) €Q.

Also, we assume that f € Cla,b].
Let us define the operator ¥ as follows:

b
y(t) = Ta(t) == )\/ K(t,z)x(s)ds + f(t) (2.24)

and show that ¥ maps continuous functions to continuous ones. Let t; and ¢ty + At
belong to [a,b]. Then,

ly(to + At) —y(to)| <
< \A|/ K (ty + AL s) — K(to, 5)||a(s)] ds+

+ | f(to + At) — f(to)].

Since K and f are continuous on the compact sets () and [a, b], respectively, they are
uniformly continuous on these sets.
Therefore, for any given € one can find a small number ¢ such that

| f(to + At) — f(to)| < €

and
|[K(to + At, s) — K(to, s)| <,
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provided that |At| < 6.
Thus, we have

[y(to + A8) = y(to)| < e([M][b = af max [z(s)] + 1) = Ce,

and, consequently, y(ty + At) tends to y(ty) as |At| — 0.
T : Cla,b] — Cla,b] is a contractive mapping. Indeed,

d(Tx, Ty) = max |Fx(t) — Ty(t)| =

/Kts _ y(s))ds| <

= max
a<t<b
< MM (b — a) max |z(s) —y(s)| = |AM(b —a)d(,y),
so that ¥ is a g-contractive operator with
q = [A[M(b— a), (2.25)
provided that
1
A< ——m. 2.26

2.4.9 Numerical procedure

An approximate solution of (2.23) can be found by the iteration method

b
zi1(t) = )\/ K(t,s)x;(s)ds + f(t). (2.27)

If (2.26) holds, then from the Banach theorem it follows that the sequence {z;} con-
verges to the exact solution.
We apply the theory exposed above and find that the accuracy of x; is subject to
the estimate
1 b

1+4q ), K(t,s)(xit1(s) — xi(s)) ds <

b
< max |zi(t) — 20 ()] < —L— [ K(t, 8)(2i(s) — zi1(s)) ds. (2.28)

a<t<b 1—gq
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2.4.10 Applications to Volterra type equations

Consider the fixed point problem

vo(t) = A / Kt 8) 2o(s) ds 1 f(8). (2.29)
where
K(Ls)| <M,  W(is)eQ
and f € Cla,b].

Define the operator T' as follows:

t
Tx(t) = )\/ K(t,s)x(s)ds + f(t).
Similarly, to the previous case we establish that
d(Tz, Ty) < [A[M(t — a)d(z,y).

By the same arguments we find that

t—a)”
d(T"z, T"y) < |)\\"M”%d(:c,y),

Thus, the operator ¥ := T" is g-contractive with a certain ¢ < 1, provided that n is
large enough.

In view of Proposition 1, we conclude that the iteration method converges to x.
and the errors are controlled by the two—sided error estimates.
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2.4.11 Applications to ordinary differential equations

Let u be a solution of the simplest initial boundary-value problem

— =t ult), ult) =a, (2.30)

where the solution u(t) is to be found on the interval [ty, t1]. Assume that the function
@(t,p) is continuous on the set

={ty<t<t,a-A<p<a+A}

and
ot p1) =t p2)| < Lipr —paf, ¥(t,p) € Q. (2.31)
Problem (2.30) can be reduced to the integral equation

u(t) = / (s,u(s))ds+a (2.32)

to
and it is natural to solve the latter problem by the iteration method

u;(t) = / (s, uj—1(s))ds + a. (2.33)

to
To justify this procedure, we must verify that the operator

Tu = /t o(s,u(s))ds + a

to

is g-contractive with respect to the norm

|u|| := max |u(t)]. (2.34)
tE[to,tl]
We have
t
I = Tyl = max | [ (ol (0)) — (s, () ds| <
max L/ 12(5) — y(s |ds<L/ 12(s) — y(s)| ds <
t€t0t1

< Lty — to) max |z(s) — y(s)| = L(t1 — to)llz — y].

SE[tO tl]
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We see that if
t1 <to+ L7, (2.35)

then the operator ¥ is g-contractive with
Remark 2.4.3 ¢q := L(tl — to) < 1.

Therefore, if the interval [ty, ¢1] is small enough(i.e., it satisfies the condition 2.35),
then the existence and uniqueness of a continuous solution u(t) follows from the Ba-
nach theorem. In this case, the solution can be found by the iteration procedure whose
accuracy is explicitly controlled by the two-sided error estimates®

2.5 A posteriori methods based on monotonicity

The theory of monotone operatorsgives another way of constructing a posteriori esti-
mates.

Monotone operators are defined on the so—called ordered(or partially ordered)
spaces that introduce the relation x < y for all (or almost all) elements z,y of the
space.

Definition 2.5.1 An operator ¥ is called monotone if x <y implies Tx < Xy.

Consider the fixed point problem
To = a0+ f
on an ordered (partially ordered) space X. Assume that
T =%y +%,,

¥ 5 is monotone,
T is antitone: z < y implies Tz > Ty,
T and ¥ have a common set of images D which is a convex subset of X.

®A. N. Kolmogorov and S. V. Fomin. Introductory real analysis. Dover Publications, Inc., New York, 1975, E. Zeidler.
Nonlinear functional analysis and its applications. I. Fized-point theorems. Springer-Verlag, New York, 1986.
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Next, let o0, o1, a0, a1 € D be such elements that

Too < To1 < g1 < Tgo,
Tor = TaToo + ToZao + f,
Tar = TaTapo + Toxoo + f,

Then, we observe that
Ter = TgZol + ToTa1 + [ 2 Faloo + FTaxao + f = 1o
Tor = TpTop1 + Tolo1 + f < FgpZgo + Toroo + [ = a1

By continuing the iterations we obtain elements such that

Top S Toke1) S L@ (k+1) < Tgg.

Then x — ®Fx + f maps D to itself. If D is compact, then by the Schauder fixed
point theorem x. € D exists. Moreover, it is bounded from below and above by the
sequences {zsx} and {zq}.

Applications of this method are mainly oriented towards systems of linear simul-
taneous equations and integral equations®. For example, consider a system of linear
simultaneous equations

x=Ar+ f
that is supposed to have a unique solution x.. Assume that
A=Ay — A, Ag = {ai@j} e M,
dxd
Ag ={a;} €M™ a; >0, a > 0.

We may partially orderthe space R? by saying that z < y if and only if #; < y; for
1 =1,2,..n. Compute the vectors

To(k+1) = A@CC@]@ + A@Q?@k + f, To(k+1) = A@x@k + A@Qf@k + f

If 090 < 251 < 25 < 251 < g0, then for all the components of z. we obtain
two—sided estimates

(2) (2) (1) (2) (4) -
xS T (1) <z < T (1) <zy, t=1,2,..n

6L. Collatz. Funktionanalysis und numerische mathematik, Springer-Verlag, Berlin, 1964.
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Task 2.5.1 Apply the above method for finding two—sided bounds of the Fuclid error
norm and componentwise errors for a system of linear simultaneous equations

Ar = f
where
ai; = (=1)""k/ij ifi#j, k=01
A — 1.

For the i1th component of the solution determine the lower and upper bounds as
follows:

max  (z9)

: ®
j=0,1,...k+1 < (wo); < _min  (aF);

i — j=01,.k+1 "/
It should be remarked that convergence of mg)k and :L‘é;)k to x5 (and the convergence
rate) requires a special investigation, which must use specific features of a particular

problem.

Remark 2.5.1 In principle, a posteriori error estimates based on monotonicity can
provide the most informative POINTWISE a posteriori error estimates. Regrettably,
the respective theory has not been yet properly investigated.
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Chapter 3

A POSTERIORI ERROR INDICATORS
FOR FEM

The goal of this chapter is to give an overview of a posteriori error estimation methods
developed for Finite Element approximations in 70th—80th.
Chapter plan

e Mathematical background;
e Residual type error estimates;
— Basic idea;
— Estimates in 1D case;
— Estimates in 2D case;
— Comments;
e Methods based on post—processing;

e Methods using adjoint problems;

3.1 Sobolev spaces with negative indices

101



102 S. Repin. Lectures on A Posteriori Estimates.. University Saarbritken, Germany, DAAD PROGRAM 2008
Sobolev spaces with negative indices

Definition 3.1.1 Linear functionals defined on the functions of the space CO“OO(Q) are
called distributions. They form the space D'(2)

Value of a distribution g on a function ¢ is (g, ¢).
Distributions possess an important property: they have derivatives of any order.
Let g € D'(Q2), then the quantity —(g, g-i) is another linear functional on D(Q). It
is viewed as a generalized partial derivative of g taken over the ¢-th variable.
Derivatives of Li—functions. Any function g from the space L1(€2) (¢ > 1) defines
a certain distribution as

(8,6) = /Q g6 dx

and, therefore, has generalized derivatives of any order. The sets of distributions,
which are derivatives of g-integrable functions, are called Sobolev spaces with negative
indices.
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Definition 3.1.2 The space W=%9(Q) is the space of distributions g € D'(Q) such

that
g=>_ D%,

|| <t

where g, € LI(2).

Spaces W~ 17(Q)
W-1P(Q) contains distributions that can be viewed as generalized derivatives of
Li-functions.The functional

of 0
<(9Xi’ ¢> = — 6;?1 x feLiQ)

o o 1ap
is linear and continuous not only for ¢ €C *(Q2) but, also, for ¢ € W (), where
I/p+1/g=1 (densaty property). Hence, first generalized derivatives of f lie in the

space dual to W (Q) denoted by T~ 17(Q).

o 1,2 o
For W () = H(R2), the respective dual space

is denoted by H ().
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Norms in ”negative spaces”
For g € H1(Q) we may introduce two equivalent "negative norms”.

(g, )|

I9ll(-1),0 == sup < 400
sein(o 1920
lo] = sup (g o) _ o
sein 1VOll

From the definitions, it follows that

(8,0) < lgl-v.elelze
(g8.9) < lgl [Velle
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3.2 Residual method

3.2.1 Errors and Residuals. First glance

If an analyst is not sure in the quality of an approximate solution com-
puted, then the very first idea that comes to his mind is to substitute the
approximate solution into the equation and look at the equation residual.
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We begin by recalling basic relations between residuals and errors that hold for
systems of linear simultaneous equations. Let A4 € M99 det A # 0, consider the
system

Au+ f=0.
For any v we have the simplest residualtype estimate
Aw—u)=Av+f; = e <A77

where e = v —u and r = Av + f.
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Two—sided estimates Define the quantities

A
Amin = min |4yl and A\ax = max | Ayl
yer? |y yerd [|yl]
y7#0 y7#0
Since Ae = r, we see that
Ae r
i < 1= 1< = AL < el < AL
Since wu is a solution, we have
Au
i < 2Ly ASLIA1 <l < AL
lull full ~
Thus,
Awin [I7]] el Amax [I7]

Mo 171 = Tall = R 171
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Key "residual-error” relation Since

il:: _ Cond A,

we arrive at the basic relation where the matrix condition number serves as an im-
portant factor

Cond A il < llell < CondAM. 3.1
( NS Tl 171 (3.1)

Thus, the relative error is controlled by the relative value of the residual. However, the bounds deteri-
orates when the conditional number is large.
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In principle, the above consideration can extended to a wider set of linear problems,
where

Ae L(X,)Y)

is a coercive linear operator acting from a Banach space X to another space Y and f
is a given element of Y.

However, if A is related to a boundary-value problem, then one should prop-
erly define the spaces X and Y and find a practically meaningful analog of
the estimate (3.1).

3.2.2 Residual type estimates for elliptic equations
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Elliptic equations Let A : X — Y be a linear elliptic operator. Consider the
boundary-value problem

Au+ f=0 1in €, u=ug on .

Assume that v € X is an approximation of u. Then, we should measure the error in
X and the residual in Y, so that the principal form of the estimate is

lv = ullx < ClAv+ flly, (3.2)

where the constant C' is independent of v. The key question is as follows:

Which spaces X and Y should we choose for a particular boundary-value
problem ?
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Consider the problem
Au—+ f=0 1in{, u=0 ondl),

with f € L?(2). The generalized solution satisfies the relation

(¢]

/Vu-dex:/fwda: Yw € Vp := H'(Q),
Q 0

which implies the energy estimate

IVl

2.0 < Callfll2.0-

Here Cq, is a constant in the Friederichs-Steklov inequality. Assume that an approxi-
mation v € Vy and Av € L*(Q). Then,

/V(u—v)-dex:/(f+Av)wda:, Vw € V.
0 0
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Setting w = u — v, we obtain the estimate
IV(u=v)|l20 < Callf + Avll20, (3.3)

whose right-hand side of (3.3) is formed by the L*-norm of the residual.
However, usually a sequence of approximations {v;} converges to u only in the
energy space, i.e.,

{vp} — u in H'(Q),
so that ||Av, + f|| may not converge to zero !

This means that the consistency(the key property of any practically mean-
ingful estimate) is lost.
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Which norm of the residual leads to a consistent estimate of the
error in the energy norm?

To find it, we should consider A not as H? — L? mapping, but as H' — H~! mapping.
For this purpose we use the integral identity

o

/Vu-dea:: (f,w), VweVy:=H(Q).
Q

Here, Vu € L?, so that it has derivatives in H~! and we consider the above as
equivalence of two distributions on all trial functions w € Vj.
By (f,w) < | f||Vw||20, we obtain another ”energy estimate”

[Vul20 < | f1.
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Consistent residual estimate Let v € Vy be an approximation of u. We have

/V(u—v)-de:U :/(fw—Vv-Vw)dx:
0 0
= (Av+ f,w), [+AveH Q).

By setting w = v — u, we obtain

IV(u—=v)lao < | f+Av]. (3.4)
where
pef1(9) 14
V(u—wv)- -V V(u—v)|||V
PE Q) ¥ pEH(Q) 7
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Thus, for the problem considered

IV(u—=v)|lea=|f+Av]| !

From (3.5), it readily follows that

| f+Av ] — 0 as {v} — win H.

We observe that the estimate (3.5) is consistent.

(3.5)

115



1 16 S. Repin. Lectures on A Posteriori Estimates.. University Saarbritken, Germany, DAAD PROGRAM 2008

Diffusion equation Similar estimates can be derived for

Au+ f =0, in(), u =0 on 012,

where
d
) 0 ou
Au = div AVu := Z; a—xz (aij(x)ﬁ_xj)’

aij(z) = aji(x) € L*(Q),
Amin|7)? < aij()nim; < Amaxlnl®,  Vn €RY, € Q,
>\maX Z )\min Z O
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Let v € V) be an approximation of u. Then,
/AV(u—v) -Vwdx = /(fw — AVv - Vw)dz, Yw € V.
Q Q
Again, the right-hand side of this relation is a bounded linear functional on V4, i.e.,

f+div (AVv) € H .

Hence, we have the relation
/AV(U —v)-Vwdr = (f +div (AVv),w), Yw e .
)
Setting w = u — v, we derive the estimate

IV (u—v)|l20 < At | f+div (AVY) | (3.6)

min
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Next,
| f+div (AVv) | = sup [ {(f +div (AV0), ) | =
T IVelhs
AV (u —v)-Vod
sup | fQ (u—v)- Vodr]| < Amax|| V(u — v)[Ja.q. (3.7)
T IVeks

Combining (3.6) and (3.7) we obtain

A | B(0) | < [V (= v)l20 < Ay | B(0) [, (3-8)

where R(v) = [ +div (AVv) € H71(Q2). We see that upper and lower bounds of the
error can be evaluated in terms of the negative norm of R(v).
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Main goal

We observe that to find guaranteed bounds of the error reliable estimates of
| R(v)| are required.

In essence, a posteriori error estimates derived in 70-90’ for Finite Element Methods
(FEM) offer several approaches to the evaluation of | R(v)].

We consider them starting with the so—called explicit residual method where
such estimates are obtained with help of two key points:

e Galerkin orthogonality property:;

e H' — V), interpolation estimates by Clément.

3.2.3 Explicit residual method in 1D case
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Explicit residual method in 1D case Take the simplest model
(au)' 4+ f =0, u(0) = u(1).

Let I := (0,1), f € L*(I), a(x) € C(I) > ap > 0. Divide I into a number of
subintervals I; = (x;, x;11), where g = 0, xy1 = 1, and |z;01 — ;| = h;. Assume

that v € H*(I) and it is smooth on any interval I;.




S. Repin. Lectures on A Posteriori Estimates.. University Saarbriiken, Germany, DAAD PROGRAM 2008 121

In this case,

fol(—ow’w’ + fw)dx

| R(v)| = sup =
weVo(I), w#0 [w'll2.1
ZZ.ALO [; (—av'w' + fw)dx
= sup - ; =
wé]%l(l) ;w0 Hw ||2’I
N N :

B sup im0 f[i ri(v)wdr + 3 ;7 alx)w(z;)j(v'(2;))

weVy(I), w0 [[w[[2.r ’

where j(¢(z)) := ¢(x +0) — ¢(x — 0) is the ”jump—function” and r;(v) = (') + [ is
the residualon I;.
For arbitrary v we can hardly get an upper bound for this supremum.
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Use Galerkin orthogonality Assume that v = uy, i.e., it is the Galerkin approxima-
tion obtained on a finite-dimensional subspace Vj;, formed by piecewise polynomial

continuous functions. Since
/oau'hwﬁl dr — /fwh dr =0 VYuwy, € V.
I I

we may add the left—hand side with any wy, to the numerator what gives

S (—ady(w — mpw) + fw — mw)) da

9,1

| R(us) | = sup
weVy(I) ||

where 7y, : Vi — Vjy, is the interpolation operator defined by the conditions m,v € Vi,

mv(0) = mpo(l) = 0 and

mo(z;) = v(z;), Vo, i=1,2,...,N.
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Integrating by parts Now, we have

>t S riun)(w — mpw) dz
[Jw’|

| R(un) | = sup {

weVy(I) 2.1

L X el w) - mw(z)j( )

1|2,z

Since w(x;) — mpw(x;) = 0, the second sum vanishes. For first one we have

N N
3 / ri(un)(w — mpw) dz < 3 sl
i=0 7L i=0

w — mwlla.r,.

123

} |
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Since for w € ;Il(li)
lw = mwllzr, < eillwll2.,,

we obtain for the numerator of the above quotient

N N
S / () (w — mw)dz < S il (un) o,
i=0 7L i=0

/
w

2.1, <

N 1/2
< (S emlts) 1wl

1=0

which implies the desired upper bound

N

1/2
| R(u) | < (Zc?|m<uh>||§,fi) . (3.9)

1=0

This bound is the sum of local residuals 7;(u;,) with weights given by the interpolation
constants c;.
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Interpolation constants For piecewise affine approximations, the interpolation con-
stants ¢; are easy to find. Indeed, let ; be a constant that satisfies the condition

) Hw’| %I-
inf .
werr (1) |10 = mhw

= i

2
2711'

Then, for all w € ﬁl(li), we have

o1 <7 P

|w — mhw| 2.1,

~1/2
and one can set ¢; = ;. / )
3

Let us estimate ~y..
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Note that

Tit1 Ti+1
/ [P d = / ((w — myw) + (w2 da,
i X

i %

where (m,w)’ is constant on (x;, z;41). Therefore,

Tit+1
/ (w — mpw)'(mpw) de = 0

%

and

Tit1 Ti+1 Tit1
/ lw'|? do = / | (w —ﬂhw)’|2da:—|—/ |(mpw)|? do >

Ti41
> / |(w — mpw)'|* da.
ZT

i
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Interpolation constants in 1D problem Thus, we have

T

fﬂiiﬂ |w/’2 dx f$i+1 |(w o th)/‘2 dr

i > inf

inf T

wein(ny S0 = mnwl de T gy 3 w = maw]? de

Ly

so that v; = w%/h? and ¢; = h;/T.

Remark. To prove the very last relation we note that

inf 7
nefri(on) Jo Il dx

h
Jo In'1?dz
ol =_5

I

neH (I;) ff;“ n|? d

71.2

is attained on the eigenfunction sin7x, of the problem ¢” + A¢ = 0 on (0, h).

127
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Task 3.2.1 Solve a boundary—value problem
() = f,
v(0)=a, v(l)=0

with certain a(x) >0, f, a, and b by the finite element method with uniform elements
(i.e., h=1/N). Apply the residual method and compare the errors computed with the
true error distribution.

3.2.4 Explicit residual method in 2D case
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Residual method in 2D case Let ) be represented as a union 7;, of simplexes T;.
For the sake of simplicity, assume that 2 = Uf\ili and Vy, consists of piecewise affine
continuous functions. Then the Galerkin approximation wu; satisfies the relation

/ AVuy, - Vwy, dx = / fwh de, Ywy, € Von,
0 Q
where

Von = {wy € Vg | wy, € PXTY), T; € F}.
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In this case, negative norm of the residual is

Jo(fw — AV, - Vw) dzx
R _
L) | = 2 o)

2,0

Let pi : H' — Vy, be a continuous interpolation operator. Then, for the Galerkin
approximation

_ Jo(f (w = mpw) — AVuy, - V(w — mw)) da
| R(un) | = sup T .

2,0

For finite element approximations such a type projection operators has been con-
structed. One of the most known was suggested by Ph. Clément! and is often called
the Clement’s interpolation operator. Its properties play an important role in the a
posteriori error estimation method considered.

!Clément, Ph. Approximation by finite element functions using local regularization. (English) Revue Franc. Automat.
Inform. Rech. Operat. 9, R-2, 77-84 (1975).
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Clement’s Interpolation operator

Let E;; denote the common edge of the simplexes 7; and Tj. If s is an inner node of
the triangulation Fj,, then w, denotes the set of all simplexes having this node.
For any s, we find a polynomial p,(x) € P(w,) such that

/ (v —ps)gde =0 Yqe P'(w,).

Now, the interpolation operator 7, is defined by setting
mo(zs) = p(xs), Vs €€,
mo(zs) =0, Vg € 00.

It is a linear and continuous mapping of H'(Q) to the space of piecewise affine con-
tinuous functions.
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Interpolation estimates in 2D
Moreover, it is subject to the relations

lv = myolloz < ¢ diam (T)||v]|12.0y (T, (3.10)
1,2,wp(T})s (3.11)

where wy (T;) is the union of all simplexes having at least one common node with T;
and wp(T;) is the union of all simplexes having a common edge with T;.

lo = mvllo,m, < ol Byl 20

Interpolation constants ¢/ and (=7E] are LOCAL and depend on the

shape of patches wy(7;) and wg(T;).
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Quotient relations for the constants

Evaluation of ¢/ and (*5 requires finding exact lower bounds of the following variational
problems:

T — inf [ FRRNER diam(7;)

i weVp ||w — th||27Ti
and
w )
75 — inf H ‘ 1,2,wr(T;) |E¢j|1/2.

weVp Hw — th| 2,E;

Certainly, we can replace V; be H'(wy(T;)) and H'(wg(T})), respec-
tively, but, anyway finding the constants amounts solving func-
tional eigenvalue type problems !
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Let 0, = AVuy,. Then,

| R(up) | = sup Jolf (w — muw) — oy, - V(w — muw)) da:.

weVy

If v;; is the unit outward normal to E;;, then
/ op - V(w — muw) de =
T,

Z / opv)(w— mTpw)ds — / div op(w — mw) de,
E;;COT;
Since on the boundary w — m,w = 0, we obtain

S Jp (div oy + f)(w — myw) da
Vw20

weVp

| R(un) | = sup {

Zz 1Zj>l fE Uh Vij (w_WhIU) ds
||Vw||m '
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First term in sup

/ (divoy + f)(w — mw)de < ||div o, + flloz|w — maw|o,
T;

< ¢ ||div oy, + fllondiam (T;) |wl]1 2.0 (7).

Then, the first sum is estimated as follows:
N
Z/ (div oy + f)(w — muw)dx <
i=1 7T

N 1/2
2 .. .
< dl(Z (cF)? diam (7,7 div o, + fll%,n) ol 2.

where the constant d; depends on the maximal number of elements in the set wy(T5).
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Second term in sup For the second one, we have

N N
ZZ/E“j(O-h'Vij)(w—ﬂ'hw) dr <

i=1 j>i
N N
<Y Mionvig)llag, e 1EG Y wllh 2w <
i=1 j>i
N N , 1/2
< @(ZZ(#) \Ez-jmj<ah-mj>|\§,&j) [wlliz0.
i=1 j>i

where dy depends on the maximal number of elements in the set wg(T5).
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Residual type error estimate

By the above estimates we obtain

1/2
I (Uh I < OO ((Z dlam )2Hle op + f“g’ﬂ) +

i N N ) 1/2
+<ZZ(C£) |Eij‘||j(0h’yij)”§73ij) ) (3.12)

i=1 j>i

Here Cy = Cy(dy, dy). We observe that the right-hand side is the sum of local quantities
(usually denoted by eta(T;)) multiplied by constants depending on properties of the
chosen splitting Fj,.
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Error indicator for quasi-uniform meshes For quasi—uniform meshes all generic con-
stants ¢! have approximately the same value and can be replaced by a single constant
c1. If the constants ciEj are also estimated by a single constant co, then we have

1/2

N
| R(w) | <C| D (T | . (3.13)
i=1
where C' = C(¢y, 2, Cp) and
p
. . & :
n*(T) = cidiam (T)°|div o + fI3 7, + 5 D [Eilli(on vig)ll3 g,
EijcaTi

The multiplier 1/2 arises, because any interior edge is common for two elements.
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Comment 1 General form of the residual type a posteriori error estimates is as follows:

|lu —up|| < M(ug, 1, co, ...y, D),

where D is the data set, uy is the Galerkin approximation, and ¢;,i = 1,2,...IN are
the interpolation constants. The constants depend on the mesh and properties of the
special type interpolation operator. The number N depends on the dimension of V,
and may be rather large. If the constants are not sharply defined, then this functional
is not more than a certain error indicator. However, in many cases it successfully
works and was used in numerous researches.
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Comment 2 It is worth noting that for nonlinear problems the dependence between
the error and the respective residual is much more complicated. A simple example
below shows that the value of the residual may fail to control the distance to the exact

solution.
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3.3 A posteriori error indicators based on post—processing of
computed solutions

Post-—processingof approximate solutions is a numerical procedure intended
to modify already computed solution in such a way that the post—processed
function would fit some a priori known propertiesmuch better than the orig-
inal one.

3.3.1 Preliminaries

Let e denotes the error of an approximate solution v € V and £(v) : V' — R, denotes
the value of an error estimator computed on v.

Definition 3.3.1 The estimator is said to be equivalent to the error for the
approximations v from a certain subset V if

qEW) < le|| < EW)  YweV

Definition 3.3.2 The ratio
. E(v) —|le

le]

1s called the effectivity indexof the estimator £.

Ideal estimator has ¢.rf = 1. However, in real life situations it is hardly possible, so
that values i.¢; in the diapason from 1 to 2-3 are considered as quite good.
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In FEM methods with mesh size h one other term is often used:

Definition 3.3.3 The estimator £ is called asymptotically equivalent to the error if
for a sequence of approximate solutions {uy} obtained on consequently refined meshes
there holds the relation

i Sl

h—0 H’U, — UhH a

It is clear that an estimator may be asymptotically exact for one sequence of ap-
proximate solutions (e.g. computed on regular meshes) and not exact for another
one.
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General outlook. Typically, the function Tuy, (where T is a certain linear operator,
e.g., V) lies in a space U that is wider than the space U that contains Tu. If we have a
computationally inexpensive continuous mapping G such that G(Tv,) € U, Vv, € Vj.
then, probably, the function G(Tuy,) is much closer to Tu than Tuy,.

Tu,

Figure 3.1: Mapping to the set U

These arguments form the basis of various post-processing algorithms that change
a computed solution in accordance with some a priori knowledge of properties of the
exact solution.

If the error caused by violations of a priori known propertiesis dominant and the
post-processing operator G is properly constructed, then

|GTuy, — Tul| << ||Tu, — Tul| .

In this case, the explicitly computable norm ||GTuj; — Tuyl| can be used to evaluate
upper and lower bounds of the error.
Indeed, assume that there is a positive number a < 1 such that

|GTuy, — Tu|| < af|Tup, — Tul|.
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Then, for e = u;, — u we have
(1 —a)[[Tel| = (1 —a) |Tup — Tul| <
< || Tup, — Tu|| = [|GTup, — Tu|| <
S HGTuh - Tuh,H S
S HGTuh — TUH + HTuh — TUH S
< (14 a)||Tup — Tul|| = (1 + «) || Te]| .
Thus, if a << 1, then
| Tup, — Tul] ~ ||GTup — Tuyl|

and the right-hand can be used as an error indicator.

3.3.2 Post-processing by averaging

Post-processing operators are often constructed by averaging Twu; on finite element
patches or on the entire domain.

Integral averaging on patches

If Tuy, € L?, then post-processing operators are obtained by various averaging proce-
dures. Let €0; be a patch of M; elements, i.e.,

Q=15 j=12.M

Let P*(Q;, R?) be a subspace of U that consists of vector-valued polynomial functions
of degrees less than or equal to k. Define g; € P*(Q;,R?) as the minimizer of the
problem:

inf / lg — Tuy|” dz.
geP*(Q,RY)
Q;

The minimizer g; is used to define the values of an averaged function at some points
(nodes). Further, these values are utilized by an extension procedure that defines an
averaged function

GT’LLh Q) — R.



146 S. Repin. Lectures on A Posteriori Estimates.. University Saarbritken, Germany, DAAD PROGRAM 2008

Consider the simplest case. Let T be the operator V and uj; be a piecewise affine
continuous function. Then,

Vuy, € PO(Tij,]Rd) oneach Tj; C ;.

We denote the values of Vuy, on T;; by (Vuy)j.
Set k = 0 and find g; € P° such that

/\gi—Vthda:: mf /’g Vuh’ dr =

= G}DI(}f {g |€%] —2g - Z (Vun) ZJ|TZJ|+Z| (V)i sz|}

j=1 J=1
It is easy to see that g; is given by a weighted sum of (Vuy);;, namely,
M;
9i =

il

< |€%]

(Vuh)ij.

Set
G(Vuy)(x;) = g;.

Repeat this procedure for all nodes and define the vector-valued function GV (uy,)
by the piecewise affine prolongation of these values. For regular meshes with equal
|T5;], we have

M
gi = ; AR

Various averaging formulas of this type are represented in the form

9 =Y Xj(Vun)y, > Aj=1,
j=1 j=1
where \;; are the weight factors. For internal nodes, they may be taken, e.g., as follows

|ij]
o’

>\ij =

17ij| is the angle.
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However, if a node belongs to the boundary, then it is better to choose special
weights. Their values depend on the mesh and on the type of the boundary?

2see 1. Hlavicek and M. Krizek. On a superconvergence finite element scheme for elliptic systems. I. Dirichlet
boundary conditions. Aplikace Matematiky, 32(1987), No.2, 131-154.
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Discrete averaging on patches Consider the problem

where the points x4 are specially selected in (2;.
Usually, the points x4 are the so—called superconvergent points.
Let g; € P¥(€2;) be the minimizer of this problem.
If k=0, and T =V then

1 &
T T \Y s).
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Global averaging

Global averaging makes the post—processing not on patches, but on the whole
domain.

Assume that Tuy, € L? and find g, € V,,(Q) C U such that

1gn = Tunlle, = inf flgn — Tusllg-
gn€Vh(2)
The function g5 can be viewed as GTuy. Very often g, is a better image of Tu than
the functions obtained by local procedures.
Moreover, mathematical justifications of the methods based on global averaging

procedures can be performed under weaker assumptions what makes them applicable
to a wider class of problems®

Task 3.3.1 Solve the boundary-value problem
Au+ f=0, u=0onodf

by h-version FEM (use Matlab or another code). Apply the simplest gradient—averaging
error indicator to indicate the error distribution. Compare it with the distribution of
true error (the latter can be extracted from a solution on a much finer mesh).

3see, e.g., Carstensen, C.; Bartels, S. Each averaging technique yields reliable a posteriori error control in FEM on

unstructured grids. I: Low order conforming, nonconforming, and mixed FEM, Math. Comp., 71(2002)
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3.3.3 Superconvergence

Justifications of the gradient averaging method. Let u;, be a Galerkin approximation
of u computed on V},. For piecewise affine approximations of the diffusion problem we
have the estimate

IV(u—un)llyq < cth,  [lu—unllyq < coh?®

However, it was discovered? that in certain cases this rate may be higher.
For example it may happen that

lu(xy) — up(zs)| < Ch* g >0
at a superconvergent point x,.

Certainly, existence and location of superconvergent points strongly depends
on the structure of 7j,.

Superconvergence in terms of integral type norms. For example, approxi-
mate solutions of the problem

Au+f=0 in Q

are said to be supercomverging and an operator G possesses a superconver-
gence property in w C € if

[Vu — GV, < coht T,

where the constant ¢y may depend on higher norms of v and the structure
of 75,

4see, e.g., L. A. Oganesjan and L. A. Ruchovec. Z. Vycisl. Mat. i Mat. Fiz.,9(1969);
M. Zldmal. Lecture Notes. Springer, 1977;
L. B. Wahlbin. Lecture Notes. Springer, 1969.
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By exploiting the superconvergence properties, e.g.,
[Vu — GV, < coh!17,
while
IV~ Vi, < cah,
one can usually construct a simple post-processing operator G satisfying the condition
|GVuy, — Vul| < af|Vuy, — Vul|.

where the value of o decreases as h tends to zero.
Since

HGVuh—VuhH HVuh—VuH + HGVuh—VuH s
IGVuy — V|| > ||V, — V|| — |GV, — V.

where the first term in the right—hand side is of the order h and the second one is of
h'*9. We see that

<
>

HGVuh — VuhH ~ h
Therefore, we observe that in the decomposition
|V (up, —w)|| < ||Vun — GVuy|| + [|GVuy, — Vul|

asymptotically dominates the second directly computable term.
Thus, we obtain a simple error indicator:

IV (un = w)l| = [[Vun = GV -

Note that

~1+ch’

O\ 7]
o f =

||Vuh - GVuhH
so that this error indicator is asymptotically exact provided that wu; is a Galerkin
approximation, u is sufficiently regular and A is small enough.

Such type error indicators (often called ZZ indicatorsby the names of Zienkiewicz
and Zhu) are widely used as cheap error indicators in engineering computations °

Ssee, e.g., M. Ainsworth, J. Z. Zhu, A. W. Craig and O. C. Zienkiewicz. Analysis of the Zienkiewicz-Zhu a posteriori
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3.3.4 Post-processing by equilibration
For a solution of the diffusion problem we know that
dive 4+ f =0,
where 0 = AVu. This suggests an idea to construct an operator G such that
div (G(AVuy)) + f = 0.

If G possesses additional properties (linearity, boundedness), then we may hope that
the function GAVuy is closer to sig than AVwu; and use the quantity [[AVu, —
GAVuy,|| as an error indicator.

error estimator in the finite element method, Int. J. Numer. Methods Engrg., 28(1989). 1. Babuska and R. Rodriguez.
The problem of the selection of an a posteriori error indicator based on smoothing techniques, Internat. J. Numer.
Meth. Engrg., 36(1993). O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical
engineering analysis, Internat. J. Numer. Meth. Engrg., 24(1987)
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