PDE and Boundary-Value Problems (Winter Term 2014/2015) Assignment H4 - Homework

Problem 4.1 (Fourier Transform and Maple - $3 \times 4=12$ Points)

Using Maple solve the problem

$$
\begin{aligned}
\text { PDE: } & u_{t}=u_{x x}, \\
\mathrm{IC}: & -\infty(x, 0)=\varphi(x), \quad \infty<x<\infty
\end{aligned}
$$

by means of the Fourier transform. Compare the solutions for the following values of the initial data:
(a) $\varphi(x)=\left\{\begin{aligned} 1, & x>0 \\ -1, & x<0\end{aligned}\right.$,
(b) $\varphi(x)=\left\{\begin{array}{cc}\cos (x), & |x|<\pi / 2 \\ 0, & |x|>\pi / 2\end{array}\right.$,
(c) $\varphi(x)=x e^{-2|x|}$.

Problem 4.2 (Laplace Transform and Maple - 8 Points)

We seek the temperature distribution $u(x, t)$ in a thin rod over the interval $0<x<\infty$ whose lateral surface is insulated. The left end of the rod is constarined at a varying temperature $q(t)=\frac{1}{\sqrt{t}}$, and the rod has an initial temperature distribution $u(x, 0)=0$. There is no heat source in the system and the termal diffusivity of the rod is $k=1 / 50$.

Using Maple solve the problem by means of the Laplace transform ($\operatorname{transform} t$). Show the animation of the spatial-time temperature distribution $u(x, t)$ in the rod for $0 \leqslant t \leqslant 5$.
(Hinweis: use the Maple commands laplace and invlaplace for the Laplace transform and the inverse Laplace transform, respectively.)

Problem 4.3 (Solving IBVP - 6 Points)

Suppose we have a metal rod (laterally insulated) and we supply an initial impulse of heat at the right-hand side (the left-hand side is fixed at zero). Suppose the initial temperature of the rod is zero (some reference temperature) and the temperature at the midpoint $x=0.5$ is measured at various values of time, so that we have the following table:

Values of Time	Midpoint Temperature
t_{1}	w_{1}
$t_{2}=2 t_{1}$	w_{2}
$t_{3}=3 t_{1}$	w_{3}
\vdots	\vdots
$t_{n}=n t_{1}$	w_{n}

Using this data, how could we approximate the temperature responce at the points $u\left(0.5, t_{n}\right)$ due to the BCs
(a) $u(1, t)=\sin (t)$
(b) $u(x, t)=f(t) \quad($ arbitrary $f(t))$?

Problem 4.4 (Duhamel's Principle - 4 Points)

Using Duhamel's principle, what is the solution of the IBVP

$$
\left.\begin{array}{c}
\text { PDE: } u_{t}=\alpha^{2} u_{x x}, \\
\text { BCs: } \begin{cases}u(0, t)=0 \\
u(1, t)=\sin (t),\end{cases} \\
\text { IC: } u(x, 0)=0, \\
\text { IC } \quad 0 \leqslant \infty<\infty
\end{array}\right\}
$$

Deadline for submission: Monday, December 15, 12pm

