
PDE and Boundary-Value Problems
Winter Term 2014/2015

Lecture 12

Saarland University

15. Dezember 2014

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 12 15. Dezember 2014 1 / 24



Purpose of Lesson
To introduce the one-dimensional wave equation and show how it
describes the motion of a vibrating string.

To show how the one-dimensional wave equation is derived as a
result of Newton’s equations of motion.

To find D’Alembert solution of the wave equation and interpretate
it in terms of moving wave motion.
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The One-Dimensional Wave Equation

Chapter 3. Hyperbolic-Type Problems

So far, we have been concerned with physical phenomenon described
by parabolic equations. We will now begin to study the second major
class pf PDEs, hyperbolic equations.

We start by studying the one-dimensional wave equation, which
describes (among other things) the transverse vibrations of a string.
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The One-Dimensional Wave Equation Vibrating-String Problem

Vibrating-String Problem

Suppose we have the following simple experiment that we break into
steps.

1. Consider the small vibrations of a string length L that is fastened
at each end.

2. We assume the string is stretched tightly, made of a
homogeneous material, unaffected by gravity, and that the
vibrations take place in a plane.
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The One-Dimensional Wave Equation Vibrating-String Problem

The mathematical model of the vibrating-string
problem

To mathematically describe the vibrations of the 1-dimensional string,
we consider all the forces acting on a small section of the string.

Essentially, the wave equation is nothing more than Newton’s equation
of motion applied to the string (the change of momentum mutt of a
small string segment is equal to the applied forces).
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The One-Dimensional Wave Equation Vibrating-String Problem

The most important forces are

1. Net force due to the tension of the string (α2uxx )

The tension component has a net transverse force on the string
segment of

Tension component = T sin (θ2)− T sin (θ1)

≈ T [ux (x + ∆x , t)− ux (x , t)]

2. External force F (x , t)

An external force F (x , t) may be applied along the string at any
value of x and t .
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The One-Dimensional Wave Equation Vibrating-String Problem

3. Frictional force against the string (−βut )

If the string is vibrating in a medium that offers a resistance to the
string’s velocity ut , then this resistance force is −βut .

4. Restoring force (−γu)

This is a force that is directed opposite to the displacement of the
string. If the displacement u is positive (above the x-axis), then the
force is negative (downward).
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The One-Dimensional Wave Equation Vibrating-String Problem

If we now apply Newton’s equation of motion

mutt = applied forces to the segment (x , x + ∆x)

to the small segment of string, we have

∆xρutt (x , t) = T [ux (x + ∆x , t)− ux (x , t)] + ∆xF (x , t)
−∆xβut (x , t)−∆xγu(x , t),

where ρ is the density of the string.

By dividing each side of the equation by ∆x and letting ∆x → 0, we
have the equation

utt = α2uxx − δut − κu + f (x , t),

where α2 =
T
ρ

, δ =
β

ρ
, κ =

γ

ρ
, and f (x , t) =

F (x , t)
ρ

.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 12 15. Dezember 2014 8 / 24



The One-Dimensional Wave Equation Intuitive Interpretation of the Wave Equation

Intuitive Interpretation of the Wave Equation

The expression utt represents the vertical acceleration of the
string at a point x .

Equation
utt = α2uxx

can be interpreted as saying that the acceleration of each point of
the string is due to the tension in the string and that the larger the
concavity uxx , the stronger the force.
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The One-Dimensional Wave Equation Intuitive Interpretation of the Wave Equation

Remarks
If the vibrating string had a variable density ρ(x), then the wave
equation would be

utt =
∂

∂x

[
α2(x)ux

]
.

In other words, the PDE would have variable coefficients.
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The One-Dimensional Wave Equation Intuitive Interpretation of the Wave Equation

Remarks (cont.)

Since the wave equation utt = α2uxx contains a second-order time
derivative utt , it requires two initial conditions

u(x ,0) = f (x) (initial position of the string)

ut (x ,0) = g(x) (initial velocity of the string)

in order to uniquely define the solution for t > 0. This is in contrast
to the heat equation, where only one IC was required.
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The D’Alembert Solution of the Wave Equation

The D’Alembert Solution of the Wave Equation

In the parabolic case we started solving problems when the space
variable was bounded (by separation of variables) and then went
on to solve the unbounded case (where −∞ < x <∞) by the
Fourier transform.

In the hyperbolic case (wave problem), we will do the opposite.

We start by solving the one-dimensional wave equation in free
spece. We will use the method similar to the moving-coordinate
method from diffusion-comvection equation.
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The D’Alembert Solution of the Wave Equation

Problem 12-1
To find the function u(x , t) that satisfies

PDE: utt = c2uxx , −∞ < x <∞, 0 < t <∞

ICs:

{
u(x ,0) = f (x)

ut (x ,0) = g(x)
−∞ < x <∞

We solve problem 12-1 by breaking it into several steps.
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The D’Alembert Solution of the Wave Equation

Step 1. (Replacing (x , t) by new canonical coordinates (ξ, η))

We introduce two new space-time coordinates (ξ, η)

ξ = x + ct
η = x − ct

In new variables our PDE takes the form

uξη = 0. (12.1)
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The D’Alembert Solution of the Wave Equation

Step 2. (Solving the transformed equation)

We solve (12.1) by two straightforward integrations (first with
respect to ξ and then with respect to η). The general solution of
(12.1) is

u(ξ, η) = φ(η) + ψ(ξ), (12.2)

where φ(η) and ψ(ξ) are arbitrary functions of η and ξ,
respectively.
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The D’Alembert Solution of the Wave Equation

Step 3. (Transforming back to the original coordinates x and t)

We substitute

ξ = x + ct
η = x − ct

into (12.2) to get

u(x , t) = φ(x − ct) + ψ(x + ct). (12.3)

Remark
(12.3) is physically represents the sum of any two moving waves, each
moving in opposite directions with velocity c.
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The D’Alembert Solution of the Wave Equation

Step 4. (Substituting the general solution into the ICs)

Substituting (12.3) into our ICs, we get

φ(x) + ψ(x) = f (x)

−cφ′(x) + cψ′(x) = g(x)
(12.4)

Integrating the second equation of (12.4) from x0 to x , we obtain

−cφ(x) + cψ(x) =

x∫
x0

g(s)ds + K . (12.5)
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The D’Alembert Solution of the Wave Equation

Step 4. (Substituting the general solution into the ICs (cont.))

If we solve algebraically for φ(x) and ψ(x) from the first equation
of (12.4) and (12.5), we have

φ(x) =
1
2

f (x)− 1
2c

x∫
x0

g(s)ds − K
2c

ψ(x) =
1
2

f (x) +
1
2c

x∫
x0

g(s)ds +
K
2c
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The D’Alembert Solution of the Wave Equation

Step 4. (Substituting the general solution into the ICs (cont.))

Hence, the solution to our problem 12-1 is

u(x , t) =
1
2

[f (x − ct) + f (x + ct)] +
1
2c

x+ct∫
x−ct

g(s)ds .

It is called the D’Alembert solution.
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The D’Alembert Solution of the Wave Equation Examples of the D’Alembert Solution

Examples of the D’Alembert Solution

1. Motion of an Initial Sine Wave
Consider the initial conditions

u(x ,0) = sin (x)

ut (x ,0) = 0

The initial sine wave would have the solution

u(x , t) =
1
2

[sin (x − ct) + sin (x + ct)]

This can be interpreted as dividing the initial shape u(x ,0) = sin (x)
into two equal parts

sin (x)

2
and

sin (x)

2

and then adding the two resultant waves as one moves to the left
and the other to the right (each with velocity c).
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The D’Alembert Solution of the Wave Equation Examples of the D’Alembert Solution

Examples of the D’Alembert Solution (cont.)

2. Motion of a Simple Square Wave
In this case, if we start the initial conditions

u(x ,0) =

{
1, −1 < x < 1
0, otherwise

ut (x ,0) = 0

then the initial wave is decomposed into two half waves travelling in
opposite direction.
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The D’Alembert Solution of the Wave Equation Examples of the D’Alembert Solution

Examples of the D’Alembert Solution (cont.)

3. Initial Velocity Given
Suppose now the initial position of the string is at equilibrium and
we impose an initial velocity (as in piano string) of sin (x)

u(x ,0) = 0
ut (x ,0) = sin (x)

Here, the solution would be

u(x , t) =
1
2c

x+ct∫
x−ct

sin (s)ds

=
1
2c

[cos (x + ct)− cos (x − ct)]

which represents the sum of two moving cosine wave.
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The D’Alembert Solution of the Wave Equation Examples of the D’Alembert Solution

Remarks
Note that a second-order PDE has two arbitrary functions in its
general solution, whereas the general solution of a second-order
ODE has two arbitrary constants. In other words, there are more
solutions to a PDE than to an ODE.

The general technique of changing coordinate systems in a PDE
in order to find a simpler equation is common in PDE theory.

The new coordinates (ξ, η) in problem 12-1 are known as
canonical coordinates.

The strategy of finding the general solution to a PDE and then
substituting it into the boundary and initial conditions is not a
common technique in solving PDEs.
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The last but not least

y =
ln
( x

m − sa
)

r2

yr2 = ln
( x

m
− sa

)

eyr2
=

x
m
− sa

meyr2
= x − sam

merry = x −mas
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