

PDE and Boundary-Value Problems (Winter Term 2014/2015) Assignment H7 - Homework

Problem 7.1 (The Exterior Dirichlet Problem - 10 Points)

What is the solution to the exterior Dirichlet problem

PDE $\Delta u = 0,$ $1 < r < \infty$ BC $u(1, \phi) = 1 + \cos \phi$

Problem 7.2 (The Dirichlet Problem- 8 Points)

Solve the Dirichlet problem

PDE	$\Delta u = 0,$	1 < r < 2
BCs	$\begin{cases} u(1,\theta) = \cos \theta \\ u(2,\theta) = \sin \theta \end{cases}$	

Problem 7.3 (Questionnaire - 10 Points)

- 1. The equation $u_{tt} = u_{xx}$ is commonly called the ______ equation.
- 2. The term u_x in the equation $u_t = Du_{xx} \nu u_x$ is related to the ______ of the material.
- 3. The Legendre polynomials $\{P_n(x)\}$ are ______ on the interval [0, 1].
- 4. In order for separation of variables to work, the PDE must be ______ and _____.
- 5. An integral transform that we generally use on the time variable is due to ______.
- 6. The normal derivative at the boundary of a region is related to the ______ of material across the boundary.

- 7. The ODE in *r* we must solve when solving the vibrating circular membrane is due to _____.
- 8. A useful way to solve the equation $u_t = Du_{xx} \nu u_x$ is by ______ coordinates.
- 9. The PDE $r^2 R'' + rR' \lambda^2 R = 0$ is called ______ equation.
- 10. The PDE $u_{xx} + u_{yy} = f(x, y)$ is named after _____.

Deadline for submission: Mondy, February 9, 12pm