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Chapter 1

Introduction

1.1 A priori and a posteriori conceptions.

In the 20th century, the theory of differential equations was mainly developed in the
context of

A Priori Conception
In it, for a problem

Au = f (1.1)

we must establish:

• I. Existence and uniqueness of u (mathematical correctness);

• II. Regularity (extra properties of u).

In the a priori conception, mathematical analysis of PDE’s is
concentrated on the EXACT solution u and its QUALITATIVE
PROPERTIES.

However, quantitative analysis of solutions to PDE’s generates new mathematical
problems that are often quite different from those in I and II.

Explicitly, exact solutions of real-life models are known in excep-
tional cases.

Therefore, approximation methods offer the only way of
QUANTITATIVE analysis of PDE’s.

5
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”Classical” way:
We study projections of (1.1) to sequences of finite-dimensional spaces

Ahuh = fh is a projection of Au = f on Vh ⊂ V, (1.2)

compute approximations uh numerically and try to justify their convergence to u.
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In other words, in the a priori conception mathematical analysis
of errors is mainly reduced to the question: HOW TO APPROX-
IMATE EXACT SOLUTION ”IN PRINCIPLE”.

Classical approximation theory (60’-80’) says that

‖u − uh‖V ≤ Chk, C > 0, k > 0 (1.3)

provided that

• (a) u has an extra regularity;

• (b) all Vh are ”regular” in some sense;

• (c) uh is the exact finite dimensional solution.

In practice, (a), (b), and (c) are often violated.
Even if they are satisfied, the constant C is either unknown or highly
overestimated. In spite of that, it was often (implicitly) assumed that if
(I) and (II) have been positively solved and a priori convergence estimate
has been established then the model is valid for numerical analysis. In
other words, a priori conception views Numerical Experiment as the LAST
(and ”technical”) step more related to engineers and codemakers than to
mathematicians.

Another widely speared ”belief”, is that results obtained by combining
standard blocks (codes) give almost exact solutions provided that the di-
mensionality of the corresponding discrete problems is sufficiently large.
Numerous standard codes and program complexes produce such results
and represent them in a nice graphical form. We are suggested to believe
in these pictures/numbers. Should we always believe?
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The general principle of scientific objectivity suggests that the mathe-
matical experiment must obey the same strict authenticity rules as those
commonly accepted in natural sciences and we need to answer the question:

WHAT IS THE ACCURACY OF MATHEMATICAL

EXPERIMENTS?

THEN WE WOULD KNOW WHAT THE DATA COM-

PUTED INDEED MEAN.

To understand the importance of this question the reader is offered to solve the
problem below.
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A ”baby” coupled problem. Find z satisfying the differential equation

z′′ − 9z′ − 10z = 0, z = z(x), x ∈ [0, 8],

z(0) = 1, z′(0) = aN−1 − aN ,

where a is a solution of the system Ba = f of the dimensionality N

bij =
2S2

i S
2
j

π

π∫

0

(
sin(iξ) sin(jξ) + sin(i+ j2)ξ

)
dξ,

i, j = 1, 2, ...N, fi = (i+ 1)4i, Si =
+∞∑

k=0

(
i

i+ 1

)k
.

Task 1.1.1 For N = 10, 50, 100, 200 find z(8) analytically and compare with numeri-
cal results obtained by computing the sums numerically, finding definite integrals with
help of quadratures formulas, solving the system of linear simultaneous equations by a
numerical method, and integrating the differential equation by a certain (e.g., Euler)
method.
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Errors arising in quantitative analysis of PDE’s

U Physical object/process
⇓
ε1 −→ Error of a model

⇓
u Differential model Au = f

⇓
ε2 −→ Approximation error

⇓
uh Discrete model Ahuh = fh

⇓
ε3 −→ Computational error

⇓
uǫh Numerical solution Ahuǫh = fh + ǫ.
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MODELING ERROR

Let U be a physical value that characterizes some process and u be a respective value
obtained from the mathematical model. Then the quantity

ǫ1 = |U − u|

is an error of the mathematical model.

Mathematical model always presents an ”abridged” version of a
physical object.
Therefore, ǫ1 > 0.

TYPICAL SOURCES OF MODELING ERRORS

• (a) ”Second order” phenomena are neglected in a mathematical model.

• (b) Problem data are defined with an uncertainty.

• (c) Dimension reduction is used to simplify a model.
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APPROXIMATION ERRORS

Let uh be a solution on a mesh of the size h. Then, uh encompasses the approxima-
tion error

ǫ2 = |u − uh|.
Classical error control theory is mainly focused on approximation errors.

In the next section, we give a concise overview of the a priori asymptotic
methods in error estimation.

NUMERICAL ERRORS

Finite–dimensional problems are also solved approximately, so that instead
of uh we obtain uǫh. The quantity

ǫ3 = |uh − uǫh |

shows an error of the numerical algorithm performed with a concrete com-
puter. This error includes

• roundoff errors,

• errors arising in iteration processes and in numerical integration,

• errors caused by possible defects in computer codes.

Roundoff errors. Numbers in a computer are presented in a floating point
format:

x = +
−

(i1
q

+
i2
q2

+ ...+
ik
qk

)
qℓ, is < q.

These numbers form the set Rqℓk ⊂ R. q is the base of the representation,
ℓ ∈ [ℓ1, ℓ2] is the power.

The set Rqℓk is not closed with respect to the operations +,−, ∗ !
Operations with plane vectors ARE RESTRICTED to those associated

with the dots marked! Certainly, in modern computers the amount of dots
is much bigger, but the principal structure is the same.
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1

2

3

0 1 2 3

Figure 1.1: The set Rqℓk ×Rqℓk
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Example.

k = 3,

a =

(
1

2
+ 0 + 0

)
∗ 25, b =

(
1

2
+ 0 + 0

)
∗ 21

b⇒
(

0 +
1

2
+ 0

)
∗ 22 ⇒

(
0 + 0 +

1

2

)
∗ 23 ⇒ (0 + 0 + 0) ∗ 24

a + b = a!?

Definition 1.1.1 The smallest floating point number which being added to 1 gives a
quantity other than 1 is called the machine accuracy.
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Numerical integration

∫ a

b

f(x)dx ∼=
n∑

i=1

cif(xi)h =

n/2∑

i=1

∼1

cif(xi)h +
∼δ

cn/2+1f(xn/2+1)h +...
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Two principal classes of problems in Mathematical Modeling

I. Computations on the basis of a reliable (certified) model.
Here modeling error ǫ1 is assumed to be small and uǫh gives a desired information

on U .
Then

‖U − uǫh‖ ≤ ǫ1 + ǫ2 + ǫ3 . (1.4)

II. Verification of a mathematical model.
Here physical data U and numerical data uǫh are compared to judge on the quality

of a mathematical model

‖ǫ1‖ ≤ ‖U − uǫh‖ + ǫ2 + ǫ3 . (1.5)

Thus, two major problems of mathematical modeling, namely, reliable computer
simulation, and verification of mathematical models by comparing physical
and mathematical experiments, require efficient methods able to provide COM-
PUTABLE AND REALISTIC estimates of ǫ2 + ǫ3 .
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r
2

.
1
r

u
.

v

SUMMARY: Reliable QUANTITATIVE ANALYSIS of PDE’s cannot be per-
formed without solving the following

MAIN ERROR CONTROL PROBLEM

Given the data (coefficients,a domain, boundary conditions) of a
boundary-value problem and a function v from the corresponding
(energy) space V , compute the radii r1 and r2 of two balls B(v, r1)
and B(v, r2) centered at v such that

u 6∈ B(v, r1) and u ∈ B(v, r2). (1.6)

We say that a method used to solve the above problem is sharp if one can find r1 and
r2 such that r2 − r1 ≤ ǫ for any given ǫ.
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. . .
.
.

...

v

u

..

If we wish to QUALITATIVELY analyze models based on PDE’s then in addition
to problems (I) and (II) we need to solve

• Problem III. Find computable estimates for NEIGHBORHOODS of a
generalized solution u.

If neighborhoods are generated by the topology of energy (Banach) space V, then
we need to have estimates

M (v, D) ≤ ‖u − v‖V ≤ M (v, D), ∀v ∈ V, (1.7)

where D denotes the set of known data and the functionals M (error majorant) and
M (error minorant) which must be

• directly computable;

• valid for any admissible approximations;

• do not attract special (e.g. extra regularity) properties of u or uh.

We call (1.7) guaranteed A POSTERIORI ESTIMATES or DEVIATION ESTIMATES.
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u.

regularity estimates

deviation estimates

Physical model

Mathematical model

Existence

Regularity estimatesDeviation estimates

In a sense Problem III is opposite to the regularity analysis.
In spite of its clear practical meaning, it is much less investigated
than existence (I) and regularity (II).



20 S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008

1.2 Mathematical background and notation

1.2.1 Vectors and tensors

By R
d and M

d×d we denote the spaces of real d-dimensional vectors and d×d matrices,
respectively. The scalar product of vectors is denoted by ·, and for the product of
tensors we use the symbol :, i.e.,

u · v = uivi, τ : σ = τijσij,

where summation (from 1 to d) over repeated indices is implied. The norms of vectors
and tensors are defined as follows:

|a| :=
√
a · a, |σ| :=

√
σ : σ.

Henceforth, the symbol := means ”equals by definition”. The multiplication of a
matrix A ∈ M

d×d and a vector b ∈ R
d is the vector, which we denote Ad. Matrixes

are usually denoted by capital letters (matrixes associated with stresses and strains
are denoted by Greek letters σ and ε). Any tensor τ is decomposed into the deviatoric
part τD and the trace tr τ := τii, so that τ := τD + 1

dI tr τ , where I is the unit tensor.
It is easy to check that

τ : I = tr τ, τD : I = 0, (1.8)

|τ |2 = |τD|2 +
1

d
tr τ 2, (1.9)

so that τ is decomposed into two parts (which sometimes are called deviatorical and
spherical).

We will use the algebraic Young’s inequality

2ab ≤ βa2 +
1

β
b2, (1.10)

which is valid for any β > 0.
For any pair of vectors a and b and any β > 0 we have a similar estimate

2a · b ≤ β|a|2 +
1

β
|b|2, (1.11)
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which implies the inequalities

|a+ b|2 ≤ (1 + β)|a|2 +
1 + β

β
|b|2, (1.12)

|a+ b|2 ≥ 1

1 + β
|a|2 − 1

β
|b|2. (1.13)

Similarly, for a pair of tensors σ and τ we have

2τ : σ ≤ β|τ |2 +
1

β
|σ|2, (1.14)

|τ + σ|2 ≤ (1 + β)|τ |2 +
1 + β

β
|σ|2. (1.15)

If H is a Hilbert space with scalar product (., .) and norm ‖ . ‖ associated with the
product, then it is easy to extend (1.11)–(1.13) to the elements of H.

The inequality (1.8) is a particular form of the more general Young’s inequality

ab ≤ 1

p
(βa)p +

1

p′

(
b

β

)p′
,

1

p
+

1

p′
= 1. (1.16)

Another integral relation is
∫

Ω

curl a · v dx =

∫

Ω

a · curl v dx−
∫

Γ

(a× n) · v ds. (1.17)

In the above relations, we assume that the functions are sufficiently regular so that
the corresponding volume and surface integrals exist.”

1.2.2 Spaces of functions

We denote a bounded connected domain in R
d by Ω and its boundary (which is

assumed to be Lipschitz continuous) by Γ. Usually, ω stands for an open subset of Ω.
The closure of sets is denoted by a bar and the Lebesgue measure of a set ω by the
symbol |ω|.
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By Lp(ω) we denote the space of functions summable with power p with norm

‖w‖p,ω :=



∫

ω

|w|pdx




1/p

.

Also, we use the simplified notation

‖w‖p := ‖w‖p,Ω, ‖w‖ := ‖w‖2,Ω.

The vector-valued functions with components that are square summable in Ω form
the Hilbert space L2(Ω,Rd). Analogously, L2(Ω,M d×d) is the Hilbert space of tensor-
valued functions (sometimes we use the special notation Σ for this space). If tensor-
valued functions are assumed to be symmetric, then we write M

d×d
s (and Σs instead

of L2(Ω,M d×d
s )). For v ∈ L2(Ω,Rd) and τ ∈ L2(Ω,M d×d), the norms are defined by

the relations

‖v‖2 :=

∫

Ω

|v|2dx and ‖σ‖2 :=

∫

Ω

|σ|2dx.

Since no confusion may arise, we denote the norm of L2(Ω) and the norm of the space
L2(Ω,Rd) by ‖ · ‖. The space of measurable essentially bounded functions is denoted
by L∞(Ω). It is equipped with the norm

‖u‖∞,Ω = ess sup
x∈Ω

|u(x)|.

By
◦
C∞(Ω) we denote the space of all infinitely differentiable functions with compact

supports in Ω. The spaces of k-times differentiable scalar- and vector-valued functions

are denoted by Ck(Ω) and Ck(Ω,Rd), respectively;
◦
Ck(Ω) is the subspace of Ck(Ω) that

contains functions vanishing at the boundary; P k(Ω) denotes the set of polynomial
functions defined in Ω ⊂ R

d, i.e., v ∈ P k(Ω) if

v =
∑

|α|≤m
aαx

α, m ≤ k,

where α := (α1, . . . , αd) is the so-called multi-index,

|α| = α1 + α2 + . . .+ αd, aα = aα1,...αd
,
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and xα = xα1xα2 . . . xαd.
For partial derivatives we keep the standard notation and write

∂f

∂xi
or f,i.

Usually, we understood them in a generalized sense: a function g = fi is called the
generalized derivative of f ∈ L1(Ω) with respect to the xi if it satisfies the relation

∫

Ω

fw,idx = −
∫

Ω

gwdx, ∀w ∈ C1
0(Ω). (1.18)

Generalized derivatives of higher orders are defined by similar integral relations.
By {{g}}S we denote the mean value of a function g on S, i.e.,

{{g}}S :=
1

|S|

∫

S

g dx

and g̃S := g − {{g}}S. The functions with zero mean form the space

∼
L

2(Ω) :=
{
q ∈ Q

∣∣∣ {{q}}Ω = 0
}
.

The space H(Ω, div ) is a subspace of L2(Ω,Rd) that contains vector-valued func-
tions with square-summable divergence, and H(Ω,Div ) is a subspace of Σ that con-
tains tensor-valued functions with square-summable divergence, i.e.,

H(Ω, div ) := {v ∈ L2(Ω,Rd) | div v := {vi,i} ∈ L2(Ω)},
H(Ω,Div ) := {τ ∈ L2(Ω,M d×d) | Div τ := {τij,j} ∈ L2(Ω,Rd)}.

Both spacesH(Ω, div ) andH(Ω,Div ) are Hilbert spaces endowed with scalar products

(u, v)div :=

∫

Ω

(u · v + div u div v)dx

and

(σ, τ)Div :=

∫

Ω

(σ : τ + Div σ · Div τ)dx,
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respectively. The norms ‖ · ‖div and ‖ · ‖Div are associated with the above-defined
scalar products.

Similarly, H(Ω, curl ) is the Hilbert space of vector-valued functions having square-
summable rotor, i.e.,

H(Ω, curl ) := {v ∈ L2(Ω,Rd) | curl v ∈ L2(Ω)},

where curl v :=
(
v3,2 − v2,3; v1,3 − v3,1; v2,1 − v1,2

)
. This space can be defined as the

closure of smooth functions with respect to the norm

‖w‖curl :=
(
‖w‖2

Ω + ‖curlw‖2
Ω

)1/2
.

The Sobolev spaces1 Wm,p(Ω) (where m and p are positive integer numbers) contain
functions summable with power p the generalized derivatives of which up to order l
belong to Lp. For a function f ∈Wm,p(Ω), the norm is defined as usual:

‖f‖m,p,Ω =



∫

Ω

∑

|α|≤m
|Dαf |p dx




1/p

.

Here α = {α1, . . . α2} is the multi index and

Dαv =
∂|α|v

∂xα1

1 . . . ∂xαd

d

is the derivative of order |α|.
The Sobolev spaces with p = 2 are denoted by the letter H, i.e.,

Hm(Ω) :=
{
v ∈ L2(Ω) | Dαv ∈ L2(Ω), ∀m : |α| ≤ m

}
.

These spaces belong to the class of Hilbert spaces. A subset of Hm(Ω) formed by the

functions vanishing on Γ is denoted by
◦
Hm(Ω).

1Introduced in S. L. Sobolev. Some Applications of Functional Analysis in Mathematical Physics, Izdt. Leningrad.
Gos. Univ., Leningrad, 1955,
English version: Translation of Mathematical Monographs, Volume 90, American Mathematical Society, Providence, RI,
1991.
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Embedding Theorems

Relationships between the Sobolev spaces and Lp(Ω) and Ck(Ω) are given by Embed-
ding Theorems.

Theorem 1.2.1 If p, q ≥ 1, ℓ > 0 and ℓ + n
q ≥ n

p , then W ℓ,p(Ω) is continuously
embedded in Lq(Ω). Moreover, if ℓ+ n

q >
n
p , then the embedding operator is compact.

Theorem 1.2.2 If ℓ− k > n
p , then W ℓ,p(Ω) is compactly embedded in Ck(Ω).

1.2.3 Boundary traces

The functions in Sobolev spaces have counterparts on Γ (and on other manifolds of
lower dimensions) that are associated with spaces of traces. Thus, there exist some
bounded operators mapping the functions defined in Ω to functions defined on the
boundary. For example, the operator γ : H1(Ω) → L2(Γ) is called the trace operator
if it satisfies the following conditions:

γv = v |Γ, ∀v ∈ C1(Ω), (1.19)

‖γv‖2,Γ ≤ cTΓ‖v‖1,2,Ω, (1.20)

where cTΓ is a positive constant independent of v. From these relations, we observe
that γv is a natural generalization of the trace defined for a continuous function (in
the pointwise sense). The image of γ is a subset of L2(Γ), which is the space H1/2(Γ).
The functions from other Sobolev spaces are also known to have traces in Sobolev
spaces with fractional indices. Thus, γ ∈ L

(
H1(Ω), H1/2(Γ)

)
and the space H1

0(Ω) is
the kernel of γ.

Also, for any φ ∈ H1/2(Γ), one can define a continuation operator

µ ∈ L(H1/2(Γ), H1(Ω))

such that
µφ = w, w ∈ H1(Ω), γw = φ on Γ
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and

‖φ‖H1/2,Γ ≤ cγ ‖w‖1,2,Ω , ‖w‖1,2,Ω ≤ cµ ‖φ‖H1/2,Γ . (1.21)

Using the operator γ, we define subspaces of functions vanishing on Γ or on some
part Γ1 of Γ. Usually, such subspaces are marked by the zero subindex, e.g.,

V0 := {v ∈ V | γv = 0 a.e. on Γ1} ,

Henceforth, we understand the boundary values of functions in the sense of traces, so
that the phrase ”u = φ on Γ” means that the trace γu of a function u defined in Ω
coincides with a given function φ defined on Γ (for the sake of simplicity, we usually
omit γ). If for two functions u and v defined in Ω we say that u = v on Γ, then we
mean that γ(u− v) = 0 on Γ.

1.2.4 Generalized derivatives and Sobolev spaces with negative indexes

For f ∈ L2(Ω), the functional

〈f,i, ϕ〉 := −
∫

Ω

f
∂ϕ

∂xi
dx (1.22)

is linear and continuous not only for functions in
◦
C∞(Ω) but also for all functions of

the space
◦
H1(Ω) (this fact follows from the density of smooth functions in

◦
H1(Ω) and

known theorems on the continuation of linear functionals). Such functionals can be
viewed as generalized derivatives of square summable functions. They form the space

H−1(Ω) dual to
◦
H1(Ω). It is easy to see that the quantity

|||||| f,i |||||| := sup
ϕ∈

◦
H1(Ω)
ϕ 6=0

|〈f,i, ϕ〉|
‖∇ϕ‖Ω

(1.23)

is nonnegative and finite. It can be used to introduce the norm for H−1(Ω).



S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008 27

1.2.5 Functional inequalities

In the subsequent chapters, we use several inequalities well known in functional anal-
ysis. For convenience of the reader, we collect and discuss them below.

First, we recall the inequality

|a · b| ≤
(

d∑

i=1

|ai|α
) 1

α
(

d∑

i=1

|bi|α
′

) 1
α′

, (1.24)

where 1
α′ + 1

α = 1 and a, b ∈ R
d. It is known as the discrete Hölder inequality. The

Hölder inequality in functional form is as follows:
∫

Ω

uvdx ≤ ‖u‖α,Ω‖v‖α′,Ω. (1.25)

Let u and v be two functions in Lα(Ω). Then
∫

Ω

(u+ v)αdx =

∫

Ω

u(u+ v)α−1dx+

∫

Ω

v(u+ v)α−1dx ≤

≤ ‖u‖α,Ω
(∫

Ω

(u+ v)(α−1)α′

)1/α′

+ ‖v‖α,Ω
(∫

Ω

(u+ v)(α−1)α′

)1/α′

=

= (‖u‖α,Ω + ‖v‖α,Ω)

(∫

Ω

(u+ v)(α−1)α′

)(α−1)/α

and we arrive at the Minkovski inequality
(∫

Ω

(u+ v)αdx

)1/α

≤ ‖u‖α,Ω + ‖v‖α,Ω (1.26)

For the functions in
◦
H1(Ω), we have the Friedrichs inequality

‖w‖Ω ≤ CFΩ‖∇w‖Ω, ∀w ∈
◦
H

1(Ω), (1.27)

where CFΩ is a positive constant independent of w. It is not difficult to observe that
the constant in (1.27) satisfies the relation

1

CFΩ
= λΩ := inf

w∈
◦
H1(Ω)
w 6=0

‖∇w‖
‖w‖ . (1.28)
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Let Ω ⊂ Ω̂. For any w ∈
◦
H1(Ω), we can define ŵ = w in Ω and ŵ(x) = 0 for any

x ∈ Ω̂ \ Ω. Obviously, ŵ ∈
◦
H1(Ω̂). Therefore,

λΩ ≥ inf
ŵ∈

◦
H1(Ω̂)
ŵ 6=0

‖∇ŵ‖
‖ŵ‖ = λCΩ̂

=
1

CF Ω̂

and we conclude that CFΩ ≤ CF Ω̂.
Assume that

Ω ⊂ Π := {x ∈ R
d | ai < x < bi, bi − ai = li}.

Then,

λΩ ≥ λΠ = π

√∑

i

1

l2i
,

and we obtain an explicit upper bound for CFΩ.
For w ∈ H1(Ω), the Friedrichs inequality has a more general form

‖w‖2
Ω ≤ c2FΩ


‖∇w‖2

Ω +

∫

Γ

|w|2 ds


 . (1.29)

where C2
FΩ can be estimated from above by the quantity

1

π2
∑
i

1
l2i

max {1, c̄} , where c̄ = max
Γ

{
1

φ
|∇φ · n|

}

and φ(x) is the first eigenfunction of the Laplace operator in Π The reader can find
estimates of the constants in Friedrichs inequality in the books by S. Mikhlin.

For w ∈ H1(Ω), the Poincaré inequality reads

‖w‖2
Ω ≤ C2

PΩ


‖∇w‖2

Ω +
( ∫

Ω

w ds
)2


 . (1.30)
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From (1.30) it follows that

‖w‖Ω ≤ CPΩ‖∇w‖Ω ∀w ∈
∼
L

2(Ω). (1.31)

If
Ω = Πl := {x ∈ R

d xi ∈ (0, li), li > 0},
then the Poincaré inequality takes the form

‖w‖2
Ω ≤ 1

|Πl|



∫

Πl

w dx




2

+
d

2

∫

Πl

d∑

i=1

l2iw
2
,idx. (1.32)

In continuum mechanics, of importance is the following assertion known as the
Korn’s inequality. Let Ω be an open, bounded domain with Lipschitz continuous
boundary. Then

∫

Ω

(
|w|2+|ε(w)|2

)
dx ≥ CKΩ‖w‖2

1,2,Ω ∀w ∈ H1(Ω,Rd), (1.33)

where CKΩ is a positive constant independent of w and ε(w) denotes the symmetric
part of the tensor ∇w, i.e.,

εij(w) =
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
.

It is not difficult to verify that the left-hand side of (1.33) is bounded from above
by the H1-norm of w. Thus, it represents a norm equivalent to ‖.‖1,2,Ω. The kernel
of ε(w) is called the space of rigid deflections and is denoted by R(Ω). If w ∈ R(Ω),
then it can be represented in the form w = w0 +ω0x, where w0 is a vector independent
of x and ω0 is a skew-symmetric tensor with coefficients independent of x. It is easy
to understand that the dimension of R(Ω) is finite and equals d+ d(d−1)

2 .

For the functions in
◦
H1(Ω), the Korn’s inequality is easy to prove. Indeed,

|ε(w)|2 =
1

4
(wi,j + wj,i)(wi,j + wj,i) =

=
1

4
(wi,jwi,j + wj,iwj,i + 2wi,jwj,i) =

1

2
(|∇w|2 + wi,jwj,i),



30 S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008

where the summation over repeated indices is implied. Therefore, for any w ∈
◦
C2(Ω)

we have
∫

Ω

|ε(w)|2dx =
1

2

∫

Ω

(
|∇w|2 + wi,jwj,i

)
dx =

1

2

∫

Ω

(
|∇w|2 − wiwj,ij

)
dx =

=
1

2

∫

Ω

(
|∇w|2 + wi,iwj,j

)
dx =

1

2

∫

Ω

(
|∇w|2 + |wi,i|2

)
dx ≥ 1

2
‖∇w‖2.

Hence,

‖∇w‖ ≤
√

2‖ε(w)‖ ∀w ∈
◦
C

2(Ω). (1.34)

Since
◦
C2(Ω) is dense in

◦
H1(Ω), this inequality is also valid for functions in

◦
H1(Ω).

The proofs of the Korn’s inequality (1.33) are much more complicated.

1.2.6 Convex analysis

Convex sets and functions

Consider a Banach space V . A set K ⊂ V is called convex if λ1v1 + λ2v2 ∈ K for all
v1, v2 ∈ K and all λ1, λ2 ∈ R+ such that λ1 + λ2 = 1.

Convex hull convK is the set of all convex combinations of all the elements of K,
i.e.,

convK =

{
v ∈ V | v =

m∑

i=1

λivi, vi ∈ K,

m∑

i=1

λi = 1, λi ≥ 0

}
.

It is obvious that K = convK if and only if K is a convex set. Let K be a convex set.
A functional J : K → R is said to be convex if

J(λ1v1 + λ2v2) ≤ λ1J(v1) + λ2J(v2) (1.35)

for all v1, v2 ∈ K and all λ1, λ2 ∈ R+ such that λ1 + λ2 = 1. A functional J is called
strictly convex if

J(λ1v1 + λ2v2) < λ1J(v1) + λ2J(v2) (1.36)

for all v1, v2 ∈ K (such that v1 6= v2) and λ ∈ (0, 1).
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A functional J is called concave (resp., strictly concave) if the functional (−J) is
convex (resp., strictly convex).

The functional

χK(v) =

{
0 if v ∈ K,

+∞ if v 6∈ K

is called the characteristic functional of the set K. It is clear that it is convex if and
only if the set K is convex.

Definition 1.2.1 A functional J : V → R is called proper if J(v) > −∞ for any
v ∈ V and J 6≡ +∞.

Any functional J : V → R is characterized by two sets:

domJ := {v ∈ V | J(v) < +∞},
epiJ := {(v, α) | v ∈ V, α ∈ R, J(v) ≤ α}.

The first set contains elements (functions) that give finite values to J . The second one
(called supergraph or epigraph) consists of “points” (v, α) ∈ V × R that lie “above”
the graph.

The set epiJ is convex if and only if J is a convex functional.

Proposition 1.2.1 If J is a proper convex functional, then

Vα := {v ∈ V | J(v) ≤ α, α ∈ R}

is convex.

Operations with convex sets and functionals

Intersection of convex sets K1 and K2 is a convex set K1 ∩K2. If J1 and J2 are two
convex functionals defined on a convex set K then the functionals α1J1 + α2J2 (for
α1, α2 ∈ R+) and max{J1, J2} are also convex. It is worth noting that the latter fact
remains valid for any amount of convex functionals, i.e., the upper bound taken over
any set of convex functionals is a convex functional. Therefore, convex functionals are
often represented as upper bounds of affine functionals.
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By definition, the space V ∗ consists of all linear continuous functionals on V . It is
called topologically dual to V . The value of v∗ ∈ V ∗ on v ∈ V is denoted by 〈v∗, v〉.
This product generates a duality pairing of the spaces V and V ∗. If V is a Banach
space, then V ∗ can also be normed by setting

‖v∗‖∗ := sup
v∈V

〈v∗, v〉
‖v‖ . (1.37)

Henceforth, we assume that the supremum (or infimum) of a quotient is taken with
respect to all elements of V , except for the zero element OV .

Any affine functional defined on elements of V has the form 〈v∗, v〉 − α, where
v∗ ∈ V ∗ and α ∈ R.

A functional space is called reflexive if it coincides with the bidual space V ∗∗ (i.e., if
there exists a one-to-one mapping of V to V ∗∗ and back that preserves the metric). All
the Hilbert spaces are reflexive. The same is true for the spaces Lp with 1 < p < +∞.

The theorem of F. Riesz asserts that for Hilbert spaces, any functional v∗ ∈ V ∗ can
be written in the form of a scalar product introduced in such a space, i.e.,

(u, v) = 〈v∗, v〉, ∀v ∈ V, (1.38)

where u is uniquely determined.
The functional J∗ : V ∗ → R defined by the relation

J∗(v∗) = sup
v∈V

{〈v∗, v〉 − J(v)} (1.39)

is said to be dual (or conjugate) to J .

Remark 1.2.1 If J is a smooth function that increases at infinity faster than any
linear function, then J∗ is the Legendre transform of J . The dual functionals were
studied by Young, Fenchel, Moreau, and Rockafellar.

The functional J∗ is also called polar to J .

The functional
J∗∗(v) = sup

v∗∈V ∗

{〈v∗, v〉 − J∗(v∗)} (1.40)
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is called the second conjugate to J (or bipolar). If J is a convex functional attaining
finite values, then J coincides with J∗∗.

To illustrate the definitions of conjugate functionals, consider functionals defined
on the Euclidean space Ed. In this case, V and V ∗ consist of the same elements:
d-dimensional vectors (denoted by ξ and ξ∗, respectively) and the quantity 〈ξ∗, ξ〉 is
given by the scalar product ξ∗ · ξ.

Let A = {aij} be a positive definite matrix. We have the following pair of mutually
conjugate functionals:

J(ξ) =
1

2
Aξ · ξ and J∗(ξ∗) =

1

2
A−1ξ∗ · ξ∗. (1.41)

Another example is given by the functionals

J(ξ) =
1

α
|ξ|α and J∗(ξ∗) =

1

α′ |ξ
∗|α′

, (1.42)

where 1
α + 1

α′ = 1. If ϕ is an odd convex function, then (ϕ(‖u‖V ))∗ = ϕ∗(‖u∗‖V ∗).

Subdifferential

Let a functional J : V → R takes a finite value at v0 ∈ V . The functional J is called
subdifferentiable at v0 if there exists an affine minorant l such that J(v0) = l(v0). A
minorant with this property is called the exact minorant at v0.

Obviously, any affine minorant exact at v0 has the form

l(v) = 〈v∗, v−v0〉+J(v0), l(v) ≤ J(v), ∀v ∈ V. = 〈v∗, v〉−(〈v∗, v0〉−J(v0)). (1.43)

From this relation, we see that if

J∗(v∗) < +∞, (1.44)

then the quantity 〈v∗, v0〉 − J(v0) is also finite, so that such a minorant exists. The
element v∗ is called a subgradient of J at v0. The set of all subgradients of J at v0

forms a subdifferential, which is usually denoted by ∂J(v0). It may be empty, may
contain one element or infinitely many elements.
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An important property of convex functionals follows directly from the fact that
they have an exact affine minorant at any point (at which the functional attains a
finite value). Assume that J is a convex functional and v∗ ∈ ∂J(v0). Then there exists
an affine minorant such that

〈v∗, v〉 − α ≤ J(v), ∀v ∈ V,

and 〈v∗, v0〉 − α = J(v0). Hence, we obtain

J(v) − J(v0) ≥ 〈v∗, v − v0〉. (1.45)

The inequality (1.45) represents the basic incremental relation for convex functionals.
For proper convex functionals, there exists a simple criterion that enables one verify
whether or not an element v∗ belongs to the set ∂J(v).

Proposition 1.2.2 The following two statements are equivalent:

J(v) + J∗(v∗) − 〈v∗, v〉 = 0, (1.46)

v∗ ∈ ∂J(v), (1.47)

v ∈ ∂J∗(v∗). (1.48)

Proof. Assume that v∗ ∈ ∂J(v). In accordance with (1.45), we have

J(w) ≥ J(v) + 〈v∗, w − v〉, ∀w ∈ V.

Hence,
〈v∗, v〉 − J(v) ≥ 〈v∗, w〉 − J(w), ∀w ∈ V

and, consequently,

〈v∗, v〉 − J(v) ≥ sup
w∈V

{〈v∗, w〉 − J(w)} = J∗(v∗). (1.49)

However, by the definition of J∗, we know that for any v and v∗

J∗(v∗) ≥ 〈v∗, v〉 − J(v). (1.50)

We observe that (1.49) and (1.50) imply (1.46).
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Assume that v ∈ ∂J∗(v∗). Then J∗(w∗) ≥ J∗(v∗) + 〈w∗ − v∗, v〉, so that

〈v∗, v〉 − J∗(v∗) ≥ sup
w∗∈V ∗

{〈w∗, v〉 − J∗(w∗)} = J∗∗(v).

On the other hand,

〈v∗, v〉 − J∗(v∗) ≥ J∗∗(v) = J(v),

and we again arrive at (1.46).
Assume that (1.46) holds. By the definition of J∗, we obtain

0 = J(v) + J∗(v∗) − 〈v∗, v〉 ≥ J(v) − J(w) − 〈v∗, v − w〉,

where w is an arbitrary element of V. Thus,

J(w) − J(v) ≥ 〈v∗, w − v〉, ∀w ∈ V,

which means that J(v) + 〈v∗, v − w〉 is an exact affine minorant of J (at v) and,
consequently, (1.47) holds.

The proof of (1.48) is quite similar.

Definition 1.2.2 Let J and J∗ be a pair of conjugate functionals. Then

DJ(v, v
∗) := J(v) + J∗(v∗) − 〈v∗, v〉

is called the compound functional.

From Proposition 1.2.2 it follows that DJ is nonnegative and vanishes only if the
arguments satisfy (1.47) and (1.48), which are also called the duality relations and very
often represent the constitutive relations of a physical model. Compound functionals
play an important role in the a posteriori error estimation of nonlinear problems.
They serve as penalty functionals that penalize errors caused by dissatisfaction of the
duality relations. For this reason, we denote the compound functionals by the letter
D.

Note that the relation DJ(v, v
∗) ≥ 0 generates inequalities that can be viewed as

generalizations of the Young’s inequality (cf. (1.10)–(1.16)):

〈v∗, v〉 ≤ J(v) + J∗(v∗). (1.51)
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In particular, if V and V ∗ coincide with R
d and J(v) = |v|α

α , then J∗(v∗) = |v∗|α′

α′ and
(1.37) implies the estimate

v∗ · v ≤ |v|α
α

+
|v∗|α′

α′ , ∀ v, v∗ ∈ R
d. (1.52)

For convex functions we have the Jensen’s inequality

Proposition 1.2.3 Assume that J is a proper convex functional defined on V , vi,
i = 1, 2, . . . , d, are given elements of V and λi ∈ R+ meet the condition

d∑

i=1

λi = 1.

Then

J

(
d∑

i=1

λivi

)
≤

d∑

i=1

λiJ(vi). (1.53)

This inequality also has an integral form. Let J : R → R be a convex function,
Ω ⊂ R

d, v : Ω → R be a continuous function, and λ : Ω → R be an integrable function
that satisfies the conditions∫

Ω

λ(x) dx = 1, λ(x) ≥ 0 in Ω.

Then, the inequality reads as follows:

J

(∫

Ω

λ(x)v(x) dx

)
≤
∫

Ω

λ(x)J(v(x)) dx. (1.54)

Gâteaux differentiation

Finally, we recall some basic notions related to the differentiation of convex functionals.

Definition 1.2.3 We say that J has a weak derivative J ′(v0) ∈ V ∗ (at the point v0)
in the sense of Gâteaux if

lim
λ→+0

J(v0 + λw) − J(v0)

λ
= 〈J ′(v0), w〉, ∀w ∈ V. (1.55)



S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008 37

Assume that J is differentiable in the above sense and v∗ ∈ ∂J(v0). Then for any
v ∈ V we know that

J(v) − J(v0) ≥ 〈v∗, v − v0〉.
Set v = v0 + λw, where λ > 0. Now, we have

J(v0 + λw) − J(v0) ≥ λ〈v∗, w〉.

Therefore,

〈J ′(v0), w〉 = lim
λ→+0

J(v0 + λw) − J(v0)

λ
≥ 〈v∗, w〉,

and
〈J ′(v0) − v∗, w〉 ≥ 0

for any w ∈ V . This inequality means that, in such a case, the Gâteaux derivative
coincides with v∗.

1.2.7 Uniformly convex functionals

Consider a pair of topologically dual spaces Y and Y ∗ is its topologically dual coun-
terpart. Let Υ : Y → R be a nonnegative functional such that Υ(y) = 0 if and only
if y = OY (zero element of Y ).

Definition 1.2.4 A convex functional J : Y → R is called uniformly convex in
B(OY , ρ) if there exists a functional Υρ 6≡ 0 such that for all y1, y2 ∈ B(OY , ρ) the
following inequality holds:

J

(
y1 + y2

2

)
+ Υρ(y1 − y2) ≤

1

2
(J(y1) + J(y2)) . (1.56)

From (1.56) it is clear that any uniformly convex functional is convex in B(OY , ρ).
Now we establish two important inequalities that hold for uniformly convex functionals
assuming that Υρ is even, i.e., Υ(y) = Υ(−y) ∀y ∈ B(OY , ρ).

Proposition 1.2.4 If J : Y → R is uniformly convex and Gâteaux differentiable in
B(OY , ρ), then for any y, z ∈ B(OY , ρ) the following relations hold:

J(z) ≥ J(y) + 〈J ′(y), z − y〉 + 2Υρ(z − y) (1.57)
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and
〈J ′(z) − J ′(y), z − y〉 ≥ 4Υρ(z − y). (1.58)

Proof. By convexity and differentiability we have

Υρ(z − y) + J

(
z + y

2

)
≤ 1

2
J(z) +

1

2
J(y)

and

J(y) +
〈
J ′(y),

z − y

2

〉
≤ J

(
z + y

2

)
.

Hence,

Υρ(z − y) ≤ J(z) − J(y) −
〈
J ′(y), z − y

〉
. (1.59)

Analogously, we deduce the estimate

2Υρ(y − z) ≤ J(y) − J(z) +
〈
J ′(z), z − y

〉
. (1.60)

It is easy to see that (1.58) follow from (1.59) and (1.60).
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1.3 Generalized formulations of BVP’s and existence of so-

lution

”Solution of a (boundary-value) problem
is a notion of indefinite meaning.”

H. Poincaré

Take the problem

∆u+ f = 0 in Ω (1.61)

u = u0 on ∂Ω (1.62)

as the basic example.
How should we understand u?
In the 19th century the problem was understood in the classical sense:
find u ∈ C2(Ω) ∩ C(Ω̄) such that (1.62) is satisfied in the pointwise sense and

u,11 + u,22 + f = 0

at ALL points of Ω, where u,ss is understood as the classical derivative.
Immediately the question rises: can we always find such u? Unlike for ODE’s, this

question occurred to be so difficult that the answer was found only about one hundred
years of studies that completely reconstructed the whole mathematical building. On
this way, a lot of mistakes was made and at the same time the fundament of modern
PDE was created by outstanding mathematicians as Weierstrass, Banach, Hilbert,
Poincaré, Sobolev, Courant, Ladyzhenskaya and many others.

The concept of generalized solutions to PDE’s came from Petrov-Bubnov-Galerkin
method2

The idea was to find uN =
N∑
i=1

αiwi

∫

Ω

(∆uN + f)wi dx = 0 ∀wi, i = 1, 2, ...N

2B. G. Galerkin. Beams and plates. Series in some questions of elastic equilibrium of beams and plates (approximate
translation of the title from Russian). Vestnik Ingenerov, St.-Peterburg, 19(1915), 897-908.
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Equivalently, it means that uN is such that the residual of the differential equation
is orthogonal to the finite dimensional space VN formed by linearly independent wi.

The key idea of generalized solutionis a logical extension of the Petrov-Galerkin
idea, namely:

Generalized solution is a function that makes the residual orthogonal to V:
∫

Ω

(∆u+ f)w dx = 0 ∀w

Integration by parts leads to the so–called generalized formulation of the problem:

find u ∈
◦
H1(Ω) + u0 such that

∫

Ω

∇u · ∇w dx =

∫

Ω

fw dx ∀w ∈
◦
H

1(Ω)

This idea admits wide extensions 3 to many differential problems representable in the
form: for a certain linear continuous functional f (from the space V ∗ topologically
dual to V ) find u such that

B(u,w) =< f,w > w ∈ V.

Here a symmetric form B : V × V → R, where V is a Hilbert space, is called
V − elliptic if ∃c1 > 0, c2 > 0 such that

B(u, u) ≥ c1‖u‖2, ∀u ∈ V

| B(u, v) |≤ c2‖u‖‖v‖, ∀u, v ∈ V

How to prove that such a statement is correct?

First proofs were based on

3see e.g., O. A. Ladyzhenskaya, The boundary value problems of mathematical physics. Springer-Verlag, New York,
1985
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Theorem 1.3.1 (Lax-Milgram Lemma) For a bilinear form B there exists a lin-
ear bounded operator A ∈ L(V ,V) such that

B(u, v) = (Au, v), ∀u, v ∈ V

It has an inverse A−1 ∈ L(V ,V), such that ‖A‖ ≤ c2, ‖A−1‖ ≤ 1
c1
.

Proof. 1. Take u ∈ V and consider a linear functional

v → B(u, v) = l(v),

where u is a given element in V . We have

| l(v) |=| B(u, v) |≤ c2‖u‖‖v‖.

Therefore, l(v) ∈ V ∗ and there exists ω ∈ V , such that

l(v) = B(u, v) = (ω, v). ∀v ∈ V

Set ω = Au. Evidently, A : V → V is a linear operator and

B(u, v) = (Au, u), ∀u, v ∈ V

(Au, u) ≤ c2‖u‖‖v‖.

Set v = Au, then
(Au,Au) ≤ c2‖u‖‖v‖ = c2‖u‖‖Au‖

and, consequently,
‖Au‖ ≤ c2‖u‖,

so that ‖A‖ ≤ c2.
2. Now we show that L = A(u) is a subspace in V (i.e., close linear manifold). The

fact that L is a lineal follows from the linearity of A.
Note that

A(u, u) = B(u, u) ≥ c1‖u‖2.

On the other hand,
(Au, u) ≤ ‖Au‖‖u‖
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From here, we conclude that
‖Au‖ ≥ c1‖u‖, (1.63)

Next, L contains all limits of converging sequences. i.e., if ωn → ω in V and ωn ∈ L,
then ω ∈ L.

Indeed, ∃un ∈ V , such that Aun = ωn. By (1.63), we have

‖ωm − ωn‖ ≥ c1‖um − un‖
and un is a fundamental sequence. Since V is a full space, this sequence converges to
u ∈ V . Since A is a continuous operator, Aun → Au.

On the other hand, Aun = ωn → ω as n → ∞. Thus, ω = Au and, therefore,
ω ∈ L.

3. L is a subspace of V . Assume that ∃u0 ∈ V such that u0 /∈ L.
By the Banach-Han theorem ∃ℓ(v) ∈ V ∗ such that

ℓ(u0) = 1, ℓ(v) = 0. ∀v ∈ L

The functional ℓ(u) admits the presentation ℓ(v) = (v, ω∗), where ω∗ ∈ V . Hence,

(u0, ω∗) = 1, (v, ω∗) = 0 ∀v ∈ L

and
(u0, ω∗) = 1, (Au, ω∗) = 0 ∀u ∈ V

Set u = ω∗, then (Aω∗, ω∗) = 0. On the other hand,

(Aω∗, ω∗) ≥ c1‖ω∗‖2

and ω∗ ≡ 0. But then (u0, ω∗) = 1 is not true.
Hence, A(V ) coincides with V and, therefore A is a one-to-one mapping of V to

V , which means that A−1 exists.
In (1.63) ‖Au‖ ≥ c1‖u‖ we set v = Au. Then

‖v‖ ≥ c1‖A−1v‖ or ‖A−1v‖ ≤ 1

c1
‖v‖ ∀v ∈ V

and we find that

‖A−1‖ ≤ 1

c1
.
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Existence via LM Lemma

Consider the abstract problem: find u ∈ V , such that

B(u, v) = l(v), ∀v ∈ V (1.64)

where l ∈ V ∗.

Theorem 1.3.2 Let B be a V -elliptic bilinear form and l ∈ V ∗. Then, (1.64) has a
unique solution and

‖u‖ ≤ 1

c1
‖l‖. (1.65)

Proof. There exists w ∈ V such that

l(v) = (v, w), ∀v ∈ V

and ‖u‖ = ‖l‖. By LM Lemma, B(u, v) = (Au, v) and (1.64) is equivalent to

(Au, v) = (w, v), ∀v ∈ V

which is equivalent to Au = w or u = A−1w. Hence, u is unique. By LM Lemma, we
also conclude that

‖u‖ = ‖A−1w‖ ≤ ‖A−1‖ ‖w‖ ≤ 1

c1
‖w‖.
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1.3.1 Variational approach to elliptic PDE’s

Variational approach arose in the 19th century shortly after the first PDE’s have been
presented.

It brings the origin from the Fermat theorem:

If f is a differentiable function which attains minimum at x̄, then
f ′(x̄) = 0.

Later, when L. Euler created the calculus of variations he extended this principle to

1D variational problems and established that the minimizer of the integral
T∫
0

g(t, y, ẏ)dt

is described by an ODE (later named Euler equation).
It is easy to show that this principle can be extended to multidimensional varia-

tional problems.
Consider the problem:

Find u(x) such that u = u0 on ∂Ω and

J(u) = inf
v
J(v), (1.66)

where infimum is taken over all admissible v (i.e., such that J(v) is finite) satisfying
v = u0 on ∂Ω.

What is the relation that must satisfy u if

J(v) =

∫

Ω

(
1

2
|∇v|2 − fv)dx ?

Let w be an admissible (smooth) function vanishing at the boundary. Then, for
any λ > 0 we have

J(u) ≤ J(u+ λw) =

∫

Ω

(
1

2
|∇(u+ w)|2 − f(u+ w))dx (1.67)

Then ∫

Ω

(λ∇u · ∇w +
λ2

2
|∇w|2 − λfv)dx ≥ 0
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∫

Ω

(∇u · ∇w − λfv)dx ≥
∫

Ω

−λ
2
|∇w|2dx

Since λ is arbitrary (!), we find that (1.67) can hold only if
∫

Ω

(∇u · ∇w − fv)dx ≥ 0 ∀w

Take −w instead of w, then we arrive at the conclusion that
∫

Ω

(∇u · ∇w − fv)dx = 0 ∀w. (1.68)

In fact, we have derived the generalized formulation of a boundary-value problem
using the variational argumentation.

Regrettably, in the 19th century instead of paying attention to (1.68) they contin-
ued manipulations in order to obtain ”solutions” expressed in terms of the classical
derivatives.

Certainly, the classical statement also follows from (1.68) if we use the relations

a · ∇w + wdiv a = div (aw)∫

Ω

div (aw)dx =

∫

∂Ω

(a · n)wds

and transform (1.68) as follows
∫

Ω

∇u · ∇w dx = −
∫

Ω

(div∇u)wdx+

∫

∂Ω

(∇u · n)wds.

Since w = 0 on ∂Ω, we arrive at
∫

Ω

(div∇u+ f)wdx = 0 ∀w (1.69)

Now, we use Du-Bois-Reymond Lemmathat says that if g is continuous and
∫

Ω

gwdx = 0 ∀ smooth w vanishing on ∂Ω,
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then g = 0.
Hence, we conclude that if the minimizer is sufficiently regular, then it is a solution

of the problem

∆u+ f = 0, in Ω (1.70)

u = u0 on ∂Ω. (1.71)
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In 19th century this approach was believed to give a way of proving that the
classical solution (i.e., a function u satisfying (1.70)–(1.70)) indeed exists. This way
was strongly advocated by Reimann who offered the following simple ”existence proof”
for the case f = 0 and smooth ∂Ω:

It is clear that for any smooth w satisfying w = u0 on ∂Ω we have

J(w) =
1

2

∫

Ω

|∇w|2 dx ≥ 0.

Hence, values of the (energy) functional are bounded from below and we can
construct a sequence of smooth functions {ws} such that

J(ws) → exact lower bound.

From here, it was concluded that there exists a smooth function that corre-
sponds to the minimal value of the functional.

However, shortly Karl Weierstrass discovered a logical gap in this argumentation:
a sequence of smooth functions may have a nonsmooth limit, for which the equation
∆u = 0 has no sense.

In spite of that this simple ”proof” have failed, it occurred to be very thought-
provoking, especially for Weierstrass, who started his fundamental studies of varia-
tional problems.

Regrettably, at that time proper understanding of existence problems was hardly
possible because one of the main parts of modern mathematics, namely, FUNC-
TIONAL ANALYSIS, did not exist. Weierstrass was one of those have created its
fundament.

Theorem 1.3.3 (Weierstrass 1) Let K be a closed bounded set R
d and J be a con-

tinuous function defined on K. Then, the problem

inf
v∈K

J(v) (1.72)

has a solution u ∈ K such that J(u) gives the infimum.
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Proof. Let {vk} be a minimizing sequence, i.e., J(vk) → inf
K
J . We can extract

a converging subsequence out of it (Boltzano-Weierstrass Lemma), which we denote
{vks

}. Since K is closed we know that the limit of this sequence (we denote it by u)
belongs to K. Since J is continuous, we find that

inf
K
J = lim

s→∞
J(vks

) = J(u).

Thus, u is the minimizer.
Regrettably this Theorem cannot be applied to our case. Our problem is as follows

inf
w∈V0

∫

Ω

(
1

2
|∇w|2 − fw)dx

where V0 =
◦
H1(Ω), i.e.,

K =
◦
H

1(Ω).

This set is not bounded !

Theorem 1.3.4 (Weierstrass 2) Let V be a full metric space, K ⊂ V be a compact
set and J be a lower semicontinuous functional4 defined and finite on K. Then, the
problem

inf
v∈K

J(v) (1.73)

has a solution u ∈ K such that J(u) gives the infimum.

Proof. Let {vk} be a minimizing sequence, i.e., J(vk) → inf
K
J . Since K is compact,

we can extract a converging subsequence out of it, which we denote {vks
}. Since K

is closed we know that the limit of this sequence (we denote it by u) belongs to K.
Since J is lower semicontinuous, we find that

inf
K
J = lim

s→∞
J(vks

) ≥ J(u).

4We recall that the functional is lower semicontinuous at v0 if limvs→v0
J(vs) ≥ J(v0)
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Thus, u is the minimizer.
In [Weierstrass 2] we have rather strong conditions for the set K (compactness).

Except some special cases, it is impossible to guarantee this property.
Therefore, the idea is to reduce requirements for K and strengthen for J .
Namely: we replace compactness by weak compactness.
This is a very practical change because any closed bounded subset of a Hilbert

space is weakly compact!

Theorem 1.3.5 (Weierstrass 3) Let K be weakly compact and J be a weakly lower
semicontinuous functional5 defined on K. Then, the problem

inf
v∈K

J(v) (1.74)

has a solution u ∈ K such that J(u) gives the infimum.

Proof. Let {vk} be a minimizing sequence, i.e., J(vk) → inf
K
J . We can extract a

weakly converging subsequence

{vks
}⇀ u ∈ K.

Since J is weakly lower semicontinuous, we find that

inf
K
J = lim

s→∞
J(vks

) ≥ J(u).

Thus, u is the minimizer.
Theorem [Weierstrass 3] is more suitable for us because the set

K := {w ∈ V0 | J(w) ≤ J(v1)}

is bounded. Indeed,

1

2
‖∇w‖2 −

∫

Ω

fwdx ≤ J(v1),

‖∇w‖2 ≤ J(v1) + ‖f‖‖w‖ ≤ J(v1) + ‖f‖CF‖∇w‖
≤ (J(v1) +

1

2
C2
F‖f‖2) +

1

2
‖∇w‖2.

5i.e., the functional that possesses lower semicontinuity with respect to weakly converging sequences.
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and ‖∇w‖ ≤ const.
How to verify weak lower semicontinuity ?
Hopefully, there is a simple rule:

Convex lower semicontinuous functional is weakly lower semicontinuous.

Typically, the functionals arising in variational formulations of boundary-value prob-
lems are continuous and convexity is easy to check.

We recall that J is convex if

J(λ1v1 + λ2v2) ≤ λ1J(v1) + λ2J(v2), λ1 + λ2 = 1, λi ≥ 0.

Since

(λ1v1 + λ2v2)
2 = λ2

1v
2
1 + 2λ1λ2v1v2 + λ2

2v
2
2

≤ λ2
1v

2
1 + λ1λ2v

2
1 + λ1λ2v

2
2 + λ2

2v
2
2

≤ λ1v
2
1 + λ2v

2
2

we observe that quadratic functionals are convex.
Thus, for our particular problem [Weierstrass 3] is enough to establish existence of

a minimizer and, consequently, existence of a solution to PDE.
However, the method is extendable to a much wider class of problems.

Definition 1.3.1 The functional J is called coercive on K ⊂ V if

J(vk) → +∞ as ‖vk‖V → +∞ (1.75)

Coercivity plays an important role in establishing existence results.

Lemma 1.3.1 Let J is coercive, then the set

Vα := {v ∈ V | J(v)) ≤ α}

is bounded.
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Proof. Assume the opposite, i.e., that Vα is unbounded and it is not contained in any
ball

B(0, d) = {v ∈ V | ‖v‖V ≤ d}.

This means that for any integer k, one can find vk ∈ Vα such that ‖vk‖V > k. Then,
b the coercivity we conclude that

J(vk) → +∞ as k → +∞.

But this is impossible because the elements of Vα are such that the functional does
not exceed α.

Theorem 1.3.6 (Weierstrass 4) 6 Let J : K → R be convex, continuous and co-
ercive, i.e., and K be a convex closed subset of a Hilbert space V . Then the problem

inf
w∈K

J(w)

has a minimizer u. If J is strictly convex, then the minimizer is unique.

Proof. Let {vk} be a minimizing sequence, i.e., J(vk) → inf
K
J . The set

K1 := {v ∈ K | J(v) ≤ J(v1)}

is bounded (see Lemma). Evidently, it is also closed. In a Hilbert space all closed
bounded sets are weakly compact. Therefore, we can extract a weakly converging
subsequence

{vks
}⇀ u ∈ K1.

Since J is convex and continuous, it is weakly lower semicontinuous, we find that

inf
K
J = lim

s→∞
J(vks

) ≥ J(u).

Hence u is the minimizer.
6see, e.g., I. Ekeland and R. Temam. Convex analysis and variational problems. North-Holland, Amsterdam, 1976.
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Assume that J is strictly convex, i.e.,

J(λ1v1 + λ2v2) < λ1J(v1) + λ2J(v2), λ1 + λ2 = 1, λi > 0.

If u1 and u2 are two different minimizers, then we immediately arrive at a contradiction
because

J(λ1u1 + λ2u2) < λ1J(u1) + λ2J(u2) = inf
K
J.

Example 1.
Take J(w) = 1

2B(w,w)− < f,w >and let K = V .
Then

1

2
B(w,w) ≥ c1‖w‖2

V
, | < f,w > | ≤ ‖f‖V ∗ ‖w‖V .

We see, that

J(w) ≥ c1‖w‖2
V
− ‖f‖V ∗ ‖w‖V → +∞ as ‖w‖V → +∞

Since J is strictly convex and continuous we conclude that a minimizer exists
and unique.

Example 2.
Take J(w) =

∫
Ω (1

p |∇w|p − fw)dx
and let
K = W 1,p(Ω),
where p > 1.

This functional is convex and continuous on W 1,p. Its coercivity is also obvious
(indeed a|x|p − bx tends to infinity if x→ +∞).

This variational problem is related to a nonlinear PDE called p− Laplacian.
Example 3 Consider the problem

J(w) =
∫

Ω (ν2 |∇w|2 + k∗|∇w| − fw)dx
and let
K =

◦
H1(Ω).

This nonlinear model is related to the so-called Bingham fluid (µ, k∗ are positive
constants defined by viscosity and plasticity properties of the fluid).
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Task 1.3.1 Using Theorem [Weierstrass 4] prove that this variational problem has a
unique solution.
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Example 4. Consider the problem
J(w) =

∫
Ω (1

2|∇w|2 − cw)dx
and let
K = {w ∈

◦
H1(Ω) | |∇w| ≤ k∗}.

This nonlinear model is related to the so-called elasto-plastic torsion of a long bar.

Task 1.3.2 Using Theorem [Weierstrass 4] prove that this variational problem has a
unique solution.

Comment. Limits of applicability: Violations of the conditions in [Weierstrass
4] that arise in practical problems are due to:

• 1. Nonconvexity of the functional J .

• 2. Nonconvexity of K.

• 3. Nonreflexivity of V .

1. Nonconvex problems.Phase transitions in solids:
∫

Ω

(g(∇w) − fw)dx, g = min{g1, g2}

Here g1 and g2 are two energy functionals related to two different phases. In these
problems a minimizing sequence may (strongly) converge to nothing and ”solutions”
are presented by structures with rapidly oscillating layers.

Lower semicontinuous regularization is required, which amounts constructing CON-
VEX or QUASICONVEX envelope of g.

2. Optimal control problems with control in the main operator part.

inf
K
J(η, w)

K := {(η, w) | A(η)w + f = 0}

The set K may be nonconvex and, therefore, may be not weakly compact. Nonex-
istence arises in the form of the so called ”sliding regimes”.



S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008 55

Mathematically, the so-called G-closure of the operator set is required.
3. Problems with linear growth.
Typical problem is the nonparametric minimal surface problem

J(v) =

∫

Ω

√
1 + |∇w|2dx.

The functional J is defined on the Sobolev space V := W 1,1, so that we set

K := {w ∈ V | w = u0 on ∂Ω}.

This functional is convex and continuous on V . Since J(w) ≥ ‖∇w‖ it is coercive on
K. Also, K is convex and closed (with respect to convergence in V ).

However, the variational problem may have no solution because W 1,1 is a nonre-
flexive space. For such spaces, we cannot say that CONVEXITY+BOUNDEDNESS
implies WEAK COMPACTNESS.

Practically important classes of engineering problems related to such problems are:
Capillary surface and perfect plasticity problems.

Here minimizing sequence may converge to a discontinuous function. There-
fore, special approximation methods are required.

1.3.2 PDE analysis via minimax theory

Henceforth, we will consider the problem

divA∇u+ f = 0 in Ω ,

u = u0 on ∂1Ω ,

A∇u · n = Fon ∂2Ω ,

c21|ξ|2 ≤ A(x)ξ · ξ ≤ c22|ξ|2 ∀ξ ∈ R
d , for a.e. x ∈ Ω ,

where
u0 ∈ H1(Ω) , f ∈ L2(Ω) , F ∈ L2(∂2Ω) .
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Notation.

V := H1(Ω) basic space,

V0 := {v ∈ V | v = 0 on ∂1Ω},
V0 + u0 := {v ∈ V | v = w + u0, w ∈ V0} energy space

V̂ := L2(Ω) extended (nonconforming) energy space,

Q := L2(Ω; Rd) extended space for fluxes

Q̂ := H(Ω; div ) space for fluxes

Q̂∂2Ω := {y ∈ Q̂ | y · n
∣∣
∂2Ω

∈ L2(∂2Ω)} reduced space for fluxes.

We recall that ‖q‖div is the norm in H(Ω; div ):

‖q‖div := (‖q‖2 + ‖div q‖2)1/2 ∀q ∈ Q

and

||| q |||:=



∫

Ω

Aq · q dx




1/2

, q ∈ Q

||| q |||∗:=



∫

Ω

A−1q · q dx




1/2

Note that,

c̄21|ξ|2 ≤ A−1(x)ξ · ξ ≤ c̄22|ξ|2 ∀ξ ∈ R
d , for a.e. x ∈ Ω

with c̄1 = 1/c2, c̄2 = 1/c1.
In the so-called mixed formulations of PDE’s the solution can is viewed as a pair

of functions that give a saddle point to the Lagrangian

L(v, q) :=

∫

Ω

(
∇v · q − 1

2
A−1q · q

)
dx− ℓ(v) ,

where ℓ(v) =
∫

Ω fv dx+
∫
∂2Ω

Fv ds.
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The problem of finding (u, p) ∈ V0 + u0 ×Q such that

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀q ∈ Q , ∀v ∈ V0 + u0 (1.76)

leads to is the so-called Primal Mixed Formulation
Which relations follow from (1.76)?
Take the left-hand inequality

L(u, p+ λη) ≤ L(u, p), ∀η ∈ Q, λ > 0

Then
∫

Ω

(λ∇u · η − λ2

2
A−1η · η − λA−1q · η)dx ≤ 0;

∫

Ω

(∇u · η − A−1q · η)dx ≤
∫

Ω

λ

2
A−1η · η;

∫

Ω

(∇u · η − A−1q · η)dx = 0 ∀η ∈ Q

Take the right-hand inequality

L(u, p) ≤ L(u+ w, p), ∀w ∈ V0.

Then ∫

Ω

(∇w · p− fw)dx−
∫

∂2Ω

Fwds ≥ 0 ∀w ∈ V0.

If p ∈ ˆ̂
Q∂2Ω then we conclude that

div p+ f = 0 and p · n = F on ∂2Ω.

Thus, we see that the saddle-point (u, p) ∈ (V0 + u0) ×Q satisfies the relations
∫

Ω

(
A−1p−∇u

)
· q dx = 0 ∀q ∈ Q , (1.77)

∫

Ω

p · ∇w dx− ℓ(w) = 0 ∀w ∈ V0 . (1.78)
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In the Primal Mixed Formulation the constitutive relation

p = A∇u

is satisfied in L2(Ω)- sense and the conservation law

div p+f= 0

and the boundary condition p·n= F on ∂2Ω are satisfied in a weak sense.

An introduction to the theory of saddle-points.

Consider the abstract saddle-point problem. Let K ⊂ V and M ⊂ Q Find (u, p) ∈
K ×M such that

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀q ∈M , ∀v ∈ K (1.79)

Which conditions could guarantee that the minimax problem is stated
correctly and the saddle point exists?

First, we assume that

• V and Q are reflexive Banach spaces (e.g., Hilbert spaces), K and M be convex
and closed subsets of V and M , respectively.

• The functional v 7→ L(v, q) be convex and lower semicontinuous for any q ∈M .

• The functional q 7→ L(v, q) be concave and upper semicontinuous for any v ∈ K.

However, these conditions are not sufficient to guarantee that a saddle-point exists!
Note that L generates two functionals:

J(v) := sup
q∈M

L(v, q) (1.80)

and
I∗(q) := inf

v∈K
L(v, q). (1.81)

The functionals J and I∗ generate two variational problems.
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Problem P . Find u ∈ K such that

J(u) = inf P := inf
v∈K

J(v). (1.82)

Problem P∗. Find p ∈M such that

I∗(p) = supP∗ := sup
q∈M

I∗(q). (1.83)

Henceforth, Problems P and P∗ are called primal and dual, respectively. They are
closely related to the saddle-point problem.

How are these two problems related?

First, we establish one relation that holds regardless of the structure of the Lagrangian.

Sup Inf and Inf Sup

Lemma 1.3.2 Let L(x, y) be a functional defined on the elements of two nonempty
sets X and Y . Then

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y). (1.84)

Proof. It is easy to see that

L(x, y) ≥ inf
ξ∈X

L(ξ, y), ∀x ∈ X, y ∈ Y.

Taking the supremum over y ∈ Y , we obtain

sup
y∈Y

L(x, y) ≥ sup
y∈Y

inf
ξ∈X

L(ξ, y), ∀x ∈ X.

The left-hand side depends on x, while the right-hand side is a number. Thus, we
may take infimum over x ∈ X and obtain the inequality

inf
x∈X

sup
y∈Y

L(x, y) ≥ sup
y∈Y

inf
ξ∈X

L(ξ, y).
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Therefore, we always have

sup P∗ ≤ inf P (1.85)

Let us prove that if a saddle-point exists, then its components are solutions
of Problems P and P∗ and (1.85) holds as equality.

First, we present a simple saddle-point criterion.

Proposition 1.3.1 If there exist a constant α such that

L(u, q) ≤ α, ∀q ∈M, (1.86)

and
L(v, p) ≥ α, ∀v ∈ K, (1.87)

then (u, p) is a saddle point. Moreover, we have the relation

α = inf
v∈K

sup
q∈M

L(v, q) = sup
q∈M

inf
v∈K

L(v, q). (1.88)

From (1.86) and (1.87), we obtain

L(u, p) ≤ α ≤ L(u, p).

Therefore, L(u, p) = α and

L(u, q) ≤ L(u, p) ≤ L(v, p), ∀v ∈ K, ∀y ∈M,

which means that (u, p) is a saddle point. Since

sup
q∈M

L(u, q) = L(u, p) = α

and
inf
v∈K

L(v, p) = L(u, p) = α,
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we have

inf P = inf
v∈K

sup
q∈M

L(v, q) ≤ sup
q∈M

L(u, q) = α,

supP∗ = sup
q∈M

inf
v∈K

L(v, q) ≥ inf
v∈K

L(v, p) = α.

In view of Lemma, we arrive at (1.88) .

Proposition 1.3.2 The set of all saddle points of the Lagrangian L has the form
K0 ×M0, where K0 and M0 are convex subsets of K and M , respectively.

Proof. Let (u1, p1) and (u2, p2) be two different saddle points. Then

L(u1, q) ≤ L(u1, p1) = α = L(u2, p2) ≤ L(v, p1),

L(u2, q) ≤ L(u1, p1) = α = L(u2, p2) ≤ L(v, p2),

where v and q are arbitrary elements of the sets K and M , respectively. From the
first relation, we obtain

L(u2, p1) ≥ α,

and from the second one we have

L(u2, p1) ≤ α.

Now, Proposition 1.3.1 implies that (u2, p1) is a saddle point. The same conclusion
is obviously true for (u1, p2). Let u1 and u2 be two different elements of K0. Then,

L(u1, q) ≤ L(u1, p1) = α, ∀q ∈M,

L(u2, q) ≤ L(u2, p1) = α, ∀q ∈M.

We assumed that v 7→ L(v, q) is convex. Therefore, for any positive λ1 + λ2 = 1 we
have

L (λ1u1 + λ2u2, q) ≤ λ1L(u1, q) + λ2L(u2, q) ≤ α.

Since L(v, p1) ≥ α, ∀v ∈ K, we deduce the opposite inequality

L (λ1u1 + λ2u2, p1) ≥ α.

It remains to conclude that L (λ1u1 + λ2u2, p1) = α. Hence, λ1u1 + λ2u2 ∈ K0.
Now we state the main theorem that establishes a link between the solutions of

Problems P and P∗ and the saddle points of Problems L.
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Theorem 1.3.7 The following two statements are equivalent:

1. there exists a pair of elements u ∈ K and p ∈M such that

J(u) = inf P , (1.89)

I∗(p) = supP∗, (1.90)

inf P = supP∗ (1.91)

2. (u, p) is a saddle point of the Lagrangian L on K ×M.

Moreover, any of the above two assertions implies the principal relation

I∗(p) = L(u, p) = J(u). (1.92)

Proof. Let the first assumption be true. Then

L(u, q) ≤ sup
q∈M

L(u, q) = J(u) = α, ∀q ∈M,

L(v, p) ≥ inf
v∈K

L(v, p) = I∗(p) = α, ∀v ∈ K.

According to Proposition 1.3.1, (u, p) is a saddle point. Let (u∗, p) be a saddle point,
i.e.,

L(u, q) ≤ L(u, p) ≤ L(v, p), ∀v ∈ K, q ∈M.

From this double inequality we obtain

J(u) = sup
q∈M

L(u, q) ≤ L(u, p) ≤

≤ L(v, p) ≤ sup
q∈M

L(v, q) = J(v), ∀v ∈ K,

and

I∗(p) = inf
v∈K

L(v, p) ≥ L(u, p) ≥

≥ L(u, q) ≥ inf
v∈K

L(v, q) = I∗(q), ∀q ∈M.
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Hence, u ∈ K and p ∈M are solutions. Furthermore,

L(u, p) ≤ sup
q∈M

L(u, q) = J(u) ≤ L(u, p),

L(u, p) ≥ inf
v∈K

L(v, p) = I∗(p) ≥ L(u, p),

and the relation (1.92) follows.
Before closing this concise review of saddle-point theory, we shall present two as-

sertions that may be useful in checking the correctness of particular saddle-point
problems.

Theorem 1.3.8 If the assumptions imposed on L hold and the sets K and M are
bounded, then L possesses at least one saddle point and

inf P = supP∗.

Theorem 1.3.9 If the assumptions imposed on L hold and the sets K hold and there
exist elements p0 ∈M and u0 ∈ K such that

L(vk, p0) → +∞ for any sequence {vk} ∈ K

such that ‖vk‖V → +∞,

L(u0, qk) → −∞ for any sequence {qk} ∈M

such that ‖qk‖Y ∗ → +∞ .

Then, L has at least one saddle point.

Combining the conditions of the above two theorems, one can prove, for example,
that a saddle point exists if K is bounded and the coercivity condition for q holds (or
M is bounded and coercivity condition for v holds).

It is also worth noting that the basic relation

inf P = supP∗

is true even if only one of the coercivity conditions hold. Proofs of all these results
and a more detailed exposition of saddle-point theory can be found in Ekeland and
Temam.
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Now we apply the general theory to diffusion problem Take the Lagrangian

L(v, q) =

∫

Ω

(∇v · q − A−1q · q − fv)dx−
∫

∂2Ω

Fvds

It generates two functionals.

J(v) := sup
q∈Q

L(v, q) =
1

2
||| ∇v |||2 −ℓ(v)

leads to minimization problem

inf
w∈V0+u0

J(w),

which has a unique solution u (apply Theorem [Weierstrass 4]).
Consider another problem:

sup
v∈V0+u0

∫

Ω

(∇v · q − A−1q · q − fv)dx−
∫

∂2Ω

Fvds

We can represent v = u0 + w, where w ∈ V0. Obviously this supremum is finite only
for

q ∈ Qℓ := {q ∈ Q |
∫

Ω

(∇w · q − fw)dx−
∫

∂2Ω

Fwds = 0 ∀w ∈ V0}

and for such q we have

I∗(q) := −1

2
||| q |||2∗ −ℓ(u0) +

∫

Ω

∇u0 · q dx .

Hence, we arrive at the dual problem:

sup
q∈Qℓ


−1

2
||| q |||2∗ −ℓ(u0) +

∫

Ω

∇u0 · q dx
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Note that the functional −I∗ is convex and continuous on Q. Moreover, it is coercive.
The set Qℓ is an affine manifold, so that it is convex. It is easy to see that it is closed
with respect to convergence in Q.

By [Weierstrass 4] we establish existence of a maximizer p.
It remains to show that

J(u) = I∗(p).

We know that J(u) ≥ I∗(p). Take q̄ := A∇u. Note that
∫

Ω

A∇u · ∇wdx = ℓ(w) ∀w ∈ V0.

Thus q̄ ∈ Qℓ and
∫

Ω

∇u0 · q̄dx− ℓ(u0) =

∫

Ω

∇u · q̄ − ℓ(u) +
∫

Ω

∇(u0 − u) · q̄ − ℓ(u0 − u) =

∫

Ω

∇u · A∇u− ℓ(u).

Also

−1

2
||| q̄ |||2∗= −1

2

∫

Ω

A−1A∇u · ∇u dx = −1

2

∫

Ω

A∇u · ∇u

and we find that

I∗(q̄) =
1

2
||| ∇u ||| −ℓ(u) = J(u).

Hence the saddle point formulation is correct!
Such a pair (u, p) exists and satisfies the relations

inf
v∈V0+u0

J(v) := inf P = L(u, p) = supP∗ := sup
q∈Qℓ

I∗(q) , (1.93)

We have found one more formulation of our boundary-value problem which
is mathematically correct. It can be used to find approximate solutions by
algorithms developed for saddle-point problems.

However, there exists ANOTHER saddle-point formulation of the same problem.
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Dual Mixed Method (DMM)

Another mixed formulation arises if we represent L in a somewhat different form.
First, we introduce the functional g : (V0 + u0) × Q̂→ R by the relation

g(v, q) :=

∫

Ω

(∇v · q + v(div q)) dx .

We have

L(v, q) =

∫

Ω

(
∇v · q − 1

2
A−1q · q

)
dx− ℓ(v) =

= g(v, q) −
∫

Ω

v(div q) dx− 1

2
||| q |||2∗ −ℓ(v) .

Introduce the set

Q̂F := {q ∈ Q̂ | g(w, q) =

∫

∂2Ω

Fw ds ∀w ∈ V0} .

Note that for q ∈ Q̂F we have

g(v, q) = g(w + u0, q) = g(w, q) + g(u0, q) =

=

∫

∂2Ω

Fw ds+ g(u0, q) ∀w ∈ V0 .

Therefore, if the variable q is taken not from Q but from the narrower set Q̂F , then
the Lagrangian can be written as

L̂(v, q) = g(v, q) −
∫

Ω

(v(div q) − fv)dx− 1

2
||| q |||2∗ −

∫

∂2Ω

Fv ds =

− 1

2
||| q |||2∗ −

∫

Ω

v(div q) dx−
∫

Ω

fv dx−
∫

∂2Ω

Fu0 ds+ g(u0, q) .

We observe that the new Lagrangian L̂
is defined on a wider set of primal functions v ∈ V̂ , but uses a narrower set Q̂F for
the fluxes.
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The problem of finding (û, p̂) ∈ V̂ × Q̂F such that

L̂(û, q̂) ≤ L̂(û, p̂) ≤ L̂(v̂, p̂) ∀q̂ ∈ Q̂F , ∀v̂ ∈ V̂ (1.94)

lead to is the so-called Dual Mixed Method7

From (1.94) we obtain the necessary conditions for the dual mixed formulation.Since

L̂(û, q̂) ≤ L̂(û, p̂) ∀q̂ ∈ Q̂F ,

we have

− 1

2
||| p̂+ λη |||2∗−

∫

Ω

û(div (p̂+ λη) − fû)dx−
∫

∂2Ω

Fu0 ds+ g(u0, p̂+ λη) ≤

− 1

2
||| p̂ |||2∗ −

∫

Ω

û(div p̂) dx−
∫

Ω

fû dx−
∫

∂2Ω

Fu0 ds+ g(u0, p̂),

where λ is a real number and η is a function in Q̂0 := Q̂F with F = 0. Now, arrive at
the relation

−λ
∫

Ω

(A−1p̂ · η + û(div η))dx+λg(u0, η) ≤
λ2

2

∫

Ω

A−1η · ηdx.

Rewrite it as ∫

Ω

(A−1p̂ · η + û(div η))dx−g(u0, η) ≥
λ

2

∫

Ω

A−1η · ηdx.

Since λ > 0 can be taken arbitrarily small, the latter relation may hold only if∫

Ω

(A−1p̂ · η + ûdiv η)dx−g(u0, η) ≥ 0.

But η is an arbitrary element of a linear manifold Q̂0, so that +η can be replaced by
−η what leads to the conclusion that∫

Ω

(A−1p̂ · η + ûdiv η)dx−g(u0, η) = 0 ∀η ∈ Q̂0.

7see, e.g., F. Brezzi and M. Fortin
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From

L̂(û, p̂) ≤ L̂(û+ v̂, p̂) ∀v̂ ∈ V̂ := L2(Ω)

we observe that the terms of L̂ linear with respect to the ”pressure” must vanish.
Namely, we obtain

∫

Ω

(v̂div p̂+ fv̂)dx = 0

Thus, we arrive at the system
∫
Ω

(
A−1p̂ · q̂ + (div q̂)û

)
dx = g(u0, q̂) ∀q̂ ∈ Q̂0 , (1.95)

∫
Ω

(div p̂+ f)v̂ dx = 0 ∀v̂ ∈ V̂ . (1.96)

We observe that now the condition

div p̂+ f = 0

is satisfied in a ”strong” (L2) sense, the Neumann type boundary condition is viewed
as the essential boundary condition, and the relation

p̂ = A∇û

and the Dirichlet type boundary condition are satisfied in a weak sense.
These properties of the DMM lead to that the respective finite dimensional formu-

lations are better adapted to the satisfaction of the equilibrium type relations for the
fluxes. This fact is important in many applications where a sharp satisfaction of the
equilibrium relations is required.

The Lagrangian L̂ also generates two functionals

Ĵ(v̂) := sup
q̂∈Q̂F

L̂(v̂, q̂) and Î∗(q̂) := inf
v̂∈V̂

L̂(v̂, q̂) .

The two corresponding variational problems are

inf
v̂∈V̂

Ĵ(v̂) and sup
q̂∈Q̂F

Î∗(q̂).



S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008 69

Theyare called Problems P̂ and P̂∗, respectively. Note that the functional Ĵ (unlike
J) has no simple explicit form. However, we can prove the solvability of Problem P̂
by the following Lemma.

Lemma 1.3.3 For any v̂ ∈ V̂ and F ∈ L2(∂2Ω) there exists pv ∈ Q̂F such that

div pv + v̂ = 0 in Ω , (1.97)

||| pv |||∗≤ CΩ (‖v̂‖ + ‖F‖∂2Ω) . (1.98)

Proof. We know that the boundary-value problem

divA∇uv + v̂ = 0 in Ω ,

uv = 0 on ∂1Ω ,

A∇uv · n = F on ∂2Ω

possesses the unique solution uv ∈ V0.
For this problem the energy estimate

||| ∇uv |||≤ CΩ (‖v̂‖ + ‖F‖∂2Ω)

holds. Let pv := A∇uv. We have

div pv + v̂ = 0.

Obviously, pv ∈ Q̂F and, since

||| pv |||2∗=
∫

Ω

A−1(A∇uv) · (A∇uv) dx =||| ∇uv |||2 ,

we find that (1.98) also holds.
�
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By the Lemma we can easily prove the coercivity of Ĵ on V̂ . Indeed,

Ĵ(v̂) ≥ L̂(v̂, αpv) =

− 1

2
||| αpv |||2∗ −α

∫

Ω

v̂(div pv) dx−
∫

Ω

fv̂ dx−
∫

∂2Ω

Fu0 ds+ g(u0, αp
v) =

= −1

2
α2 ||| pv |||2∗ +α‖v̂‖2 − ‖f‖‖v̂‖ + g(u0, αp

v) −
∫

∂2Ω

Fu0 ds .

Here |g(u0, αp
v)| ≤ α‖pv‖div ‖u0‖1,2,Ω and

‖pv‖2
div = ‖pv‖2 + ‖div pv‖2 ≤ 1

c̄1
||| pv |||2∗ +‖v̂‖2 ≤

≤ 1

c̄1
C2

Ω (‖v̂‖ + ‖F‖∂2Ω)2 + ‖v̂‖2 .

Therefore

Ĵ(v̂) ≥ −1

2
α2C2

Ω‖v̂‖2 + α‖v̂‖2 + Θ(‖v̂‖) + Θ0 ,

where Θ(‖v̂‖) contains the terms linear with respect to ‖v̂‖ and Θ0 does not depend
on v̂. Take α = 1/C2

Ω. Then

Ĵ(v̂) ≥ 1

2C2
Ω

‖v̂‖2 + Θ(‖v̂‖) + Θ0 −→ +∞ as ‖v̂‖ → ∞ .

It is not difficult to prove that the functional Ĵ is convex and lower semicontinuous.
Therefore, Problem P̂ has a solution û.

Inf-Sup condition for the dual mixed formulation

Lemma implies the inf-sup condition

inf
φ∈L2(Ω)

ψ∈L2(∂2Ω)

sup
q∈Q̂F

∫
Ω

φdiv q dx+
∫
∂2Ω

ψq · n ds

‖q‖div (‖φ‖2 + ‖ψ‖2
∂2Ω

)1/2
≥ C0 > 0 .
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The Dual Problem with respect to the Lagrangian L̂: Let us now construct

the dual functional Î∗. It is easy to see that

Î∗(q̂) = inf
v̂
L̂(v̂, q̂) =

= inf
v̂



−

1

2
||| q̂ |||2∗−

∫

Ω

v(div q̂)dx−
∫

Ω

fvdx−
∫

∂2Ω

Fu0ds+g(u0, q̂)



 =

= −1

2
||| q̂ |||2∗ +g(u0, q̂) −

∫

∂2Ω

Fu0 ds

provided that div q̂ + f = 0 (in the L2-sense). In all other cases Î∗(q̂) = −∞.
Since div q̂ = −f , we find that the dual functional for such a case has the form

Î∗(q) = −1

2
||| q̂ |||2∗ +

∫

Ω

(∇u0 · q̂ − fu0) dx−
∫

∂2Ω

Fu0 ds

=

∫

Ω

∇u0 · q̂dx−
1

2
||| q̂ |||2∗ −ℓ(u0) ,

Since q̂ ∈ Q̂F , we have (recall that div q̂ = −f)
∫

Ω

∇w · q̂dx = −
∫

Ω

(div q̂)wdx+

∫

∂2Ω

Fwds ∀w ∈ V0 .

we see that q̂ satisfies the relation
∫

Ω

∇w · q̂dx = ℓ(w) ∀w ∈ V0 .

In other cases, Î∗(q̂) = −∞.
Thus, Problems P∗ and P̂∗ coincide and are reduced to the maximization of I∗ on

the set Qℓ. This means that

supP∗ = sup P̂∗.
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Since the saddle point of L̂ exists, we have

L̂(û, p̂) = inf P̂ = sup P̂∗,

but
sup P̂∗ = supP∗ = inf P .

Thus, we infer that

inf P̂ = inf P .

Thus, we conclude that u ∈ V0 + u0 (minimizer of P) also minimizes Ĵ on V̂ .
Analogously, if p ∈ Qℓ is the maximizer of Problem P∗, then∫

Ω

∇w · p dx =

∫

Ω

fw dx+

∫

∂2Ω

Fw ds ∀w ∈ V0 .

From here we see that div p+ f = 0 a.e. in Ω and, hence,∫

Ω

(∇w · p+ (div p)w) dx =

∫

∂2Ω

Fw ds ∀w ∈ V0 ,

that is p ∈ Q̂F . Thus, p is also the maximizer of Problem P̂∗.
The reverse statement that the solutions of P̂ , P̂∗ are also the solutions of P , P∗

is not difficult to prove as well.

Hence, both mixed formulations have the same solution (u, p) which

is in fact the generalized solution of our problem.

1.4 A priori error estimation methods

First error relation

First we present the algebraic identity

1

2
B(u− v, u− v) =

1

2
B(v, v)− < f, v > + (1.99)

+ < f, u > −1

2
B(u, u) −B(u, v−u)+ < f, v−u > =

= J(v) − J(u) −B(u, v−u)+ < f, v−u >
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From this identity we derive two important results:

• (a) Minimizer u satisfies B(u,w) =< f,w > ∀w;

• (b) Error is subject to the difference of functionals.

Integral identity

Let us show (a), i.e., that from (1.99) it follows the identity

B(u, v − u) =< f, v − u > ∀v ∈ K.

Indeed, assume the opposite, i.e. ∃v̄ ∈ K such that

B(u, v̄ − u)− < f, v̄−u >= δ > 0 (v̄ 6= u!)

Set ṽ := u+ α(v̄ − u), α ∈ R. Then ṽ − u = α(v̄ − u) and

1

2
B(u− ṽ, u− ṽ) +B(u, ṽ−u)− < f, ṽ−u >=

=
α2

2
B(v̄ − u, v̄ − u) + αδ = J(ṽ) − J(u) ≥ 0

However, for arbitrary α such an inequality cannot be true. Denote a = B(v̄−u, v̄−u).
Then in the left–hand side we have a function 1/2α2a2 + αδ, which always attains
negative values for certain α. For example, set α = −δ/a2. Then, the left–hand side
is equal to −1

2δ
2/a2 < 0 and we arrive at a contradiction.

Error estimate

Now, we show (b). From

1

2
B(u− v, u− v) =

= J(v) − J(u) −B(u, v−u)+ < f, v−u >
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we obtain the error estimate 8:

1

2
B(u− v, u− v) = J(v) − J(u). (1.100)

which immediately gives the projection estimate.

Projection estimate

Let uh be a minimizer of J on Vh ⊂ V . Then

1

2
B(u− uh, u− uh) = J(uh) − J(u) ≤ J(vh) − J(u) =

=
1

2
B(u− vh, u− vh) ∀ vh ∈ Vh.

and we observe that

B(u− uh, u− uh) = inf
vh∈Vh

B(u− vh, u− vh) (1.101)

Projection type estimates serve a basis for deriving a priori convergence estimates.

Interpolation in Sobolev spaces

A priori rate convergence estimates are based upon two two key points:
PROJECTION ERROR ESTIMATE and INTERPOLATION OF FUNCTIONS IN
SOBOLEV SPACES.

Interpolation theory investigates the difference between a function in a Sobolev
space and its piecewise polynomial interpolant. Basic estimate on a simplex Th is

|v − Πhv|m,t,Th
≤ C(m,n, t)

(
h

ρ

)m
h2−m‖v‖2,t,Th

,

and on the whole domain

|v − Πhv|m,t,Ωh
≤ Ch2−m‖v‖2,t,Ωh

.

Here h is a the element size and ρ is the inscribed ball diameter.
8 S. G. Mikhlin. Variational methods in mathematical physics. Pergamon, Oxford, 1964.
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Asymptotic convergence estimates

Typical case is m = 1 and t = 2. Since

B(u− uh, u− uh) ≤ B(u− Πhu, u− Πhu) ≤ c2‖u− Πhu‖2

for

B(w,w) =

∫

Ω

∇w · ∇w dx

we find that

‖∇(u− uh)‖ ≤ Ch|u|2,2,Ω.

provided that

• Exact solution is H2 – regular;

• uh is the Galerkin approximation;

• Elements do not ”degenerate” in the refinement process.

A priori convergence estimates cannot guarantee that the error monotonically de-
creasesas h→ 0.

Besides, in practice we are interested in the error of a concrete approximation on
a particular mesh. Asymptotic estimates could hardly be helpful in such a context
because, in general, the constant C serves for the whole class of approximate solutions
of a particular type. Typically it is either unknown or highly overestimated.

Remark 1.4.1 A priori convergence estimates have mainly a theoretical value: they
show that an approximation method is correct ”in principle.

Remark 1.4.2 For these reasons, a quite different approach to error control is rapidly
developing. Nowadays it has already formed a new direction: A Posteriori
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Chapter 2

A posteriori error estimation methods
developed in 1900-1975

2.1 Runge’s rule

At the end of 19th century a heuristic error control method was suggested by C. Runge
who investigated numerical integration methods for ordinary differential equations.

Heuristic rule of C. Runge If the difference between two approximate solu-
tions computed on a coarse mesh Th with mesh size h and refined mesh Thref

with mesh size href (e.g., href = h/2) has become small, then both uhref
and

uh are probably close to the exact solution.

In other words, this rule can be formulated as follows:

If uh − uhref
is small then uhref

is close to u

where · is a certain functional or mesh-dependent norm.

Also, the quantity uh − uhref
can be viewed (in terms of modern termi-

nology) as a certain a posteriori error indicator.

Runge’s heuristic rule is simple and was easily accepted by numerical analysts.

Remark 2.1.1 However, if we do not properly define the quantity I·,
for which I·uh − uhref

is small, then the such a principle may be not true.

77
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One can present numerous examples where two subsequent elements of an ap-
proximation sequence are close to each other, but far from a certain joint limit. For
example, such cases often arise in the minimization (maximization) of functionals
with ”saturation” type behavior or with a ”sharp–well” structure. Also, the rule may
lead to a wrong presentation if, e.g., the refinement has not been properly done, so that
new trial functions were added only in subdomains were an approximation is almost
coincide with the true solution. Then two subsequent approximations may be very
close, but at the same time not close to the exact solution.

Remark 2.1.2 Also, in practice, we need to now precisely what the word ”close”
means, i.e. we need to have a more concrete presentation on the error. For example,
it would be useful to establish the following rule:

If uh − uhref
≤ ǫ then ‖uh − u‖ ≤ δ(ǫ),

where the function δ(ǫ) is known and computable.

In subsequent lectures we will see that for a wide class of boundary–value problems it
is indeed possible to derive such type generalizations of the Runge’s rule.

2.2 The estimate of Prager and Synge

Prager and Synge derived an estimate on the basis of purely geometrical grounds 1.
In modern terms, there result for the problem

∆u+ f = 0, in Ω,

u = 0, on ∂Ω

reads as follows:

‖∇(u− v)‖2 + ‖∇u− τ‖2 = ‖∇v − τ‖2,

1W. Prager and J. L. Synge. Approximation in elasticity based on the concept of function spaces, Quart. Appl. Math.
5(1947)
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Figure 2.1: ”Two blind men and their hypercircle”.

where τ is a function satisfying the equation div τ + f = 0.
We can easily prove it by the orthogonality relation

∫

Ω

∇(u− v) · (∇u− τ) dx = 0 (div (∇u− τ) = 0 !).

From here, it also follows that

‖∇(u− v)‖ = inf
q∈Qf

‖∇v − q‖. (2.1)

This relation and its analogs for more complicated problems generate various a poste-
riori estimates that use equilibration of the dual variable (flux).
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2.3 Estimate of Mikhlin

A similar estimate follows from the First error relation and can be justified by vari-
ational arguments2. It is as follows:

1

2
‖∇(u− v)‖2 ≤ J(v) − infJ,

where

J(v) :=
1

2
‖∇v‖2 − (f, v), infJ := inf

v∈
◦

H1(Ω)

J(v).

Dual problem

Since

infJ = sup
τ∈Qf

{
−1

2
‖τ‖2

}
,

where

Qf :=

{
τ ∈ L2(Ω, R

d) |
∫

Ω

τ · ∇w dx =

∫

Ω

fw dx ∀w ∈
◦
H

1

}
,

we find that

1

2
‖∇(u− v)‖2 ≤ J(v) +

1

2
‖τ‖2, ∀τ ∈ Qf .

Since

J(v) + 1
2‖τ‖2 =

1

2
‖∇v‖2 −

∫

Ω

fv dx+
1

2
‖τ‖2 =

=
1

2
‖∇v‖2 −

∫

Ω

τ · ∇v dx+
1

2
‖τ‖2 =

=
1

2
‖∇v − τ‖2

2S. G. Mikhlin. Variational methods in mathematical physics. Pergamon, Oxford, 1964.
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we arrive at the estimate

1

2
‖∇(u− v)‖2 ≤ 1

2
‖∇v − τ‖2, ∀τ ∈ Qf . (2.2)

Comment. Estimates of Prager and Synge and of Mikhlin are valid for any v ∈
◦
H1(Ω), so that, formally, that they can be applied to any conforming approximation of
the problem. However, from the practical viewpoint these estimates have an essential
drawback:
they use a function τ in the set Qf defined by the differential relation,
which may be difficult to satisfy exactly. Probably by this reason further development
of a posteriori error estimates for Finite Element Methods (especially in 80’-90’) was
mainly based on different grounds.
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2.4 A posteriori estimates for iteration methods

2.4.1 Fixed point theorem

Consider a Banach space (X, d) and a continuous operator

T : X → X.

Definition 2.4.1 A point x⊙ is called a fixed point of T if

x⊙ = Tx⊙ . (2.3)

Approximations of a fixed point are usually constructed by the iteration sequence

xi = Txi−1 i = 1, 2, ... . (2.4)

Two basic problems:

(a) find the conditions that guarantee convergence of xi to x⊙,

(b) find computable estimates of the error ei = d(xi, x⊙).

Definition 2.4.2 An operator T : X → X is called q-contractive on a set S ⊂ X if
there exists a positive real number q such that the inequality

d(Tx,Ty) ≤ q d(x, y) (2.5)

holds for any elements x and y of the set S.

2.4.2 Banach theorem

Theorem 2.4.1 (S. Banach) Let T be a q-contractive mapping of a closed nonempty
set S ⊂ X to itself with q < 1. Then, T has a unique fixed point in S and the sequence
xi obtained by (2.4) converges to this point.
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Proof. It is easy to see that

d(xi+1, xi) = d(Txi,Txi−1)≤ qd(xi, xi−1)≤ ...≤ qid(x1, x0).

Therefore, for any m > 1 we have

d(xi+m, xi) ≤
≤ d(xi+m, xi+m−1) + d(xi+m−1, xi+m−2) + ...+ d(xi+1, xi) ≤

≤ qi(qm−1 + qm−2 + ...+ 1)d(x1, x0) . (2.6)

Since

m−1∑

k=0

qk ≤ 1

1 − q
,

(2.6) implies the estimate

d(xi+m, xi) ≤ qi

1 − q
d(x1, x0). (2.7)

Let i → ∞, then the right-hand side of (2.7) tends to zero, so that {xi} is a Cauchy
sequence. It has a limit in y ∈ X.
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Then, d(xi, y) → 0 and

d(Txi,Ty) ≤ qd(xi, y) → 0

so that d(Txi,Ty) → 0 and Txi → Ty. Pass to the limit in (2.4) as i → +∞. We
observe that

Ty = y.

Hence, any limit of such a sequence is a fixed point.
It is easy to prove that a fixed point is unique.
Assume that there are two different fixed points x1

⊙ and x2
⊙, i.e.

Txk⊙ = xk⊙, k = 1, 2.

Therefore,

d(x1
⊙, x

2
⊙) = d(Tx1

⊙,Tx
2
⊙) ≤ qd(x1

⊙, x
2
⊙) .

But q < 1, and thus such an inequality cannot be true.

2.4.3 A priori convergence estimate

Let
ej = d(xj, x⊙)

denote the error on the j-th step. Then

ej = d(Txj−1,Tx⊙) ≤ qej−1 ≤ qje0.

and

ej ≤ qje0. (2.8)

This estimate gives a certain presentation on that how the error decreases. However,
this a priori upper bound may be rather coarse.
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2.4.4 A posteriori estimates for contractive mappings

A posteriori estimates

The proposition below furnishes upper and lower estimates of ej, which are easy to
compute provided, that the number q (or a good estimate of it) is known.

Theorem 2.4.2 (3) Let {xj}∞j=0 be a sequence obtained by the iteration process

xi = Txi−1 i = 1, 2, ...

with a mapping T satisfying the condition ‖T‖ = q ≤ 1. Then, for any xj, j > 1, the
following estimate holds:

M j
⊖ :=

1

1+q
d(xj+1, xj) ≤ ej ≤ M j

⊕ :=
q

1−qd(xj, xj−1). (2.9)

Proof. The upper estimate in (2.9) follows from (2.7). Indeed, put i = 1 in this
relation. We have

d(x1+m, x1) ≤
q

1 − q
d(x1, x0) .

Since x1+m → x⊙ as m→ +∞, we pass to the limit with respect to m and obtain

d(x⊙, x1) ≤
q

1 − q
d(x1, x0) .

We may view xj−1 as the starting point of the sequence. Then, in the above relation
x0 = xj−1 and x1 = xj and we arrive at the following upper boundof the error:

d(x⊙, xj) ≤
q

1 − q
d(xj, xj−1) .

The lower boundof the error follows from the relation

d(xj, xj−1) ≤ d(xj, x⊙) + d(xj−1, x⊙) ≤ (1 + q)d(xj−1, x⊙),

which shows that

d(xj−1, x⊙) ≥ 1

1 + q
d(xj, xj−1) .
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Note that

M j
⊕

M j
⊖

=
q(1 + q)

1 − q

d(xj, xj−1)

d(xj+1, xj)
≥ 1 + q

1 − q
,

we see that that the efficiency of the upper and lower bounds given by (2.9) deteriorates
as q → 1.



S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008 87

If X is a normed space, then

d(xj+1, xj) = ‖R(xj)‖ ,

where
R(xj) := Txj − xj

is the residual of the basic equation (2.3). Thus, the upper and lower estimates
of errors are expressed in terms of the residuals of the respective iteration equation
computed for two neighbor steps:

1

1 + q
‖R(xj)‖ ≤ ej = d(xj, x⊙) ≤ q

1 − q
‖R(xj−1)‖ .

2.4.5 Corollaries

In the iteration methods, it is often easier to analyze the operator

T = T n := TT...T︸ ︷︷ ︸
n times

where T is a certain mapping.

Proposition 2.4.1 (1) Let T : S → S be a continuous mapping such that T is a
q-contractive mapping with q ∈ (0, 1). Then, the equations

x = Tx and x = Tx

have one and the same fixed point, which is unique and can be found by the above
described iteration procedure.

Proof. By the Banach Theorem, we observe that the operator T has a unique fixed
point ξ⊙.

Let us show that ξ⊙ is a fixed point of T . First, we note that

Tξ⊙ = T (Tξ⊙) = T T
2ξ⊙ = ... = T T

iξ⊙ = T (1+in)ξ⊙ = T inTξ⊙. (2.10)

Denote x0 = Tξ⊙. By (2.10) we conclude that for any i

Tξ⊙ = T
ix0. (2.11)
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Passing to the limit on the right-hand side in (2.11), we arrive at the relation Tξ⊙ =
ξ⊙, which means that ξ⊙ is a fixed point of the operator T .

Let x̃⊙ be a fixed point of T . Then,

x̃⊙ = T 2x̃⊙ = .. = T nx̃⊙ = Tx̃⊙

and we observe that x̃⊙ is a fixed point of T. Since the saddle point of T exists and
is unique, we conclude that

ξ⊙ = x̃⊙.

Remark 2.4.1 This assertion may be practically useful if it is not possible to prove
that T is q–contractive, but this fact can be established for a certain power of T .
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2.4.6 Iteration methods for bounded linear operators

Consider a bounded linear operator L : X → X, where X is a Banach space. Given
b ∈ X, the iteration process is defined by the relation

xj = Lxj−1 + b. (2.12)

Let x⊙ be a fixed point of (2.12) and

‖L‖ = q < 1.

By applying the Banach Theorem it is easy to show that

{xj} → x⊙.

Indeed, let x̄j = xj − x⊙. Then

x̄j = Lxj−1 + b− x⊙ = L(xj−1 − x⊙) = Lx̄j−1 . (2.13)

Since
0X = L 0X ,

we note that the zero element 0X is a unique fixed point of the operator L. By the
Banach theorem x̄j → 0X and, therefore, {xj} → x⊙.

Therefore, we have an a priori estimate

‖xj − x⊙‖X = ‖x̄j − 0X‖X ≤ qj

1 − q
‖x̄1 − x̄0‖X =

qj

1 − q
‖R(x0)‖X (2.14)

and the a posteriori one

‖xj − x⊙‖X ≤ q

1 − q
‖R(xj−1)‖X , (2.15)

where R(z) = Lz + b− z is the residual of the functional equation considered.
By applying the general theory, we also obtain a lower bound of the error

‖xj − x⊙‖X ≥ 1

1 + q
‖xj+1 − xj‖X =

1

1 + q
‖R(xj)‖X . (2.16)
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Hence, we arrive at the following estimates for the error in the linear operator
equation:

1 − q

q
‖xj − x⊙‖X ≤ ‖R(xj−1)‖X ≤ (1 + q) ‖xj−1 − x⊙‖X .

2.4.7 Iteration methods in linear algebra

Important applications of the above results are associated with systems of linear si-
multaneous equations and other algebraic problems. Set X = R

d and assume that L
is defined by a nondegenerate matrix A ∈ M

d×d decomposed into three matrixes

A = Aℓ + Ad + Ar,

where Aℓ, Ar, and Ad are certain lower, upper, and diagonal matrices, respectively.
Iteration methods for systems of linear simultaneous equations associated with A

are often represented in the form

B
xi − xi−1

τ
+ Axi−1 = f . (2.17)

In (2.17), the matrix B and the parameter τ may be taken in various ways (depending
on the properties of A). We consider three frequently encountered cases:

(a) B = Ad,

(b) B = Ad + Aℓ,

(c) B = Ad + ωAℓ, τ = ω.

For τ = 1, (a) and (b) lead to the methods of Jacobi and Zeidel, respectively. In (c),
the parameter ω must be in the interval (0, 2). If ω > 1, we have the so-called ”upper
relaxation method”, and ω < 1 corresponds to the ”lower relaxation method”.
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The method (2.17) is reduced to (2.12) if we set

L = I − τB−1A and b = τB−1f , (2.18)

where I is the unit matrix. It is known that xi converges to x⊙ that is a solution of
the system

Ax⊙ = f (2.19)

if an only if all the eigenvalues of L are less than one.
Obviously, B and τ should be taken in such a way that they guarantee the fulfill-

ment of this condition.
Assume that ‖L‖ ≤ q < 1. In view of (2.14)-(2.16), the quantities

M i
⊕ = q(1 − q)−1 ‖R(xi−1)‖ , (2.20)

M 0i
⊕ = qi(1 − q)−1 ‖R(x0)‖ , (2.21)

M i
⊖ = (1 + q)−1 ‖R(xi)‖ (2.22)

furnish upper and lower bounds of the error for the vector xi.

Remark 2.4.2 It is worth noting that from the practical viewpoint finding an upper
bound for ‖L‖ and proving that it is less than 1 presents a special and often not easy
task.

If q is very close to 1, then the convergence of an iteration process may be very
slow. As we have seen, in this case, the quality of error estimates is also degraded. A
well–accepted way for accelerating the convergence consists of using a modified system
obtained from the original one by means of a suitable preconditioner P−1 and solving
the system (

P−1A
)
x = P−1f

with a smaller condition number. Of cause, the best preconditioner is the unknown
matrix A−1. Therefore, a preconditioner is often constructed from the parts of A that
are not difficult to invert (e.g., in the simplest case it is taken as the matrix inverse to
the diagonal part of A). This iteration technique is well presented in the literature4

4see, e.g., O. Axelsson. Iterative solution methods. Cambridge University Press, Cambridge, 1994.
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Task 2.4.1 Consider the problem
Ax = f

for a symmetric matrix A with coefficients

aij = κ/ij if i 6= j, κ = 0.1

aii = i.

In this case λmax(A) = 200, λmin(A) = 0.8224 and Cond(A) = 24L10.2030 Solve the
system by the iteration method

xi+1 = (I − τB−1A)xi + τB−1F

with B = AD and x0 = {0, 0, ...0}, determine q and define two–sided error bounds.

In this example n = 200, q= 0.662, and τ = 0.760. The values of the error and the
estimates are presented below.

Table 2.1:
i M i

⊖
‖e‖ M i

⊕
M0i

⊕

1 .187145E+03 .412471E+03 .245893E+04 .245893E+04
2 .452820E+02 .104019E+03 .610732E+03 .162904E+04
3 .123433E+02 .311517E+02 .147774E+03 .107924E+04
4 .405504E+01 .116679E+02 .402813E+02 .714995E+03
5 .166633E+01 .517711E+01 .132333E+02 .473684E+03
6 .767379E+00 .244532E+01 .543792E+01 .313815E+03
7 .366283E+00 .117450E+01 .250428E+01 .207902E+03
8 .176340E+00 .566166E+00 .119533E+01 .137735E+03
16 .515722E-03 .165576E-02 .349042E-02 .511127E+01
17 .248671E-03 .798371E-03 .168302E-02 .338621E+01
18 .119903E-03 .384956E-03 .811515E-03 .224336E+01
19 .578146E-04 .185617E-03 .391295E-03 .148623E+01
20 .278769E-04 .895001E-04 .188673E-03 .984624E+00
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2.4.8 Applications to integral equations

Many problems in science and engineering can be stated in terms of integral equations.
One of the most typical cases is to find a function x⊙(t) ∈ C[a, b] such that

x⊙(t) = λ

∫ b

a

K(t, s)x⊙(s) ds+ f(t), (2.23)

where λ ≥ 0, K (the kernel) is a continuous function for

(x, t) ∈ Q := {a ≤ s ≤ b, a ≤ t ≤ b}

and

|K(t, s)| ≤M, ∀(t, s) ∈ Q.

Also, we assume that f ∈ C[a, b].
Let us define the operator T as follows:

y(t) := Tx(t) := λ

∫ b

a

K(t, x)x(s) ds+ f(t) (2.24)

and show that T maps continuous functions to continuous ones. Let t0 and t0 + ∆t
belong to [a, b]. Then,

|y(t0 + ∆t) − y(t0)| ≤

≤ |λ|
∫ b

a

|K(t0 + ∆t, s) −K(t0, s)||x(s)| ds+

+ |f(t0 + ∆t) − f(t0)|.

Since K and f are continuous on the compact sets Q and [a, b], respectively, they are
uniformly continuous on these sets.

Therefore, for any given ǫ one can find a small number δ such that

|f(t0 + ∆t) − f(t0)| < ǫ

and
|K(t0 + ∆t, s) −K(t0, s)| < ǫ,
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provided that |∆t| < δ.
Thus, we have

|y(t0 + ∆t) − y(t0)| ≤ ǫ(|λ||b− a| max
s∈[a,b]

|x(s)| + 1) = Cǫ,

and, consequently, y(t0 + ∆t) tends to y(t0) as |∆t| → 0.
T : C[a, b] → C[a, b] is a contractive mapping. Indeed,

d(Tx,Ty) = max
a≤t≤b

|Tx(t) − Ty(t)| =

= max
a≤t≤b

∣∣∣∣λ
∫ b

a

K(t, s)(x(s) − y(s)) ds

∣∣∣∣ ≤

≤ |λ|M(b− a) max
a≤s≤b

|x(s) − y(s)| = |λ|M(b− a)d(x, y),

so that T is a q-contractive operator with

q = |λ|M(b− a), (2.25)

provided that

|λ| < 1

M(b− a)
. (2.26)

2.4.9 Numerical procedure

An approximate solution of (2.23) can be found by the iteration method

xi+1(t) = λ

∫ b

a

K(t, s)xi(s) ds+ f(t). (2.27)

If (2.26) holds, then from the Banach theorem it follows that the sequence {xi} con-
verges to the exact solution.

We apply the theory exposed above and find that the accuracy of xi is subject to
the estimate

1

1 + q

∫ b

a

K(t, s)(xi+1(s) − xi(s)) ds ≤

≤ max
a≤t≤b

|xi(t) − x⊙(t)| ≤ q

1 − q

∫ b

a

K(t, s)(xi(s) − xi−1(s)) ds. (2.28)
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2.4.10 Applications to Volterra type equations

Consider the fixed point problem

x⊙(t) = λ

∫ t

a

K(t, s)x⊙(s) ds+ f(t), (2.29)

where

|K(t, s)| ≤M, ∀(t, s) ∈ Q

and f ∈ C[a, b].
Define the operator T as follows:

Tx(t) = λ

∫ t

a

K(t, s)x(s) ds+ f(t).

Similarly, to the previous case we establish that

d(Tx, Ty) ≤ |λ|M(t− a)d(x, y).

By the same arguments we find that

d(T nx, T ny) ≤ |λ|nMn (t− a)n

n!
d(x, y),

Thus, the operator T := T n is q-contractive with a certain q < 1, provided that n is
large enough.

In view of Proposition 1, we conclude that the iteration method converges to x⊙
and the errors are controlled by the two–sided error estimates.
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2.4.11 Applications to ordinary differential equations

Let u be a solution of the simplest initial boundary-value problem

du

dt
= ϕ(t, u(t)), u(t0) = a, (2.30)

where the solution u(t) is to be found on the interval [t0, t1]. Assume that the function
ϕ(t, p) is continuous on the set

Q = {t0 ≤ t ≤ t1, a− ∆ ≤ p ≤ a+ ∆}
and

|ϕ(t, p1) − ϕ(t, p2)| ≤ L|p1 − p2|, ∀(t, p) ∈ Q. (2.31)

Problem (2.30) can be reduced to the integral equation

u(t) =

∫ t

t0

ϕ(s, u(s)) ds+ a (2.32)

and it is natural to solve the latter problem by the iteration method

uj(t) =

∫ t

t0

ϕ(s, uj−1(s)) ds+ a. (2.33)

To justify this procedure, we must verify that the operator

Tu :=

∫ t

t0

ϕ(s, u(s)) ds+ a

is q-contractive with respect to the norm

‖u‖ := max
t∈[t0,t1]

|u(t)|. (2.34)

We have

‖Tz − Ty‖ = max
t∈[t0,t1]

∣∣∣∣
∫ t

t0

(ϕ(s, z(s)) − ϕ(s, y(s))) ds

∣∣∣∣ ≤

≤ max
t∈[t0,t1]

L

∫ t

t0

|z(s) − y(s)| ds ≤ L

∫ t1

t0

|z(s) − y(s)| ds ≤

≤ L(t1 − t0) max
s∈[t0,t1]

|z(s) − y(s)| = L(t1 − t0)‖z − y‖.
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We see that if
t1 < t0 + L−1, (2.35)

then the operator T is q-contractive with

Remark 2.4.3 q := L(t1 − t0) < 1.

Therefore, if the interval [t0, t1] is small enough(i.e., it satisfies the condition 2.35),
then the existence and uniqueness of a continuous solution u(t) follows from the Ba-
nach theorem. In this case, the solution can be found by the iteration procedure whose
accuracy is explicitly controlled by the two–sided error estimates5

2.5 A posteriori methods based on monotonicity

The theory of monotone operatorsgives another way of constructing a posteriori esti-
mates.

Monotone operators are defined on the so–called ordered(or partially ordered)
spaces that introduce the relation x ≤ y for all (or almost all) elements x, y of the
space.

Definition 2.5.1 An operator T is called monotone if x ≤ y implies Tx ≤ Ty.

Consider the fixed point problem

x⊙ = Tx⊙ + f

on an ordered (partially ordered) space X. Assume that

T = T⊕ + T⊖,

T⊕ is monotone,
T⊖ is antitone: x ≤ y implies Tx ≥ Ty,
T⊕ and T⊖ have a common set of images D which is a convex subset of X.

5A. N. Kolmogorov and S. V. Fomin. Introductory real analysis. Dover Publications, Inc., New York, 1975, E. Zeidler.
Nonlinear functional analysis and its applications. I. Fixed-point theorems. Springer-Verlag, New York, 1986.
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Next, let x⊖ 0, x⊖1, x⊕ 0, x⊕1 ∈ D be such elements that

x⊖ 0 ≤ x⊖ 1 ≤ x⊕ 1 ≤ x⊕ 0,

x⊖1 = T⊕x⊖ 0 + T⊖x⊕ 0 + f,

x⊕1 = T⊕x⊕ 0 + T⊖x⊖ 0 + f,

Then, we observe that

x⊖2 = T⊕x⊖ 1 + T⊖x⊕ 1 + f ≥ T⊕x⊖ 0 + T⊖x⊕ 0 + f = x⊖ 1

x⊕2 = T⊕x⊕ 1 + T⊖x⊖ 1 + f ≤ T⊕x⊕ 0 + T⊖x⊖ 0 + f = x⊕ 1.

By continuing the iterations we obtain elements such that

x⊖ k ≤ x⊖ (k+1) ≤ x⊕ (k+1) ≤ x⊕ k.

Then x → Tx + f maps D to itself. If D is compact, then by the Schauder fixed
point theorem x⊙ ∈ D exists. Moreover, it is bounded from below and above by the
sequences {x⊖ k} and {x⊕ k}.

Applications of this method are mainly oriented towards systems of linear simul-
taneous equations and integral equations6. For example, consider a system of linear
simultaneous equations

x = Ax+ f

that is supposed to have a unique solution x⊙. Assume that

A = A⊕ − A⊖, A⊖ = {a⊖ij} ∈ M
d×d,

A⊕ = {a⊕ij} ∈ M
d×d, a⊖ij ≥ 0, a⊕ij ≥ 0.

We may partially orderthe space R
d by saying that x ≤ y if and only if xi ≤ yi for

i = 1, 2, ...n. Compute the vectors

x⊖(k+1) = A⊕x⊖ k + A⊖x⊕ k + f, x⊕(k+1) = A⊕x⊕ k + A⊖x⊖ k + f.

If x⊖ 0 ≤ x⊖ 1 ≤ x⊙ ≤ x⊕ 1 ≤ x⊕0, then for all the components of x⊙ we obtain
two–sided estimates

x
(i)
⊖ k ≤ x

(i)
⊖ (k+1) ≤ x

(i)
⊙ ≤ x

(i)
⊕ (k+1) ≤ x

(i)
⊕k, i = 1, 2, ...n.

6L. Collatz. Funktionanalysis und numerische mathematik, Springer-Verlag, Berlin, 1964.
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Task 2.5.1 Apply the above method for finding two–sided bounds of the Euclid error
norm and componentwise errors for a system of linear simultaneous equations

Ax = f

where

aij = (−1)i+jκ/ij if i 6= j, κ = 0.1

aii = i.

For the ith component of the solution determine the lower and upper bounds as
follows:

max
j=0,1,...k+1

(
x⊖j
)
i
≤ (x⊙)i ≤ min

j=0,1,...k+1

(
x⊕j
)
i
.

It should be remarked that convergence of x
(i)
⊖ k and x

(i)
⊕ k to x⊙ (and the convergence

rate) requires a special investigation, which must use specific features of a particular
problem.

Remark 2.5.1 In principle, a posteriori error estimates based on monotonicity can
provide the most informative POINTWISE a posteriori error estimates. Regrettably,
the respective theory has not been yet properly investigated.
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Chapter 3

A POSTERIORI ERROR INDICATORS
FOR FEM

The goal of this chapter is to give an overview of a posteriori error estimation methods
developed for Finite Element approximations in 70th–80th.

Chapter plan

• Mathematical background;

• Residual type error estimates;

– Basic idea;

– Estimates in 1D case;

– Estimates in 2D case;

– Comments;

• Methods based on post–processing;

• Methods using adjoint problems;

3.1 Sobolev spaces with negative indices

101
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Sobolev spaces with negative indices

Definition 3.1.1 Linear functionals defined on the functions of the space
◦
C∞(Ω) are

called distributions. They form the space D′(Ω)

Value of a distribution g on a function φ is 〈g, φ〉.
Distributions possess an important property: they have derivatives of any order.
Let g ∈ D′(Ω), then the quantity −〈g, ∂φ∂xi

〉 is another linear functional on D(Ω). It
is viewed as a generalized partial derivative of g taken over the i-th variable.

Derivatives of Lq–functions. Any function g from the space Lq(Ω) (q ≥ 1) defines
a certain distribution as

〈g, φ〉 =

∫

Ω

gφdx

and, therefore, has generalized derivatives of any order. The sets of distributions,
which are derivatives of q-integrable functions, are called Sobolev spaces with negative
indices.
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Definition 3.1.2 The space W−ℓ,q(Ω) is the space of distributions g ∈ D′(Ω) such
that

g =
∑

|α|≤ℓ
Dαgα,

where gα ∈ Lq(Ω).

Spaces W−1,p(Ω)
W−1,p(Ω) contains distributions that can be viewed as generalized derivatives of

Lq-functions.The functional
〈
∂f

∂xi

, φ

〉
:= −

∫

Ω

f
∂φ

∂xi

dx f ∈ Lq(Ω)

is linear and continuous not only for φ ∈
◦
C ∞(Ω) but, also, for φ ∈

◦
W

1,p

(Ω), where
1/p + 1/q = 1 (density property). Hence, first generalized derivatives of f lie in the

space dual to
◦
W

1,p

(Ω) denoted by W−1,p(Ω).

For
◦
W

1,2

(Ω) =
◦
H1(Ω), the respective dual space

is denoted by H−1(Ω).
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Norms in ”negative spaces”
For g ∈ H−1(Ω) we may introduce two equivalent ”negative norms”.

‖g‖(−1),Ω := sup
φ∈

◦

H1(Ω)

|〈g, φ〉|
‖φ‖1,2,Ω

< +∞

|||||| g |||||| := sup
φ∈

◦

H1(Ω)

|〈g, φ〉|
‖∇φ‖Ω

< +∞

From the definitions, it follows that

〈g, φ〉 ≤ ‖g‖(−1),Ω‖ϕ‖1,2,Ω

〈g, φ〉 ≤ ||||||g |||||| ‖∇ϕ‖Ω
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3.2 Residual method

3.2.1 Errors and Residuals. First glance

If an analyst is not sure in the quality of an approximate solution com-
puted, then the very first idea that comes to his mind is to substitute the
approximate solution into the equation and look at the equation residual.
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We begin by recalling basic relations between residuals and errors that hold for
systems of linear simultaneous equations. Let A ∈ M

d×d, detA 6= 0, consider the
system

Au+ f = 0.

For any v we have the simplest residualtype estimate

A(v − u) = Av + f ; ⇒ ‖e‖ ≤ ‖A−1‖‖r‖.

where e = v − u and r = Av + f .
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Two–sided estimates Define the quantities

λmin = min
y∈R

d

y 6=0

‖Ay‖
‖y‖ and λmax = max

y∈R
d

y 6=0

‖Ay‖
‖y‖

Since Ae = r, we see that

λmin ≤ ‖Ae‖
‖e‖ =

‖r‖
‖e‖ ≤ λmax ⇒ λ−1

max‖r‖ ≤ ‖e‖ ≤ λ−1
min‖r‖.

Since u is a solution, we have

λmin ≤ ‖Au‖
‖u‖ =

‖f‖
‖u‖ ≤ λmax ⇒ λ−1

max‖f‖ ≤ ‖u‖ ≤ λ−1
min‖f‖

Thus,

λmin

λmax

‖r‖
‖f‖ ≤ ‖e‖

‖u‖ ≤ λmax

λmin

‖r‖
‖f‖ .
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Key ”residual–error” relation Since

λmax

λmin
= CondA,

we arrive at the basic relation where the matrix condition number serves as an im-
portant factor

(CondA)−1 ‖r‖
‖f‖ ≤ ‖e‖

‖u‖ ≤ CondA ‖r‖
‖f‖ . (3.1)

Thus, the relative error is controlled by the relative value of the residual. However, the bounds deteri-
orates when the conditional number is large.
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In principle, the above consideration can extended to a wider set of linear problems,
where

A ∈ L(X, Y )

is a coercive linear operator acting from a Banach space X to another space Y and f
is a given element of Y .

However, if A is related to a boundary-value problem, then one should prop-
erly define the spaces X and Y and find a practically meaningful analog of
the estimate (3.1).

3.2.2 Residual type estimates for elliptic equations
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Elliptic equations Let A : X → Y be a linear elliptic operator. Consider the
boundary-value problem

Au+ f = 0 in Ω, u = u0 on ∂Ω.

Assume that v ∈ X is an approximation of u. Then, we should measure the error in
X and the residual in Y , so that the principal form of the estimate is

‖v − u‖X ≤ C‖Av + f‖Y , (3.2)

where the constant C is independent of v. The key question is as follows:

Which spaces X and Y should we choose for a particular boundary-value
problem ?
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Consider the problem

∆u+ f = 0 inΩ, u = 0 on∂Ω,

with f ∈ L2(Ω). The generalized solution satisfies the relation
∫

Ω

∇u · ∇w dx =

∫

Ω

fw dx ∀w ∈ V0 :=
◦
H

1(Ω),

which implies the energy estimate

‖∇u‖2,Ω ≤ CΩ‖f‖2,Ω.

Here CΩ is a constant in the Friederichs-Steklov inequality. Assume that an approxi-
mation v ∈ V0 and ∆v ∈ L2(Ω). Then,

∫

Ω

∇(u− v) · ∇w dx =

∫

Ω

(f + ∆v)w dx, ∀w ∈ V0.
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Setting w = u− v, we obtain the estimate

‖∇(u− v)‖2,Ω ≤ CΩ‖f + ∆v‖2,Ω, (3.3)

whose right-hand side of (3.3) is formed by the L2-norm of the residual.
However, usually a sequence of approximations {vk} converges to u only in the

energy space, i.e.,

{vk} → u in H1(Ω),

so that ‖∆vk + f‖ may not converge to zero !

This means that the consistency(the key property of any practically mean-
ingful estimate) is lost.
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Which norm of the residual leads to a consistent estimate of the
error in the energy norm?

To find it, we should consider ∆ not asH2 → L2 mapping, but asH1 → H−1 mapping.
For this purpose we use the integral identity

∫

Ω

∇u · ∇w dx = 〈f, w〉, ∀ w ∈ V0 :=
◦
H

1(Ω).

Here, ∇u ∈ L2, so that it has derivatives in H−1 and we consider the above as
equivalence of two distributions on all trial functions w ∈ V0.

By 〈f, w〉 ≤ |||||| f |||||| ‖∇w‖2,Ω, we obtain another ”energy estimate”

‖∇u‖2,Ω ≤ |||||| f |||||| .
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Consistent residual estimate Let v ∈ V0 be an approximation of u. We have
∫

Ω

∇(u− v) · ∇w dx =

∫

Ω

(fw −∇v · ∇w) dx =

= 〈∆v + f, w〉, f + ∆v ∈ H−1(Ω).

By setting w = v − u, we obtain

‖∇(u− v)‖2,Ω ≤ |||||| f + ∆v |||||| . (3.4)

where

|||||| f + ∆v |||||| = sup
ϕ∈

◦

H1(Ω)

| 〈f + ∆v, ϕ〉 |
‖∇ϕ‖ =

= sup
ϕ∈

◦

H1(Ω)

|
∫
Ω
∇(u− v) · ∇ϕ |

‖∇ϕ‖ ≤ sup
ϕ∈

◦

H1(Ω)

‖∇(u− v)‖|∇ϕ‖
‖∇ϕ‖ ≤ ‖∇(u− v)‖
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Thus, for the problem considered

‖∇(u− v)‖2,Ω = |||||| f + ∆v |||||| !!! (3.5)

From (3.5), it readily follows that

|||||| f + ∆vk |||||| → 0 as {vk} → u in H1.

We observe that the estimate (3.5) is consistent.
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Diffusion equation Similar estimates can be derived for

Au+ f = 0, in Ω, u = 0 on ∂Ω,

where

Au = div A∇u :=
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
,

aij(x) = aji(x) ∈ L∞(Ω),

λmin|η|2 ≤ aij(x)ηiηj ≤ λmax|η|2, ∀η ∈ R
d, x ∈ Ω,

λmax ≥ λmin ≥ 0.
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Let v ∈ V0 be an approximation of u. Then,
∫

Ω

A∇(u− v) · ∇w dx =

∫

Ω

(fw − A∇v · ∇w) dx, ∀w ∈ V0.

Again, the right-hand side of this relation is a bounded linear functional on V0, i.e.,

f + div (A∇v) ∈ H−1.

Hence, we have the relation
∫

Ω

A∇(u− v) · ∇w dx = 〈f + div (A∇v), w〉, ∀w ∈ V0.

Setting w = u− v, we derive the estimate

‖∇(u− v)‖2,Ω ≤ λ−1
min |||||| f + div (A∇v) |||||| . (3.6)
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Next,

|||||| f + div (A∇v) |||||| = sup
ϕ∈

◦

H1(Ω)

| 〈f + div (A∇v), ϕ〉 |
‖∇ϕ‖2,Ω

=

= sup
ϕ∈

◦

H1(Ω)

|
∫

ΩA∇(u− v) · ∇ϕdx |
‖∇ϕ‖2,Ω

≤ λmax‖∇(u− v)‖2,Ω. (3.7)

Combining (3.6) and (3.7) we obtain

λ−1
max |||||| R(v) |||||| ≤ ‖∇(u− v)‖2,Ω ≤ λ−1

min |||||| R(v) |||||| , (3.8)

where R(v) = f + div (A∇v) ∈ H−1(Ω). We see that upper and lower bounds of the
error can be evaluated in terms of the negative norm of R(v).



S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008 119

Main goal

We observe that to find guaranteed bounds of the error reliable estimates of
||||||R(v) |||||| are required.

In essence, a posteriori error estimates derived in 70-90’ for Finite Element Methods
(FEM) offer several approaches to the evaluation of ||||||R(v) |||||| .

We consider them starting with the so–called explicit residual method where
such estimates are obtained with help of two key points:

• Galerkin orthogonality property;

• H1 → Vh interpolation estimates by Clément.

3.2.3 Explicit residual method in 1D case
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Explicit residual method in 1D case Take the simplest model

(αu′)′ + f = 0, u(0) = u(1).

Let I := (0, 1), f ∈ L2(I), α(x) ∈ C(I) ≥ α0 > 0. Divide I into a number of
subintervals Ii = (xi, xi+1), where x0 = 0, xN+1 = 1, and |xi+1 − xi| = hi. Assume

that v ∈
◦
H1(I) and it is smooth on any interval Ii.

x xi i+1

I i
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In this case,

|||||| R(v) |||||| = sup
w∈V0(I), w 6=0

∫ 1

0 (−αv′w′ + fw)dx

‖w′‖2,I
=

= sup
w∈

◦

H1(I) ;w 6=0

∑N
i=0

∫
Ii
(−αv′w′ + fw)dx

‖w′‖2,I
=

= sup
w∈V0(I), w 6=0

∑N
i=0

∫
Ii
ri(v)w dx+

∑N
i=1 α(xi)w(xi)j(v

′(xi))

‖w′‖2,I
,

where j(φ(x)) := φ(x+ 0)− φ(x− 0) is the ”jump–function” and ri(v) = (αv′)′ + f is
the residualon Ii.

For arbitrary v we can hardly get an upper bound for this supremum.
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Use Galerkin orthogonality Assume that v = uh, i.e., it is the Galerkin approxima-
tion obtained on a finite–dimensional subspace V0h formed by piecewise polynomial
continuous functions. Since

∫

I

αu′hw
′
h dx−

∫

I

fwh dx = 0 ∀wh ∈ V0h.

we may add the left–hand side with any wh to the numerator what gives

|||||| R(uh) |||||| = sup
w∈V0(I)

∫ 1

0 (−αu′h(w − πhw)′ + f(w − πhw)) dx

‖w′‖2,I
,

where πh : V0 → V0h is the interpolation operator defined by the conditions πhv ∈ V0h,
πhv(0) = πhv(1) = 0 and

πhv(xi) = v(xi), ∀xi, i = 1, 2, ..., N.
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Integrating by parts Now, we have

|||||| R(uh) |||||| = sup
w∈V0(I)

{∑N
i=0

∫
Ii
ri(uh)(w − πhw) dx

‖w′‖2,I
+

+

∑N
i=1 α(xi)(w(xi) − πhw(xi))j(u

′
h(xi))

‖w′‖2,I

}
.

Since w(xi) − πhw(xi) = 0, the second sum vanishes. For first one we have

N∑

i=0

∫

Ii

ri(uh)(w − πhw) dx ≤
N∑

i=0

‖ri(uh)‖2,Ii‖w − πhw‖2,Ii.
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Since for w ∈
◦
H1(Ii)

‖w − πhw‖2,Ii ≤ ci‖w′‖2,Ii,

we obtain for the numerator of the above quotient

N∑

i=0

∫

Ii

ri(uh)(w − πhw) dx ≤
N∑

i=0

ci‖ri(uh)‖2,Ii‖w′‖2,Ii ≤

≤
( N∑

i=0

c2i‖ri(uh)‖2
2,Ii

)1/2

‖w′‖2,I ,

which implies the desired upper bound

|||||| R(uh) |||||| ≤
( N∑

i=0

c2i‖ri(uh)‖2
2,Ii

)1/2

. (3.9)

This bound is the sum of local residuals ri(uh) with weights given by the interpolation
constants ci.
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Interpolation constants For piecewise affine approximations, the interpolation con-
stants ci are easy to find. Indeed, let γi be a constant that satisfies the condition

inf
w∈

◦

H1(Ii)

‖w′‖2
2,Ii

‖w − πhw‖2
2,Ii

≥ γi.

Then, for all w ∈
◦
H1(Ii), we have

‖w − πhw‖2,Ii ≤ γ
−1/2
i ‖w′‖2,Ii

and one can set ci = γ
−1/2
Ii

.

Let us estimate γIi.
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Note that ∫ xi+1

xi

|w′|2 dx =

∫ xi+1

xi

|(w − πhw)′ + (πhw)′|2 dx,

where (πhw)′ is constant on (xi, xi+1). Therefore,
∫ xi+1

xi

(w − πhw)′(πhw)′ dx = 0

and
∫ xi+1

xi

|w′|2 dx =

∫ xi+1

xi

|(w − πhw)′|2 dx+

∫ xi+1

xi

|(πhw)′|2 dx ≥

≥
∫ xi+1

xi

|(w − πhw)′|2 dx.
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Interpolation constants in 1D problem Thus, we have

inf
w∈

◦

H1(Ii)

∫ xi+1

xi
|w′|2 dx

∫ xi+1

xi
|w − πhw|2 dx

≥ inf
w∈

◦

H1(Ii)

∫ xi+1

xi
|(w − πhw)′|2 dx

∫ xi+1

xi
|w − πhw|2 dx

≥

≥ inf
η∈

◦

H1(Ii)

∫ xi+1

xi
|η′|2 dx

∫ xi+1

xi
|η|2 dx =

π2

h2
i

,

so that γi = π2/h2
i and ci = hi/π.

Remark. To prove the very last relation we note that

inf
η∈

◦

H1((0,h))

∫ h

0
|η′|2 dx

∫ h

0
|η|2 dx

=
π2

h2

is attained on the eigenfunction sinπ
hx, of the problem φ′′ + λφ = 0 on (0, h).
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Task 3.2.1 Solve a boundary–value problem

(αv′)′ = f,

v(0) = a, v(1) = b

with certain α(x) > 0, f , a, and b by the finite element method with uniform elements
(i.e., h = 1/N). Apply the residual method and compare the errors computed with the
true error distribution.

3.2.4 Explicit residual method in 2D case
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Residual method in 2D case Let Ω be represented as a union Th of simplexes Ti.
For the sake of simplicity, assume that Ω = ∪Ni=1T i and V0h consists of piecewise affine
continuous functions. Then the Galerkin approximation uh satisfies the relation

∫

Ω

A∇uh · ∇wh dx =

∫

Ω

fwh dx, ∀wh ∈ V0h,

where

V0h = {wh ∈ V0 | wh ∈ P 1(Ti), Ti ∈ Fh}.
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In this case, negative norm of the residual is

|||||| R(uh) |||||| = sup
w∈V0

∫
Ω(fw − A∇uh · ∇w) dx

‖∇w‖2,Ω
.

Let pi :
◦
H1 → V0h be a continuous interpolation operator. Then, for the Galerkin

approximation

|||||| R(uh) |||||| = sup
w∈V0

∫
Ω(f(w − πhw) − A∇uh · ∇(w − πhw)) dx

‖∇w‖2,Ω
.

For finite element approximations such a type projection operators has been con-
structed. One of the most known was suggested by Ph. Clément1 and is often called
the Clement’s interpolation operator. Its properties play an important role in the a
posteriori error estimation method considered.

1Clément, Ph. Approximation by finite element functions using local regularization. (English) Revue Franc. Automat.
Inform. Rech. Operat. 9, R-2, 77-84 (1975).



S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008 131

Clement’s Interpolation operator

Let Eij denote the common edge of the simplexes Ti and Tj. If s is an inner node of
the triangulation Fh, then ωs denotes the set of all simplexes having this node.

For any s, we find a polynomial ps(x) ∈ P 1(ωs) such that
∫

ωs

(v − ps)q dx = 0 ∀q ∈ P 1(ωs).

Now, the interpolation operator πh is defined by setting

πhv(xs) = p(xs), ∀xs ∈ Ω,

πhv(xs) = 0, ∀xs ∈ ∂Ω.

It is a linear and continuous mapping of
◦
H1(Ω) to the space of piecewise affine con-

tinuous functions.
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Interpolation estimates in 2D

Moreover, it is subject to the relations

‖v − πhv‖2,Ti
≤ cTi diam (Ti)‖v‖1,2,ωN (Ti), (3.10)

‖v − πhv‖2,Eij
≤ cEij|Eij|1/2‖v‖1,2,ωE(Ti), (3.11)

where ωN(Ti) is the union of all simplexes having at least one common node with Ti
and ωE(Ti) is the union of all simplexes having a common edge with Ti.

Interpolation constants cTi and cEij are LOCAL and depend on the
shape of patches ωN(Ti) and ωE(Ti).
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Quotient relations for the constants

Evaluation of cTi and cEij requires finding exact lower bounds of the following variational
problems:

γTi := inf
w∈V0

‖w‖1,2,ωN (Ti)

‖w − πhw‖2,Ti

diam(Ti)

and

γEij := inf
w∈V0

‖w‖1,2,ωE(Ti)

‖w − πhw‖2,Eij

|Eij|1/2.

Certainly, we can replace V0 be H1(ωN(Ti)) and H1(ωE(Ti)), respec-
tively, but, anyway finding the constants amounts solving func-
tional eigenvalue type problems !
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Let σh = A∇uh. Then,

|||||| R(uh) |||||| = sup
w∈V0

∫
Ω(f(w − πhw) − σh · ∇(w − πhw)) dx

‖∇w‖2,Ω
.

If νij is the unit outward normal to Eij, then
∫

Ti

σh · ∇(w − πhw) dx =

=
∑

Eij⊂∂Ti

∫

Eij

(σh ·ν)(w − πhw)ds−
∫

Ti

div σh(w − πhw) dx,

Since on the boundary w − πhw = 0, we obtain

|||||| R(uh) |||||| = sup
w∈V0

{∑N

i=1

∫
Ti

(div σh + f)(w − πhw) dx

‖∇w‖2,Ω

+

+

∑N

i=1

∑N

j>i

∫
Eij

j(σh ·νij)(w − πhw) ds

‖∇w‖2,Ω

}
.
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First term in sup

∫

Ti

(div σh + f)(w − πhw)dx ≤ ‖div σh + f‖2,Ti
‖w − πhw‖2,Ti

≤ cTi ‖div σh + f‖2,Ti
diam (Ti)‖w‖1,2,ωN (Ti),

Then, the first sum is estimated as follows:

N∑

i=1

∫

Ti

(div σh + f)(w − πhw)dx ≤

≤ d1

( N∑

i=1

(
cTi
)2

diam (Ti)
2‖div σh + f‖2

2,Ti

)1/2

‖w‖1,2,Ω,

where the constant d1 depends on the maximal number of elements in the set ωN(Ti).
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Second term in sup For the second one, we have

N∑

i=1

N∑

j>i

∫

Eij

j(σh ·νij)(w − πhw) dx ≤

≤
N∑

i=1

N∑

j>i

‖j(σh ·νij)‖2,Eij
cEij |Eij|1/2 ‖w‖1,2,ωE(Ti) ≤

≤ d2

( N∑

i=1

N∑

j>i

(
cEij
)2 |Eij|‖j(σh ·νij)‖2

2,Eij

)1/2

‖w‖1,2,Ω,

where d2 depends on the maximal number of elements in the set ωE(Ti).
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Residual type error estimate

By the above estimates we obtain

|||||| R(uh) |||||| ≤ C0

(( N∑

i=1

(
cTi
)2

diam (Ti)
2‖div σh + f‖2

2,Ti

)1/2

+

+

( N∑

i=1

N∑

j>i

(
cEij
)2 |Eij| ‖j(σh ·νij)‖2

2,Eij

)1/2
)
. (3.12)

Here C0 = C0(d1, d2). We observe that the right-hand side is the sum of local quantities
(usually denoted by eta(Ti)) multiplied by constants depending on properties of the
chosen splitting Fh.
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Error indicator for quasi-uniform meshes For quasi–uniform meshes all generic con-
stants cTi have approximately the same value and can be replaced by a single constant
c1. If the constants cEij are also estimated by a single constant c2, then we have

|||||| R(uh) |||||| ≤ C

(
N∑

i=1

η2(Ti)

)1/2

, (3.13)

where C = C(c1, c2, C0) and

η2(Ti)= c21diam (Ti)
2‖div σh + f‖2

2,Ti
+
c22
2

∑

Eij⊂∂T i

|Eij|‖j(σh · νij)‖2
2,Eij

.

The multiplier 1/2 arises, because any interior edge is common for two elements.
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Comment 1 General form of the residual type a posteriori error estimates is as follows:

‖u− uh‖ ≤M(uk, c1, c2, ...cN ,D),

where D is the data set, uh is the Galerkin approximation, and ci, i = 1, 2, ...N are
the interpolation constants. The constants depend on the mesh and properties of the
special type interpolation operator. The number N depends on the dimension of Vh
and may be rather large. If the constants are not sharply defined, then this functional
is not more than a certain error indicator. However, in many cases it successfully
works and was used in numerous researches.
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Comment 2 It is worth noting that for nonlinear problems the dependence between
the error and the respective residual is much more complicated. A simple example
below shows that the value of the residual may fail to control the distance to the exact
solution.

φ

xx
_x0
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3.3 A posteriori error indicators based on post–processing of

computed solutions

Post–processingof approximate solutions is a numerical procedure intended
to modify already computed solution in such a way that the post–processed
function would fit some a priori known propertiesmuch better than the orig-
inal one.

3.3.1 Preliminaries

Let e denotes the error of an approximate solution v ∈ V and E(v) : V → R+ denotes
the value of an error estimator computed on v.

Definition 3.3.1 The estimator is said to be equivalent to the error for the
approximations v from a certain subset Ṽ if

c1E(v) ≤ ‖e‖ ≤ c2E(v) ∀v ∈ Ṽ

Definition 3.3.2 The ratio

ieff := 1 +
E(v) − ‖e‖

‖e‖
is called the effectivity indexof the estimator E.

Ideal estimator has ieff = 1. However, in real life situations it is hardly possible, so
that values ieff in the diapason from 1 to 2-3 are considered as quite good.
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In FEM methods with mesh size h one other term is often used:

Definition 3.3.3 The estimator E is called asymptotically equivalent to the error if
for a sequence of approximate solutions {uh} obtained on consequently refined meshes
there holds the relation

inf
h→0

E(uh)

‖u− uh‖
= 1

It is clear that an estimator may be asymptotically exact for one sequence of ap-
proximate solutions (e.g. computed on regular meshes) and not exact for another
one.
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General outlook. Typically, the function Tuh (where T is a certain linear operator,
e.g., ∇) lies in a space U that is wider than the space Ū that contains Tu. If we have a
computationally inexpensive continuous mapping G such that G(Tvh) ∈ U, ∀vh ∈ Vh.
then, probably, the function G(Tuh) is much closer to Tu than Tuh.

U

U

Tu

Tu

TuG

.

.
.

−

h

h

Figure 3.1: Mapping to the set U

These arguments form the basis of various post-processing algorithms that change
a computed solution in accordance with some a priori knowledge of properties of the
exact solution.

If the error caused by violations of a priori known properties is dominant and the
post-processing operator G is properly constructed, then

‖GTuh − Tu‖ << ‖Tuh − Tu‖ .

In this case, the explicitly computable norm ‖GTuh − Tuh‖ can be used to evaluate
upper and lower bounds of the error.

Indeed, assume that there is a positive number α < 1 such that

‖GTuh − Tu‖ ≤ α ‖Tuh − Tu‖ .
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Then, for e = uh − u we have

(1 − α) ‖Te‖ = (1 − α) ‖Tuh − Tu‖ ≤
≤ ‖Tuh − Tu‖ − ‖GTuh − Tu‖ ≤

≤ ‖GTuh − Tuh‖ ≤
≤ ‖GTuh − Tu‖ + ‖Tuh − Tu‖ ≤

≤ (1 + α) ‖Tuh − Tu‖ = (1 + α) ‖Te‖ .
Thus, if α << 1, then

‖Tuh − Tu‖ ≃ ‖GTuh − Tuh‖ .
and the right-hand can be used as an error indicator.

3.3.2 Post-processing by averaging

Post-processing operators are often constructed by averaging Tuh on finite element
patches or on the entire domain.

Integral averaging on patches

If Tuh ∈ L2, then post-processing operators are obtained by various averaging proce-
dures. Let Ωi be a patch of Mi elements, i.e.,

Ωi =
⋃

Tij, j = 1, 2, ...Mi.

Let P k(Ωi,R
d) be a subspace of U that consists of vector-valued polynomial functions

of degrees less than or equal to k. Define gi ∈ P k(Ωi,R
d) as the minimizer of the

problem:

inf
g∈P k(Ωi,Rd)

∫

Ωi

|g − Tuh|2 dx.

The minimizer gi is used to define the values of an averaged function at some points
(nodes). Further, these values are utilized by an extension procedure that defines an
averaged function

GTuh : Ω → R.
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Consider the simplest case. Let T be the operator ∇ and uh be a piecewise affine
continuous function. Then,

∇uh ∈ P 0(Tij,R
d) on each Tij ⊂ Ωi.

We denote the values of ∇uh on Tij by (∇uh)ij.
Set k = 0 and find gi ∈ P 0 such that
∫

Ωi

|gi −∇uh|2 dx = inf
g∈P 0(Ωi)

∫

Ωi

|g −∇uh|2 dx =

= inf
g∈P 0(Ωi)

{
|g|2|Ωi| − 2g ·

Mi∑

j=1

(∇uh)ij|Tij| +
Mi∑

j=1

|(∇uh)ij|2|Tij|
}
.

It is easy to see that gi is given by a weighted sum of (∇uh)ij, namely,

gi =

Mi∑

j=1

|Tij|
|Ωi|

(∇uh)ij.

Set
G(∇uh)(xi) = gi.

Repeat this procedure for all nodes and define the vector-valued function G∇(uh)
by the piecewise affine prolongation of these values. For regular meshes with equal
|Tij|, we have

gi =

Mi∑

j=1

1

Mi
(∇uh)ij.

Various averaging formulas of this type are represented in the form

gi =

Mi∑

j=1

λij(∇uh)ij,
Mi∑

j=1

λij = 1,

where λij are the weight factors. For internal nodes, they may be taken, e.g., as follows

λij =
|γij|
2π

, |γij| is the angle.
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However, if a node belongs to the boundary, then it is better to choose special
weights. Their values depend on the mesh and on the type of the boundary2

2see I. Hlavácek and M. Krizek. On a superconvergence finite element scheme for elliptic systems. I. Dirichlet
boundary conditions. Aplikace Matematiky, 32(1987), No.2, 131-154.
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Discrete averaging on patches Consider the problem

inf
g∈Pk(Ωi)

mi∑

s=1

|g(xs) − Tuh(xs)|2 ,

where the points xs are specially selected in Ωi.
Usually, the points xs are the so–called superconvergent points.
Let gi ∈ P

k(Ωi) be the minimizer of this problem.
If k = 0, and T = ∇ then

gi =
1

mi

mi∑

s=1

∇uh(xs).
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Global averaging

Global averaging makes the post–processing not on patches, but on the whole
domain.

Assume that Tuh ∈ L2 and find ḡh ∈ Vh(Ω) ⊂ U such that

‖ḡh − Tuh‖2
Ω = inf

gh∈Vh(Ω)
‖gh − Tuh‖2

Ω .

The function ḡh can be viewed as GTuh. Very often ḡh is a better image of Tu than
the functions obtained by local procedures.

Moreover, mathematical justifications of the methods based on global averaging
procedures can be performed under weaker assumptions what makes them applicable
to a wider class of problems3

Task 3.3.1 Solve the boundary–value problem

∆u+ f = 0, u = 0 on ∂Ω

by h-version FEM (use Matlab or another code). Apply the simplest gradient–averaging
error indicator to indicate the error distribution. Compare it with the distribution of
true error (the latter can be extracted from a solution on a much finer mesh).

3see, e.g., Carstensen, C.; Bartels, S. Each averaging technique yields reliable a posteriori error control in FEM on
unstructured grids. I: Low order conforming, nonconforming, and mixed FEM, Math. Comp., 71(2002)
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3.3.3 Superconvergence

Justifications of the gradient averaging method. Let uh be a Galerkin approximation
of u computed on Vh. For piecewise affine approximations of the diffusion problem we
have the estimate

‖∇(u− uh)‖2,Ω ≤ c1h, ‖u− uh‖2,Ω ≤ c2h
2

However, it was discovered4 that in certain cases this rate may be higher.
For example it may happen that

|u(xs) − uh(xs)| ≤ Ch2+σ σ > 0

at a superconvergent point xs.

Certainly, existence and location of superconvergent points strongly depends
on the structure of Th.

Superconvergence in terms of integral type norms. For example, approxi-
mate solutions of the problem

∆u+ f = 0 in Ω

are said to be supercomverging and an operator G possesses a superconver-
gence property in ω ⊂ Ω if

‖∇u− G∇uh‖2,ω ≤ c2h
1+σ,

where the constant c2 may depend on higher norms of u and the structure
of Th.

4see, e.g., L. A. Oganesjan and L. A. Ruchovec. Z. Vyčisl. Mat. i Mat. Fiz.,9(1969);
M. Zlámal. Lecture Notes. Springer, 1977;
L. B. Wahlbin. Lecture Notes. Springer, 1969.
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By exploiting the superconvergence properties, e.g.,

‖∇u− G∇uh‖2,ω ≤ c2h
1+σ,

while

‖∇u−∇uh‖2,ω ≤ c2h,

one can usually construct a simple post-processing operator G satisfying the condition

‖G∇uh −∇u‖ ≤ α ‖∇uh −∇u‖ .
where the value of α decreases as h tends to zero.

Since

‖G∇uh −∇uh‖ ≤ ‖∇uh −∇u‖ + ‖G∇uh −∇u‖ ,
‖G∇uh −∇uh‖ ≥ ‖∇uh −∇u‖ − ‖G∇uh −∇u‖ .

where the first term in the right–hand side is of the order h and the second one is of
h1+δ. We see that

‖G∇uh −∇uh‖ ∼ h

Therefore, we observe that in the decomposition

‖∇(uh − u)‖ ≤ ‖∇uh − G∇uh‖ + ‖G∇uh −∇u‖
asymptotically dominates the second directly computable term.

Thus, we obtain a simple error indicator:

‖∇(uh − u)‖ ≈ ‖∇uh − G∇uh‖ .

Note that

ieff =
‖∇(uh − u)‖

‖∇uh − G∇uh‖
≈ 1 + chδ

so that this error indicator is asymptotically exact provided that uh is a Galerkin
approximation, u is sufficiently regular and h is small enough.

Such type error indicators (often called ZZ indicatorsby the names of Zienkiewicz
and Zhu) are widely used as cheap error indicators in engineering computations 5

5see, e.g., M. Ainsworth, J. Z. Zhu, A. W. Craig and O. C. Zienkiewicz. Analysis of the Zienkiewicz-Zhu a posteriori
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3.3.4 Post-processing by equilibration

For a solution of the diffusion problem we know that

div σ + f = 0,

where σ = A∇u. This suggests an idea to construct an operator G such that

div (G(A∇uh)) + f = 0.

If G possesses additional properties (linearity, boundedness), then we may hope that
the function GA∇uh is closer to sig than A∇uh and use the quantity ‖A∇uh −
GA∇uh‖ as an error indicator.

error estimator in the finite element method, Int. J. Numer. Methods Engrg., 28(1989). I. Babuska and R. Rodriguez.
The problem of the selection of an a posteriori error indicator based on smoothing techniques, Internat. J. Numer.
Meth. Engrg., 36(1993). O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical
engineering analysis, Internat. J. Numer. Meth. Engrg., 24(1987)
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This idea can be applied to an important class of problems

Λ⋆Tu+ f = 0, Tu = AΛu, (3.14)

where A is a positive definite operator, Λ is a linear continuous operator, and Λ⋆ is
the adjoint operator.

In continuum mechanics, equations of the type (3.14) are referred to as the equi-
librium equations. Therefore, it is natural to call an operator G an equilibration
operator.

If the equilibration has been performed exactly then it is not difficult to get an
upper error bound. However, in general, this task is either cannot be fulfilled
or lead to complicated and expensive procedures. Known methods are usually
end with approximately equilibrated fluxes.



154 S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008

3.4 A posteriori error estimates constructed with help of ad-

joint problems

3.4.1 Goal–oriented error estimates

Global error estimates give a general idea on the quality of an approximate solution
and stopping criteria. However, often it is useful to estimate the errors in terms of
specially selected linear functionals ℓs, s = 1, 2, ...M , e.g.,

< ℓ, v − u >=

∫

Ω

ϕ0 (v − u) dx,

where φ is a locally supported function. Since

| < ℓ, u− uh > | ≤ ‖ℓ‖‖u− uh‖V ,

we can obtain such an estimate throughout the global a posteriori estimate. However,
in many cases, such a method will strongly overestimate the quantity.

3.4.2 Adjoint problem

A posteriori estimates of the errors evaluated in terms of linear functionals are derived
by attracting the adjoint boundary-value problem whose right-hand side is formed by
the functional ℓ.

Let us represent this idea in the simplest form. Consider a system

Au = f,

where A is a positive definite matrix and f is a given vector. Let v be an approximate
solution. Define uℓ by the relation

A⋆uℓ = ℓ,

where A⋆ is the matrix adjoint to A. Then,

ℓ · (u− v) = A⋆uℓ · u− ℓ · v = f · uℓ − ℓ · v = (f − Av) · uℓ
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Certainly, the above consideration holds in a more general (operator) sense,
so that for a pair of operators A and A⋆ we have

< ℓ, u− v >=< f − Av, uℓ > . (3.15)

and find the error with respect to a linear functional by the product of the
residual and the exact solution of the adjoint problem:

A⋆uℓ = ℓ.

Practical application of this principle depends on the ability to find either
uℓ or its sharp approximation Methods using adjoint problems has been
investigated in the works of R. Becker, C. Johnson, R. Rannacher and others
6.

3.4.3 Application to FEM. Dual-weighted residual method

Consider again the diffusion problem. Now, it is convenient to denote the solution of
the original problem by uf , i.e

∫

Ω

A∇uf · ∇w dx =

∫

Ω

fw dx, ∀w ∈ V0(Ω).

Since in our case A = A⋆, the adjoint problem is to find uℓ ∈ V0(Ω) such that
∫

Ω

A∇uℓ · ∇w dx =

∫

Ω

ℓw dx, ∀w ∈ V0(Ω).

Let Ω be divided into a number of elements Ti, i = 1, 2, ...N . Given approximations
on the elements, we define a finite-dimensional subspace V0h ∈ V0(Ω) and the Galerkin

6A more detailed exposition of these works can be found in W. Bangerth and R. Rannacher. Adaptive finite element
methods for differential equations. Birkhäuser, Berlin, 2003.
R. Becker and R. Rannacher. A feed–back approach to error control in finite element methods: Basic approach and
examples, East–West J. Numer. Math., 4(1996), 237-264.
Concerning error estimation in goal–oriented quantities we refer, e.g., to J. T. Oden, S. Prudhomme. Goal-oriented error
estimation and adaptivity for the finite element method, Comput. Math. Appl., 41, 735-756, 2001.
P. Neittaanmaki and S. Repin. Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates.
Elsevier. 2004.
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approximations ufh and uℓh:
∫

Ω

A∇ufh · ∇wh dx =

∫

Ω

fwhdx, ∀wh ∈ V0h,
∫

Ω

A∇uℓh · ∇wh dx =

∫

Ω

ℓwhdx, ∀wh ∈ V0h.

Since
∫

Ω

ℓ(uf − ufh)dx =

∫

Ω

A∇uℓ · ∇(uf − ufh)dx

and
∫

Ω

A∇uℓh · ∇(uf − ufh)dx = 0,

We arrive at the relation
∫

Ω

ℓ(uf − ufh)dx=

∫

Ω

A∇(uℓ − uℓh) · ∇(uf − ufh)dx (3.16)

whose right-hand side is expressed in the form

N∑

i=1

∫

Ti

A∇(uf − ufh) · ∇(uℓ − uℓh) dx =

N∑

i=1



−

∫

Ti

div (A∇(uf − ufh)) (uℓ − uℓh) dx+

+
1

2

∫

∂Ti

j (νi · A∇(uf − ufh)) (uℓ − uℓh) ds



 .

This relation implies the estimate
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∫

Ω

ℓ(uf − ufh)dx=
N∑

i=1

{
‖divA∇(uf − ufh)‖2,Ti

‖uℓ − uℓh‖2,Ti
+

+1
2 ‖j(νi · A∇(uf − ufh))‖2,∂Ti

‖uℓ − uℓh‖2,∂Ti

}
=

=
N∑

i=1

{
‖f + divA∇ufh‖2,Ti

‖uℓ − uℓh‖2,Ti
+

+1
2 ‖j(νi · A∇ufh)‖2,∂Ti

‖uℓ − uℓh‖2,∂Ti

}
.

Here, the principal terms are the same as in the explicit residual method, but the
weights are given by the norms of uℓ − uℓh.
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Assume that uℓ ∈ H2 and uℓh is constructed by piecewise affine continuous approx-
imations. Then the norms
‖uℓ − uℓh‖Ti

and ‖uℓ − uℓh‖2,∂Ti

are estimated by the quantities hα|uℓ|2,2,Ti
with α = 1 and 1/2 and the multipliers

ĉi and ĉij, respectively.
In this case, we obtain an estimate with constants defined by the standard

H2 → V0h

interpolation operator whose evaluation is much simpler than that of the constants
arising in the

H1 → V0h

interpolation.
This is the advantage of the dual-weighted residual method.
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3.4.4 A posteriori estimates in L2–norm.

In principle, this technology can be exploited to evaluate estimates in L2–norm. In-
deed,

‖uf − ufh‖ = sup
ℓ∈L2

(ℓ, uf − ufh)

‖ℓ‖ = sup
ℓ∈L2

(A∇uℓ,∇(uf − ufh))

‖ℓ‖ =

= sup
ℓ∈L2

(A∇(uℓ − πh(uℓ)),∇(uf − ufh))

‖ℓ‖ =

= sup
ℓ∈L2

(∇(uℓ − πh(uℓ)), A∇(uf − ufh))

‖ℓ‖ =

= sup
ℓ∈L2

N∑
i=1

{
∫
Ti

∇(uℓ − πh(uℓ)), A∇(uf − ufh) dx

}

‖ℓ‖



160 S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008

Integrating by parts, we obtain

N∑
i=1

{
‖f+divA∇ufh‖Ti

‖uℓ−πh(uℓ)‖Ti
+ 1

2 ‖j(νi · A∇ufh)‖∂Ti
‖uℓ− πh(uℓ)‖∂Ti

}

‖ℓ‖

If for any ℓ ∈ L2 the adjoint problem has a regular solution (e.g., uℓ ∈ H2), so that
we could combine the standard interpolation estimate for the interpolant of uℓ with
the regularity estimate for the PDE (e.g., ‖uℓ‖ ≤ C1‖ℓ‖), then we obtain

‖uℓ − πh(uℓ)‖Ti
≤ C1h

α1‖ℓ‖, ‖uℓ − πh(uℓ)‖∂Ti
≤ C1h

α2‖ℓ‖

with certain αk.
Under the above conditions ‖ℓ‖ is reduced and we arrive at the estimate, in which

the element residuals and interelement jumps are weighted with factors C1h
α1 and

C2h
α2.
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3.4.5 Comment

We end up this lecture with a ”terminological” comment. In the literature devoted to
a posteriori error analysis one can find often find terms like
”duality approach to a posteriori error estimation” or
”dual-based error estimates”.
However, the essence behind such a terminology may be quite different because the
word ”duality” is used in 3 different meanings:
(a) Duality in the sense of functional spaces. We have seen that if for the
equation Lu = f errors are measured in the original (energy) norm then a consistent
upper bound is given by the residual in the norm of the space topologically dual to
a subspace of the energy space (e.g., H−1).
(b) Duality in the sense of using the Adjoint Problem.
(c) Duality in the sense of the Theory of the Calculus of Variations.

In the next lecture
we will proceed to the detailed exposition

of the approach (c).
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Chapter 4

FUNCTIONAL A POSTERIORI
ESTIMATES FOR A MODEL ELLIPTIC
PROBLEM

4.1 Introduction

In this chapter, we derive Functional A Posteriori Estimate for the problem

∆u+ f = 0, Ω u = 0 ∂Ω.

and discuss their meaning, principal features and practical implementation.

Functional A Posteriori Estimates. Functional A Posteriori Estimate is a computable
majorant of the difference between exact solution u and any conforming approxima-
tion v having the general form:

Φ(u− v) ≤M (D, v) ∀v ∈ V ! (4.1)

D is the data set (coefficients, domain, parameters, etc.),
Φ : V → R+ is a given functional.
M must be computable and continuous in the sense that

M (D, v) → 0, if v → u

163



164 S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008

Types of error measure functionals Φ.

• Energy norm Φ(u− v) = ‖u− v‖Ω

• Local norm Φ(u− v) = ‖u− v‖ω
• Goal–oriented quantity Φ(u− v) = (ℓ, u− v)

We will see that

Functional a posteriori estimates provide guaranteed bounds for all above-
introduced error measures.

Derivation methods.

These estimates are derived by purely functional methods using the analysis
of variational problems or integral identities.

Variational method 96’-97’1 Variational method exploits variational structure of
the original problem and Duality Theory in the Calculus of Variations.

Nonvariational method 2000’Derives a posteriori estimates by certain transforma-
tions of integral identities 2).

Let us consider both methods in application to our basic problem

4.2 Deriving functional a posteriori estimates by the varia-

tional method

Let u be a (generalized) solution of the problem

∆u+ f = 0, Ω u = 0 ∂Ω.
1S. Repin Mathematics of Computation, 69(230), pp. 2000, 481-500.

A systematic exposition of the variational approach to deriving Functional a Posteriori Estimates can be found in
P. Neittaanmaki and S. Repin. Reliable methods for computer simulation. Error control and a posteriori estimates.
Elsevier, NY, 2004

2Basic idea of the method is presented in S. Repin. Proc. St.-Petersburg Math. Society, 2001 pp. 148-179 (in Russian,
translated in American Mathematical Translations Series 2, 9(2003)
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As we have seen in Lecture 1, this problem is equivalent to the following variational
problem:

Problem P . Find u ∈ V0 :=
◦
H1(Ω) such that

J(u) = inf
v∈V0

J(v),

where

J(v) =
1

2
‖∇v‖2 − (f, v).

By the reasons that we discussed earlier this problem has a unique solution.

Lagrangian. Note that

J(v) = sup
y∈Y

L(∇v, y), L(∇v, y) =

∫

Ω

(
∇v · y− 1

2
|y|2−fv

)
dx

where Y = L2(Ω,Rd). Indeed, the value of the above supremum cannot exceed the
one we obtain if for almost all x ∈ Ω solve the pointwise problems

sup
y(x)

(∇v)(x) · y(x) − 1

2
|y(x)|2 x ∈ Ω

whose upper bound is attained if set y(x) = (∇v)(x). Since ∇v ∈ Y , we observe that
the respective maximizer belongs to Y and, therefore

sup
y∈Y

L(∇v, y) = L(∇v,∇v) = J( v).

Minimax Formulations. Then, the original problem comes in the minimaxform:

(P) inf
v∈V0

sup
y∈Y

L(∇v, y)

If the order of inf and sup is changed, then we arrive at the so-called dual problem

(P∗) sup
y∈Y

inf
v∈V0

L(∇v, y)
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Note that

inf
v∈V0

∫

Ω

(
∇v · y− 1

2
|y|2−fv

)
dx = −1

2
‖y‖2+inf

v∈V0

∫

Ω

(∇v · y−fv)dx =

=

{
−1

2‖y‖2 if y ∈ Qf := {y ∈ Y | divy + f = 0}
−∞ if y 6∈ Qf
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Dual Problem. Thus, we observe that the dual problem has the form: find p ∈ Qf

such that

−I∗( p) = sup
y∈Qf

−I∗(y)

where

I∗(q) =
1

2
‖q‖2

How these two problems are connected?

First, we establish one relation that holds regardless of the structure of the Lagrangian.

Sup Inf and Inf Sup

Lemma 4.2.1 Let L(x, y) be a functional defined on the elements of two nonempty
sets X and Y . Then

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y). (4.2)

Proof. It is easy to see that

L(x, y) ≥ inf
ξ∈X

L(ξ, y), ∀x ∈ X, y ∈ Y.

Taking the supremum over y ∈ Y , we obtain

sup
y∈Y

L(x, y) ≥ sup
y∈Y

inf
ξ∈X

L(ξ, y), ∀x ∈ X.

The left-hand side depends on x, while the right-hand side is a number. Thus, we
may take infimum over x ∈ X and obtain the inequality

inf
x∈X

sup
y∈Y

L(x, y) ≥ sup
y∈Y

inf
ξ∈X

L(ξ, y).

Therefore, we always have

sup P∗ ≤ inf P
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Duality relations. However, in our case we have a stronger relation, namely

sup P∗ = inf P

To prove this fact, we note that
∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V0.

From here, we conclude that p = ∇u ∈ Qf and

−I∗( p) =−1

2
‖∇u‖2 =

∫

Ω

(
1

2
|∇u|2 − |∇u|2)dx=

∫

Ω

(
1

2
|∇u|2 − fu)dx = J(u).
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Now, we use Mikhlin’s estimate:

1

2
‖∇(u− v)‖2 ≤ J( v) − J(u).

Since J(u) = −I∗(p), we have

1

2
‖∇(u− v)‖2 ≤ J( v) + I∗(p) ≤ J( v) + I∗(q) ∀q ∈ Qf .

Reform this estimate by using the fact that q ∈ Qf .

J( v) + I∗(q) =
1

2
‖∇v‖2 − (f, v) +

1

2
‖q‖2

=
1

2
‖∇v‖2 +

1

2
‖q‖2 − (∇v, q) =

=
1

2
‖∇v − q‖2

We find that

‖∇( v − u)‖ ≤ ‖∇v − q‖ ∀q ∈ Qf .

Take arbitrary y ∈ L2(Ω). Then,

‖∇( v − u)‖ ≤ ‖∇v − y‖ + inf
q∈Qf

‖y − q‖.

How to estimate the above infimum?
Various methods give one and the same answer:

inf
q∈Qf

‖y − q‖ ≤ |||||| div y + f |||||| y ∈ L2(Ω), (4.3)

inf
q∈Qf

‖y − q‖ ≤ CΩ‖div y + f‖ y ∈ H(Ω, div ), (4.4)

Proof. To prove these estimates we consider an auxiliary problem

∆η + f + div y = 0 Ω η = 0 ∂Ω.
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∫

Ω

∇η · ∇wdx=

∫

Ω

(fw − y · ∇w)dx

q
∫

Ω

︷ ︸︸ ︷
(∇η + y) ·∇w dx =

∫

Ω

fw dx ∀w ∈ V0

Thus, q̄ ∈ Qf !!!

Since η is a solution of the boundary–value problem with right–hand side div y+ f ∈
H−1, we have

‖∇η‖ ≤ |||||| div y + f |||||| ,

Then

inf
q∈Qf

‖y − q‖ ≤ ‖y − q‖ = ‖∇η‖ ≤ |||||| div y + f |||||| .

Here

|||||| div y + f |||||| = sup
w∈V0

∫
Ω (y · ∇w − fw)dx

‖∇w‖
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Let y ∈ H(Ω, div ). Then we have

|||||| div y + f |||||| = sup
w∈V0

∫
Ω (div y + f)wdx

‖∇w‖ ≤ CΩ‖div y + f‖,

where CΩ is the constant in the Friederichs–Steklov inequality for the domain Ω.
We observe that a ”noncomputable” negative norm has been estimated by a ”com-

putable” one without an attraction of Galerkin orthogonality and local (mesh–dependent)
constants.

Thus, for any y ∈ H(Ω, div ) we obtain

‖∇( v − u)‖ ≤ ‖∇v − y‖ + inf
q∈Qf

‖y − q‖ ≤

‖∇v − y‖ + CΩ‖div y + f‖ := M ∆(v, y).

Above presented modus operandi can be viewed as a simplest version of the variational
approach to the derivation of Functional Error Majorants.
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Error Minorant. A lower bound of the error is given in the theorem below.

Theorem 4.2.1 For any v ∈ V0,

‖∇(u− v)‖2 ≥ M
2
∆
(v, w), (4.5)

where

M
2
∆
(v, w) := 2Fv(w) − ‖∇w‖2,

w is an arbitrary function in V0, and

Fv(w) =

∫

Ω

(f · w −∇v · ∇w) dx

is the residual functional.

Proof. From the relation

2(J(v) − J(u)) = ‖∇(u− v)‖2 ,

it follows that

‖∇(u− v)‖2 ≥ 2(J(v) − J(v + w)),

where w is an arbitrary function in V0. Therefore,

‖∇(u− v)‖2 ≥
∫

Ω

(
−|∇w|2 − 2∇v · ∇w

)
dx+ 2

∫

Ω

f · w dx,

and we arrive at (4.5).
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4.3 Deriving functional a posteriori estimates by the non–

variational method

For many problems the variational techniques cannot be applied (e.g., because they
may have no variational formulation).

It was suggested another method 3, which is based on certain transformations of
integral identities.

Non–variational method in the simplest case. Let us expose its simplest version adapted
to our model problem.

We have
∫

Ω

∇(u− v)∇wdx =

∫

Ω

(fw −∇v · ∇w) dx

In order to get an upper bound of ‖∇(u− v)‖ we use the relation
∫

Ω

(div yw + ∇w · y) dx = 0 ∀w ∈ V0

valid for any y ∈ H(Ω, div ).
We have

∫

Ω

(∇v · ∇w − fw)dx =
∫

Ω

(∇v · ∇w − fw − (div y w + ∇w · y))dx =
∫

Ω

((∇v − y) · ∇w − (f + div y)w)dx ≤

‖∇v − y‖‖∇w‖ + ‖f + div y‖‖w‖ ≤
≤ (‖∇v − y‖ + CΩ‖f + div y‖)‖∇w‖.

3S. Repin. Two-sided estimates for deviation from an exact solution to uniformly elliptic equation. Trudi St.-
Petersburg Math. Society, 9(2001), translated in American Mathematical Translations Series 2, 9(2003)

Later this method was applied to parabolic problems: S.Repin. Estimates of deviation from exact solutions of initial-
boundary value problems for the heat equation, Rend. Mat. Acc. Lincei, 13(2002).
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Set w = u− v.
∫

Ω

|∇(u− v)|2dx ≤ (‖∇v − y‖ + CΩ‖f + div y‖)‖∇(u− v)‖.

Thus, we find that

‖∇(u− v)‖ ≤ ‖∇v − y‖ + CΩ‖f + div y‖.

4.4 Properties of functional a posteriori estimates

For the problem

∆u+ f = 0, u = 0 on ∂Ω

we have obtained the estimate

‖∇(u − v)‖ ≤ ‖∇v − y‖ + CΩ‖div y + f‖ (4.6)

1. The estimate is valid for any v ∈ V0 and y ∈ H(Ω, div ).
2. Two terms in the right–hand side have a clear sense:

they present measures of the errors in two basic relations

p = ∇u, div p+ f = 0 in Ω

that jointly form the equation.
3. The estimate is sharp. If set v = 0 and y = 0, we obtain the energy estimate

for the generalized solution

‖∇u‖ ≤ CΩ‖f‖.

Therefore, no constant less than CΩ can be stated in the second term.
If set y = ∇u, than the inequality holds as the equality.
Thus, we see that the estimate (4.6) is sharp in the sense that the multipliers

of both terms cannot be taken smaller and in the set of admissible y there exists a
function that makes the inequality hold as equality.
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The estimate as a quadratic functional. By means of the algebraic Young’s inequality

2ab ≤ βa2 +
1

β
b2, β > 0

we rewrite this estimate in the form

‖∇(u− v)‖2 ≤ (1 + β)‖∇v − y‖2 +
1 + β

β
C2

Ω‖div y + f‖2 (4.7)

For any β the right–hand side is a quadratic functional. This property makes it
possible to apply well known methods for the minimization with respect to y.

Denote the right–hand side of (4.7) by M , i.e.,

M ( v, y, β, CΩ, f) := (1+β)‖∇v−y‖2 +
1+β

β
C2

Ω‖div y+ f‖2.

This functional provides an upper bound for the norm of the deviation of v from u.
Therefore, it is natural to call it the Deviation Majorant.

BVP ∆u+ f = 0 has another variational formulation

inf
v∈V0,

β>0,

y∈H(Ω,div ),

M ( v, y, β, CΩ, f)

• Minimum of this functional is zero;

• it is attained if and only if v = u and y = A∇u !;

• M contains only one global constant CΩ, which is problem independent;

In principle, one can select certain sequences of subspaces {Vhk} ∈ V0 and {Yhk} ∈
H(Ω, div ) and minimize the Error Majorant with respect to these subspaces

inf
v∈Vhk,

β>0,

y∈Yhk,

M ( v, y, β, CΩ, f)
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If the subspaces are limit dense, then we would obtain a sequence of approximate
solutions (vk, yk) and the sequence of numbers

γk := inf
β>0

M ( vk, yk, β, CΩ, f) → 0

4.5 How to use the estimates in practice?

We discuss practical aspects with the paradigm of conforming finite element approxi-
mations.

We have 3 basic ways to use the functional error majorant (deviation estimate):
(a) Direct (via flux averaging on the mesh Th);
(b) One step delay (via flux averaging on the mesh href);
(c) Minimization (minimization via y).

(a) Use recovered gradients Let uh ∈ Vh, then

ph := ∇uh ∈ L2(Ω,R
d), ph 6∈ H(Ω, div ).

Use an averaging operator Gh : L2(Ω,R
d) → H(Ω, div ) and have a directly com-

putable estimate

‖∇(u− uh)‖ ≤ ‖∇uh −Ghph‖ + CΩ ‖divGhph + f‖

(b) Use recovered gradients from Thref
Let u1, u2, ..., uk, ... be a sequence of approxi-

mations on meshes Thk
. Compute pk := ∇uk, average it by Gk and for uk−1 use the

estimate

‖u− uk−1‖ ≤ ‖∇uk−1−Gkpk‖ + CΩ ‖divGkpk+f‖
This estimate gives a quantitative form of the Runge’s rule.

(c) Minimize M with respect to y. Select a certain subspace Yτ in H(Ω, div ). Gen-
erally, Yτ may be constructed on another mesh Tτ and with help of different trial
functions. Then

‖∇(u− uh)‖ ≤ inf
yh∈Yh

{‖∇uh−yh‖ + CΩ ‖div yh +f‖}
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The wider Yh ⊂ H(Ω, div ) the sharper is the upper bound.

Quadratic type functional. From the technical point of view it is better to square
both parts of the estimate and apply minimization to a quadratic functional, namely

‖∇(u− uh)‖2 ≤ inf
yh∈Yh

{
(1 + β)‖∇uh−yh‖ +

+ CΩ

(
1 +

1

β

)
‖div yh +f‖ 2

}

Here, the positive parameter β can be also used to minimize the right–hand side.

Before going to more complicated problems where Deviation Majorants are
derived by a more sophisticated theory, we observe several simple examples
that nevertheless reflect key points of the above method.

Simple 1-D problem.

(α(x) u′ )′ = f(x),

u(a) = 0, u(b) = ub.

It is equivalent to the variational problem

J(v) =

b∫

a

(
1

2
α(x) | v′ |2 +f(x)v

)
dx.

Assume that the coefficient α belongs to ∈ L∞ and bounded from below by a
positive constant. Now

V0 + u0 = {v ∈ H1(a, b) | v(a) = 0, v(b) = ub}.

Deviation Majorant.

M (v, β, y)=(1+β)




b∫

a

| αv′−y |2 dx+
C2

(a,b)

β

b∫

a

|y′−f |2

 dx. (4.8)
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In this simple model, u can be presented in the form

u(x) =

∫ x

a

1

α(t)

∫ t

a

f(z)dzdt+
x

b

(
ub −

∫ b

a

1

α(t)

∫ t

a

f(z)dzdt

)
.

what gives an opportunity to verify how error estimation methods work.

Approximations. Let Vh be made of piecewise–P 1 continuous functions on uniform
splitting of the interval and consider approximations of the following types:

• Galerkin approximations;

• Approximations very close to Galerkin (sharp);

• Approximations which are ”good” but not Galerkin;

• Coarse (rough) approximations.

Our aim is to show that the Deviation Majorant can be effectively used as
an error estimation instrument in all the above cases.

Computation of the Majorant. To find a sharp upper bound, we minimize M with
respect to y and β starting from the function y0 = G(v′), where G is a simple averaging
operator, e.g, defined by the relations

G(v′)(xi) =
1

2
(v′(xi − 0) + v′(xi + 0)),

By the quantity

inf
β>0

M ( v, β, y0),

we obtain a coarse upper bound of the error. It is further improved by minimizing M

with respect to y.
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Example. Let α(x) = 1, f(x) = c, a = 0, b = 1, ub = 1, e.g., we consider the problem

u′′ = 2, u(0) = 0, u(1) = 1.

In this case, C(a,b) = 1/π and

u =
c

2
x2 + (1 − c

2
)x, u′ = cx+ 1 − c

2
.

Take a rough approximation v = x. Then

‖(u− v)′‖2 =

∫ 1

0

c2(x− 0.5)2dx = c2/12 ≈ 0.083c2.
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Exact solution and an approximation.

Various y give different upper bounds. (a) Take y = v′ = 1, then the first term in

M (v, β, y)=(1+β)




1∫

0

| v′−y |2 dx+
1

π2β

1∫

0

|y′−f |2

 dx.

vanishes and we have

M → c2/π2 ≈ 0.101c2; as β → +∞.

We see that this upper bound overestimates true error. Note that in this case, all
sensible averagings of v′ = 1 give exactly the same function: G(1) = 1 ! Therefore,

G(v′) − v′ ≡ 0

and formally ZZ indicator ”does not see the error”.
For the choice y = v′ the Majorant give a certain upper bound of the error (which is

not so bad), but the integrand cannot indicate the distribution of local errors. Indeed,
we have

M =
1

π2

∫ 1

0

c2dx.
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However, the integrand of the Majorant is a constant function, but the error is dis-
tributed in accordance with a parabolic law:

(u− v)′ = c(x− 0.5)2.

(b). Take y = cx + 1 − c/2.Then, y′ = c and the second term of the majorant
vanishes. We have (for β = 0)

M =

∫ 1

0

c2(x− 1/2)2dx = c2/12.

We observe that both the global error and the error distribution are exactly re-
produced. In real life computations such an ”ideal” function y may be unattainable.
However, the minimization makes the Majorant close to the sharp value. In this
elementary example, we have minimized the Majorant on using piecewise affine ap-
proximations of y on 20 subintervals. The elementwise error distribution obtained as
the result of this procedure is exposed on the next picture.
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True errors and those computed by the Majorant.

To give further illustrations, we consider the functions

uδ = u+ δφ,

where δ is a number and φ is a certain function (perturbation).
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Table 4.1: Errors and two-sided estimates.

δ e 2M 2M ieff iesh
0.1 0.019692 0.019743 0.019683 1.003 1.018

0.01 0.001022 0.001025 0.001013 1.003 1.011

0.001 0.000835 0.000839 0.000827 1.005 1.002

0 0.000833 0.000836 0.000825 1.004 1.002

Approximate solutions are piecewise affine continuous interpolants of uδ defined
on a uniform mesh with 20 subintervals.

We take φ = x sin(πx) and δ = 0.1, 0.01, 0.001, and 04.

Task 4.5.1 Apply the above theory to the problem

(αu′)′ = f,

u(0) = 0, u(1) = b

with your own α, f , and b. Compute approximate solutions and verify their accuracy
along the same lines as in the example above.

4In this experiment the Majorant was computed for 1
2‖e‖2.
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Figure 4.1: δ = 0.1
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Figure 4.2: δ = 0.01
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Figure 4.3: δ = 0.001
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Figure 4.4: δ = 0
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4.6 Estimates without Friedrichs constants

For problems with lower terms it is easy to obtain estimates without CΩ.

∆u− ̺u+ f = 0, ̺ > 0,

u = u0 on ∂Ω.

Such estimates can be derived by both variational and non-variational method. Let

w ∈ V0 :=
◦
H1(Ω). We have

∫

Ω

∇(u− v) · ∇w dx+ ̺

∫

Ω

(u− v)wdx =

=

∫

Ω

(fw −∇v · ∇w)dx− ̺

∫

Ω

vw dx.

Use the integral identity for y ∈ H(Ω, div ):
∫

Ω (∇w · y + wdiv y) dx = 0 ∀w ∈ V0.

∫

Ω

∇(u− v) · ∇w dx+ ̺

∫

Ω

(u− v)wdx =
∫

Ω

(f + div y − ̺v)w dx+

∫

Ω

(y −∇v) · ∇w) dx ≤

≤ ‖f + div y − ̺v‖‖w‖ + ‖∇v − y‖‖∇w‖.
Set w = u− v and note that

‖f + div y − ̺v‖‖u− v‖ + ‖∇v − y‖‖∇(u− v)‖ =

=
1

̺
‖f + div y − ̺v‖̺‖u− v‖ + ‖∇v − y‖‖∇(u− v)‖ ≤

≤
(

1

̺2
‖f + div y − ̺v‖2 + ‖∇v − y‖2

)1/2

||| u− v |||

where

||| u− v |||2=
∫

Ω

(|∇(u− v)|2 + ̺|u− v|2)dx.
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Then, we obtain the estimate

||| u− v |||2≤ 1

̺2
‖f + div y − ̺v‖2 + ‖∇v − y‖2

By the variational method this estimate was derived in 97’. Also, it readily follows
from the general a posteriori framework5.

This estimate has no CΩ. However, in practice, it may give big overestimation if ̺
is small due to large penalty at the first term.

4.7 Estimates in the primal-dual norm

In mixed formulations (see Chapter 2), the solution is defined as a pair of functions
(u, p). M ∆(v, q) also considers v and q as independent functions. Therefore, it is
natural to measure the respective error in terms of combined (primal-dual) norms of
the product space

W := V0 ×H(Ω, div ),

with the norm

‖(v, y)‖W := ‖∇v‖ + ‖y‖ + ‖div y‖ = ‖∇v‖ + ‖y‖div .

Other equivalent norms are

‖(v, y)‖(1)
W := ‖∇v‖ + ‖y‖ + CFΩ‖div y‖,

‖(v, y)‖(2)
W :=

(
‖∇v‖2 + ‖y‖2 + ‖div y‖2

)1/2
.

It is easy to see that

γ1‖(v, y)‖W ≤ ‖(v, y)‖(1)
W ≤ γ2‖(v, y)‖W , (4.9)

1√
3
‖(v, y)‖W ≤ ‖(v, y)‖(2)

W ≤ ‖(v, y)‖W , (4.10)

where γ1 = min{1, CFΩ} and γ2 = max{1, CFΩ}.
5see, e.g., S.R. Math. Comp. 2000
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Let us show that the majorant M ∆(v, y) is equivalent to the error in the combined

norm ‖(v, y)‖(1)
W . Since

‖p− y‖ = ‖∇u− y‖ ≤ ‖∇(u− v)‖ + ‖∇v − y‖

and ‖div (p− y)‖ = ‖div y + f‖, we find that

‖(u− v, p− y)‖(1)
W := ‖∇(u− v)‖ + ‖p− y‖ + CFΩ‖div y + f‖

≤ 2‖∇(u− v)‖ + ‖∇v − y‖ + CFΩ‖div y + f‖ ≤
≤ 3M ∆(v, y).

On the other hand,

M ∆(v, y) ≤ ‖∇(v − u)‖ + ‖p− y‖ + CFΩ‖div y + f‖. (4.11)

Thus, we note that the following two-sided estimate holds:

M ∆(v, y) ≤ ‖(u− v, p− y)‖(1)
W ≤ 3M ∆(v, y). (4.12)

By (4.12) we conclude that M ∆ is an efficient and reliable measure of the error in the

combined norm ‖(u− v, p− y)‖(1)
W .

In view of (4.9) and (4.10), the majorant is also equivalent to two other combined
norms, namely,

1
γ2

M ∆(v, y) ≤ ‖(u− v, p− y)‖W ≤ 3
γ1

M ∆(v, y), (4.13)

1√
3γ2

M ∆(v, y) ≤ ‖(u− v, p− y)‖(2)
W ≤ 3

γ1
M ∆(v, y). (4.14)

Also, we can define lower and upper bounds for the norm ‖(u− v, p− y)‖W with the
help of the functionals

M∆(v, y) = 3‖∇v − y‖ + (1 + 2CFΩ) ‖div y + f‖

and

M∆(v, y) := ‖∇v − y‖ + ‖div y + f‖,
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which consist of the same terms as those in M ∆ but with different weights. We have

‖(u− v, p− y)‖W := ‖∇(u− v)‖ + ‖p− y‖ + ‖div y + f‖
≤ 2‖∇(u− v)‖ + ‖∇v − y‖ + ‖div y + f‖ ≤
≤ 3‖∇v − y‖ + (1 + 2CFΩ)‖div y + f‖ := M∆(v, y).

Hence, we find that

M∆(v, y) ≤ ‖(u− v, p− y)‖W ≤ M∆(v, y). (4.15)

Similarly,

γ1M∆(v, y) ≤ ‖(u− v, p− y)‖(1)
W ≤ γ2M∆(v, y), (4.16)

1√
3
M∆(v, y) ≤ ‖(u− v, p− y)‖(2)

W ≤ M∆(v, y). (4.17)

Finally, we note that

M ∆(v, p) = ‖∇(u− v)‖, (4.18)

M ∆(u, y) = ‖y −∇u‖ + CFΩ‖div (y − p)‖. (4.19)

Therefore,

‖(u− v, p− y)‖(1)
W := M ∆(v, p) + M ∆(u, y). (4.20)

4.8 Error indicators generated by error majorants

Error majorants imply easily computable functions that furnish information on the
overall error and adequately reproduce the error function

|e(x)| := |∇(u− v)|.
Such functions are called error indicators. We have discussed some error indicators of
them in the context of finite element approximations.

Let yτ be a vector-valued function found by minimization of M ∆(v, y) with respect
to y on a certain finite-dimensional space Yτ . Then the function

η(x) := yτ −∇v



190 S. Repin. Lectures on A Posteriori Estimates.. University Saarbrüken, Germany, DAAD Program 2008

is a simple indicator. Experiments have shown that it efficiently reproduces the error
distribution, namely:

E1(v, yτ) = |η(x)|2 ≈ |e(x)|2. (4.21)

Since

‖e− η‖ = ‖∇(u− v) − yτ + ∇v‖ = ‖p− yτ‖, (4.22)

we see that the indicator E1(v, yτ) is sharp (i.e., the computable function η is close to
|e|), if yτ is close to p.

Let us show that
M ∆(v, yτ) is sufficiently close to the error, then yτ is a good representative of the true
flux p.

Assume that v = uh, where uh is a finite element approximation computed on Th
and {yτk} is a sequence of fluxes computed by minimization of M ∆(v, y) on expanding
spaces {Yτk}, which are limit dense in H(Ω, div ).

1. It is easy to prove that the exact lower bound of M ∆(v, y) (and of M β,∆(v, y))
with respect to y is attained on a subspace of H(Ω, div ). Indeed, for any v ∈ V0 (and
any β > 0) the majorant is convex, continuous, and coercive on H(Ω, div ). By known
results in the calculus of variations 6, we conclude that a minimizer ȳ(v) exists. Since
M β,∆(v, y) is a quadratic functional, the corresponding minimizer ȳ(v, β) is unique.
We note that it depends on β.

2. Property of the minimizer.

Lemma 4.8.1 Let ȳ be such that

M ∆(v, ȳ) = inf
y∈H(Ω,div )

M ∆(v, y). (4.23)

There exists w̄ ∈ V0 such that ȳ = ∇w̄.

Proof. For any y0 ∈ S(Ω) we have

‖∇v − ȳ‖ + CFΩ‖div ȳ + f‖ ≤ ‖∇v − y0 − ȳ‖ + CFΩ‖div ȳ + f‖.
6e.g., see I. Ekeland and R. Temam. Convex Analysis and Variational Problems. North-Holland, New York, 1976.
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From the above we conclude that for any y0,
∫

Ω

ȳ · y0 dx+
1

2
‖y0‖2 ≥ 0.

This inequality holds if and only if
∫

Ω

ȳ · y0 dx = 0, ∀y0 ∈ S(Ω). (4.24)

Recall that ȳ ∈ L2(Ω,Rd) admits the decomposition ȳ = ∇w̄ + τ0, where w̄ ∈ V0 and
τ0 is a solenoidal field. Set y0 = τ0. From (4.24), it follows that ‖τ0‖ = 0. Thus,
ȳ = ∇w̄.

Task 4.8.1 Prove that the minimizer of M β,∆(v, y) has a similar property.

3. FEM approximations.
By the construction of yτk, we know that

M ∆(v, yτk) → ‖∇(u− v)‖. (4.25)

Hence, the sequence {yτk} is bounded in H(Ω, div ) and a weak limit ỹ of this sequence
exists. Since M ∆(uh, y) is convex and continuous with respect to y, we know that

‖∇(u−uh)‖ = lim
k→+∞

M ∆(uh, yτk) ≥ M ∆(uh, ỹ)

= ‖∇uh−ỹ‖+CFΩ‖div ỹ+f‖ ≥ ‖∇(u−uh)‖. (4.26)

Thus, we conclude that

‖∇uh−ỹ‖ + CFΩ‖div ỹ +f‖ = ‖∇(u−uh)‖

and, therefore, ỹ minimizes the functional M ∆(uh, y).
If ∇uh 6∈ H(Ω, div ) (which is typical of FEM approximations), then one can prove

that ỹ = ∇u. Indeed, by Lemma 4.8.1, we know that ỹ = ∇ū ∈ H(Ω, div ), where
ū ∈ V0. Then,

‖∇(uh − ū)‖ + CFΩ‖∆ū+ f‖ = ‖e‖, (4.27)
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where e = ∇(u− uh). On the other hand,

‖∇(u− ū)‖ ≤ ‖∇ū− y‖ + CFΩ‖div y + f‖

and, therefore,

CFΩ‖∆ū+ f‖ ≥ ‖∇(u− ū)‖. (4.28)

From (4.27) and (4.28) we conclude that

‖e‖ ≥ ‖∇(u− ū)‖ + ‖∇(uh − ū)‖. (4.29)

By the triangle inequality,

‖e‖ ≤ ‖∇(u− ū)‖ + ‖∇(uh − ū)‖, (4.30)

and, consequently, (4.29) and (4.30) result in the relation

‖e‖ = ‖∇(u− ū)‖ + ‖∇(uh − ū)‖, (4.31)

which implies
∫

Ω

∇(u− ū) · ∇(ū− uh) dx = ‖∇(u− ū)‖‖∇(ū− uh)‖. (4.32)

Such a relation is true if (a) ∇(u− ū) = 0, (b) ∇(uh − ū) = 0, or (c)

∇(ū− uh) = µ∇(u− ū) for some µ ∈ R, (µ 6= 0). (4.33)

In view of the boundary conditions, the case (a) means that u = ū. Since ∇uh 6∈
H(Ω, div ), the case (b) is impossible. From (4.33), it follows that

∇uh = (1 + µ)∇ū− µ∇u ∈ H(Ω, div ),

so that if ∇uh 6∈ H(Ω, div ), then this relation does not hold and (c) cannot be true.
It remains to conclude that ỹ = ∇u.

Then,

‖∇(u−uh)‖ = lim
k→+∞

M ∆(uh, yτk) ≥ lim
k→+∞

‖∇uh− yτk‖ ≥

≥ ‖∇uh − ỹ‖ = ‖∇(u−uh)‖,
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so that
‖∇uh − yτk‖ → ‖∇(uh − u)‖ as k → +∞.

From here, it follows that ‖yτk‖ → ‖∇u‖ and, consequently, yτk tends to ∇u in L2(Ω).
Hence, ‖p− yτk‖ → 0. By (4.22) we then conclude that the indicator ηk := yτk −∇uh
tends to e as k → +∞.

The indicator E1 was verified in numerous tests not only for the Poisson’s equation
but also for diffusion, linear elasticity, Stokes, and Maxwell’s problems (where analogs
of this indicator were used). Experiments confirmed its efficiency and stability with
respect to approximations of different types.


