PDE and Boundary-Value Problems Winter Term 2014/2015

Lecture 10

Saarland University

8. Dezember 2014

Purpose of Lesson

- With the help of the Laplace transform, to illustrate an important concept known as Duhamel's principle.
- To show how the term u_{x} in the diffusion equation represents the phenomenon of convection. With the help of the Laplace transform, to solve the convection problem.
- To derive the fundamental solution of the heat equation and discuss the corresponding solutions of homogeneous and nonhomogeneous IVPs

Heat Flow within a Rod with Temperature Fixed on the Boundaries

Quite often, it is important to find the temperature inside a medium due to time-varying boundary conditions. For example, consider an insulated rod with temperature specified as $f(t)$ on the right end.

Problem 10-1
PDE: $\quad u_{t}=u_{x x}, \quad 0<x<1, \quad 0<t<\infty$
BCs: $\left\{\begin{array}{l}u(0, t)=0 \\ u(1, t)=f(t)\end{array} \quad 0<t<\infty\right.$

$$
\text { IC: } \quad u(x, 0)=0, \quad 0 \leqslant x \leqslant 1
$$

Heat Flow within a Rod with Temperature Fixed on the Boundaries

We may think that the solution to problem 10-1 can be easily found once we know the solution to the simpler version (constant temperature on the boundaries)

Problem 10-2

$$
\begin{gathered}
\text { PDE: } \begin{array}{cl}
w_{t}=w_{x x}, & 0<x<1, \quad 0<t<\infty \\
\text { BCs: }\left\{\begin{array}{ll}
w(0, t)=0 \\
w(1, t)=1
\end{array},\right. & 0<t<\infty
\end{array} \\
\text { IC: } w(x, 0)=0,
\end{gathered} 0 \leqslant x \leqslant 1 .
$$

Heat Flow within a Rod with Temperature Fixed on the Boundaries

Solving problems 10-1 and 10-2 at the same time we have

Easy Problem 10-2 (constant BCs)	Hard Problem 10-1 (time-varying BCs)
Transform problem 10-2 by the Laplace transform Transform problem 10-1 by the Laplace transform $\frac{d^{2}}{d x^{2}} W-s W(x)=0$ $\frac{d^{2}}{d x^{2}} U-s U(x)=0$ $W(0)=0$ $U(0)=0$ $W(1)=1 / s$ $U(1)=F(s)$ 	

Easy Problem 10-2 (cont.) (constant BCs)

Solve the ODE

$$
W(x, s)=\frac{1}{s}\left[\frac{\sinh (x \sqrt{s})}{\sinh (\sqrt{s})}\right]
$$

Find the inverse transform

$$
\begin{aligned}
& w(x, t)=x \\
& \quad+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} e^{-(n \pi)^{2} t} \sin (n \pi x)
\end{aligned}
$$

Hard Problem 10-1 (cont.) (time-varying BCs)

Solve the ODE

$U(x, s)=F(s)\left[\frac{\sinh (x \sqrt{s})}{\sinh (\sqrt{s})}\right]$
Don't invert yet - first multiply and divide by s
$U=F(s)\left\{s\left[\frac{\sinh (x \sqrt{s})}{s \sinh (\sqrt{s})}\right]\right\}$

$$
\begin{aligned}
& \text { Easy Problem 10-2 (cont.) } \text { Hard Problem 10-1 (cont.) } \\
& \text { (constant BCs) } \\
& \text { (time-varying BCs) } \\
& \text { Using the relationship } \\
& \mathcal{L}\left[w_{t}\right]=s W-w(x, 0) \\
& \text { we get } \\
& U(x, s)=F(s) \cdot \mathcal{L}\left[w_{t}\right] \\
& \Downarrow \\
& u(x, t)=\mathcal{L}^{-1}\left\{F(s) \cdot \mathcal{L}\left[w_{t}\right]\right\} \\
& =\mathcal{L}^{-1}[F(s)] * w_{t} \\
& =f(t) * w_{t}(t)
\end{aligned}
$$

In other words,

$$
\begin{align*}
u(x, t) & =\int_{0}^{t} w_{t}(x, t-\tau) f(\tau) d \tau \\
& =\int_{0}^{t} w(x, t-\tau) f^{\prime}(\tau) d \tau+f(0) w(x, t) \tag{10.1}
\end{align*}
$$

Remarks

- Equation (10.1) is known as Duhamel's principle.
- Often, even the easy problem (constant BCs) cannot be solved analytically. However, we can observe the solution experimentally.
- When we have this experimental data, we can solve the problem with arbitrary BCs using Duhamel's formula.

The Convection term u_{x} in the Diffusion Problems

- Consider now the problem of finding the concentration of a substance upwards from the surface of the earth where the substance both diffuses through the air and is carried upward (convected)by moving currents (moving with velocity V).
- Diffusion is mixing the substance through the air, while convection is the movement of the substance by means of the air (the movement of the medium).
- It is possible for the convection of the substance to contribute more of a movement in the substance than the diffusion itself.

Derivation of the Diffusion-Convection Equation

To derive this equation for a concentration $u(x, t)$ of a substance, we use two basic facts
(1) Flux due to convection

The flux of the material (from left to right) across a point due to convection is given by $\operatorname{Vu}(x, t)$, where V is the linear velocity of the medium ($\mathrm{cm} / \mathrm{sec}$) and $u(x, t)$ is the linear concentration (g / sm)
(2) Flux due to diffusion

The flux of material (from left to the right) across a point due to diffusion is given by $-D u_{x}(x, t)$, where D is the diffusion coefficient

Derivation of the Diffusion-Convection Equation

If we substitute these two expressions into the conservation equation (see Lecture 4), we get the basic PDE

$$
u_{t}=D u_{x x}-V u_{x}
$$

Solution of the convection equation

- First, we consider the problem that is pure convection (the diffusion term is zero).
- A typical problem would be dumping a substance into a clean river (moving with velocity V) and observing the concentration of the substance downstream.

Problem 10-3

PDE: $\quad u_{t}=-V u_{x}, \quad 0<x<\infty, \quad 0<t<\infty$
$\mathrm{BC}: \quad u(0, t)=P, \quad \leftarrow$ Constant input of the substance
IC: $u(x, 0)=0, \quad \leftarrow$ Initially a clean river

Step 1. (Transformation)

- Using the Laplace transform we get an ODE in x

$$
\text { ODE: } \quad s U(x)=-V \frac{d}{d x} U, \quad 0<x<\infty
$$

$$
\text { BC: } \quad U(0)=\frac{P}{s},
$$

Step 2. (Solving the problem for ODE)

$$
U(x)=\frac{P}{s} e^{-(s x / V)}
$$

Step 3. (Inverse transform)

$$
u(x, t)=\mathcal{L}^{-1}[U]=P H(t-x / V)=\left\{\begin{array}{l}
0, t<x / V \\
P, t \geqslant x / V
\end{array}\right.
$$

Solution of the convection equation

- The situation becomes more interesting when the solute (pollutant) diffuses with the medium.

Problem 10-4

$$
\text { PDE: } \quad u_{t}=D u_{x x}-V u_{x}, \quad-\infty<x<\infty
$$

$$
\text { IC: } \quad u(x, 0)=1-H(x), \quad-\infty<x<\infty
$$

- In problem 10-4, we have moved the boundary to $-\infty$ (we have an IVP).
- To solve problem 10-4, we could use the Laplace transform in t or the Fourier transform in x. Alternative approach is introducing a new coordinate ξ.

So, our goal is to transform the IVP 10-4 into a new one in the moving coordinate system, solve it, and then transform back to get the solution in terms of the original coordinates (x, t).

Step 1. (Change of variables)

- In place of the old coordinates (x, t), we introduce new ones (ξ, τ)

$$
\begin{aligned}
\xi & =x-V t \\
\tau & =t
\end{aligned}
$$

- To rewrite the PDE in terms of (ξ, τ), we use the chain rule

$$
\begin{aligned}
u_{t} & =u_{\xi} \xi_{\tau}+u_{\tau} \tau_{t}=-V u_{\xi}+u_{\tau} \\
u_{x} & =u_{\xi} \xi_{x}=u_{\xi} \\
u_{x x} & =\left(u_{\xi}\right)_{x}=u_{\xi \xi} \xi_{x}=u_{\xi \xi}
\end{aligned}
$$

- Substituting our computed u_{t}, u_{x} and $u_{x x}$ into the PDE, we get the new IVP in terms of ξ and τ

Problem 10-5

$$
\begin{array}{rlrl}
\text { PDE: } & u_{t} & =D u_{\xi \xi}, & \\
\text { IC: } & u(\xi, 0) & =1-H(\xi), & \\
-\infty<\xi<\infty & -\infty<\xi<\infty
\end{array}
$$

Step 2. (Solving the transformed problem)

- The problem 10-5 has already been solved in Lecture 8 by the Fourier transform and has the solution

$$
u(\xi, \tau)=\frac{1}{2 \sqrt{D \pi \tau}} \int_{-\infty}^{\infty} \phi(\beta) e^{-(\xi-\beta)^{2} /(4 D \tau)} d \beta
$$

where $\phi(\beta)$ is the initial condition.

- Hence, in our case, we have

$$
u(\xi, \tau)=\frac{1}{2 \sqrt{D \pi \tau}} \int_{-\infty}^{0} e^{-(\xi-\beta)^{2} /(4 D \tau)} d \beta
$$

Step 2. (Solving the transformed problem)

- By letting

$$
\bar{\beta}=\frac{\xi-\beta}{2 \sqrt{D \tau}} \quad d \bar{\beta}=\frac{-1}{2 \sqrt{D \tau}} d \beta
$$

we get

$$
\begin{aligned}
u(\xi, \tau) & =\frac{1}{2}\left[\frac{2}{\sqrt{\pi}} \int_{\frac{\xi}{\left(\frac{b}{D \tau}\right)}}^{\infty} e^{-\bar{\beta}^{2}} d \bar{\beta}\right] \\
& =\left\{\begin{array}{l}
\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{-\xi}{2 \sqrt{D \tau}}\right)\right], \xi<0 \\
\frac{1}{2} \operatorname{erfc}\left(\frac{\xi}{2 \sqrt{D \tau}}\right), \xi \geqslant 0
\end{array}\right.
\end{aligned}
$$

Step 3. (Change to the original variables)

- Finally, to get the solution of problem 10-4 in terms of the coordinates x and t, we substitute

$$
\begin{aligned}
\xi & =x-V t \\
\tau & =t
\end{aligned}
$$

into equation (10.2) to get

$$
u(x, t)=\left\{\begin{array}{l}
\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{V t-x}{2 \sqrt{D \tau}}\right)\right], \quad V t>x \\
\operatorname{erfc}\left(\frac{x-V t}{2 \sqrt{D \tau}}\right), \quad V t \leqslant x
\end{array}\right.
$$

