Problem 1.1 (Classification - 4 Points)

Classify the following equations:
(a) $u_{t}=u_{x x}+2 u_{x}+u$
(b) $u_{t}=u_{x x}+e^{-t}$
(c) $u_{x x}+3 u_{x y}+u_{y y}=\sin x$
(d) $u_{t t}=u u_{x x x x}+e^{-t}$

Problem 1.2 (Transformation into normal form - 12 Points)

Transform into normal form the following equations
(a) $u_{x x}-2 x u_{x y}-\frac{1}{x} u_{x}=0, \quad x>0$,
(b) $u_{x x}+2 u_{x y}+x^{2} u_{x}=e^{-x^{2} / 2}$.

Problem 1.3 (Definition of the type - 9 Points)

Define the type (elliptic, parabolic, etc.) of the following equations
(i) $x u_{x x}+2 x u_{x y}+(x-1) u_{y y}=0$,
(ii) $u_{x y}-2 u_{x z}+u_{y z}+u_{x}+\frac{1}{2} u_{y}=0$,
(iii) $u_{x x}+2 u_{x y}+2 u_{x z}+u_{y y}+2 u_{y z}+u_{z z}-u=0$.

Problem 1.4 (Solving PDE - 5 Points)

Can you find all functions $u(x, y)$ that satisfy to the equation

$$
\frac{\partial^{2} u(x, y)}{\partial x \partial y}=0 ?
$$

How many are there?

Deadline for submission: Monday, November 3, (Room 003, Bilding E1 3)

