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Purpose of Lesson
To show how transverse vibrations of a finite string can be found
by the standard technique of separation of variables and to show
how the solution u(x , t) can be interpreted as the infinite sum

u(x , t) =
∞∑

n=1

Xn(x)Tn(t)

of simple vibrations where the shape Xn(x) of these fundamental
vibrations are solutions (eigenfunctions) of a certain
Sturm-Liouville BVP.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 14 8. Januar 2015 2 / 28



Purpose of Lesson (cont.)
To illustrate how higher-order PDEs come about in the study of
vibrating-beam problems.

To solve the problem of a vibrating beam with simply supported
ends by separation of variables.

To compare the vibrations of the beam with the vibrations of the
violin string.
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The Finite Vibrating String (Standing Waves)

The Finite Vibrating String (Standing Waves)

So far, we have studied the wave equation utt = c2uxx for the
unbounded domain −∞ < x <∞ and have found (D’Alembert’s
solution) solutions to be certain travelling waves (moving in
opposite directions).

When we study the same wave equation in a bounded region of
space 0 < x < L, we find that the waves no longer appear to be
moving due to their repeated interaction with the boundaries and,
in fact, often appear to be what are known as standing waves.
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The Finite Vibrating String (Standing Waves)

Consider what happens when a guitar string (fixed at both ends
x = 0,L) described by the simple hyperbolic IBVP

Problem 14-1
To find the function u(x , t) that satisfies

PDE: utt = c2uxx , 0 < x < L, 0 < t <∞

BCs:

{
u(0, t) = 0
u(1, t) = 0

0 < t <∞

ICs:

{
u(x ,0) = f (x)

ut(x ,0) = g(x)
0 6 x 6 L
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The Finite Vibrating String (Standing Waves)

What happens is that the travelling-wave solution to the PDE and IC
keeps reflecting from the boundaries in such a way that the wave
motion does not appear to be moving, but, in fact, appears to be
vibrating in one position.
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The Finite Vibrating String (Standing Waves)

If we knew the shapes Xn(x) of these standing waves and how each
one of them vibrated Tn(t), then all we would have to do to find the
solution of the vibrating guitar string is sum the simple vibrations
Xn(x)Tn(t)

u(x , t) =
∞∑

n=1

cnXn(x)Tn(t)

in such a way (find the coefficients cn) that the sum agrees with the ICs

u(x ,0) = f (x)

ut(x ,0) = g(x)
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Separation-of-Variables Solution to the Finite Vibrating String

We solve problem 14-1 by breaking it into several steps:

Step 1. (Separation of Variables)

We start by seeking solutions to the PDE of the form

u(x , t) = X (x)T (t)

Substituting this expression into the wave equation and
separating variables gives us the two ODEs

T ′′ − c2λT = 0
X ′′ − λX = 0

where the constant λ can now be any number −∞ < λ <∞.
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Step 2. (Solving ODEs)

Possible	
  values	
  of	
  	
  

€ 

λ

€ 

u(x, t) = X(x)T(t)

€ 

λ = 0

€ 

T(t) = At + B
X(x) = Cx +D

€ 

λ > 0
(λ = β2)

€ 

λ < 0
(λ = −β2)

€ 

T(t) = Aecβt + Be−cβt

X(x) = Ceβx +De−βx

€ 

T(t) = Asin(cβt)+ Bcos(cβt)
X(x) = C sin(βx) +Dcos(βx)
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Step 3. (Substituting into BCs)

The idea now is to prune away all those standing waves that either
are unbounded as t →∞ or else yield only the zero solution when
substituted into the BCs.
Only negative values of λ give nonzero and bounded solutions.
Hence,

u(x , t) = [C sin (βx) + D cos (βx)] [A sin (cβt) + B cos (cβt)]

Substitution expression of u into BCs gives

D = 0

βn =
πn
L
, n = 0,1,2 . . .
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Step 3. (Substituting into BCs)
We have found a sequence of simple vibrations (which we
subscript with n)

un(x , t) = sin
(nπx

L

)[
an sin

(
nπct

L

)
+ bn cos

(
nπct

L

)]
= Rn sin

(nπx
L

)
cos

[
nπc(t − δn)

L

]
,

where the constants an, bn, Rn and δn are arbitrary. These simple
vibrations satsify the wave equations and the BCs.
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Step 4. (Substituting into ICs)
Since any sum of these vibrations is also a solution to the PDE
and BCs (since PDE and BCs are linear and homogeneous), we
add them together in such a way that the resulting sum also
agrees with the ICs.

Substituting the sum

u(x , t) =
∞∑

n=1

sin
(nπx

L

)[
an sin

(
nπct

L

)
+ bn cos

(
nπct

L

)]
into the ICs gives the two equations

∞∑
n=1

bn sin
(nπx

L

)
= f (x)

∞∑
n=1

an

(nπc
L

)
sin
(nπx

L

)
= g(x)
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Step 4. (Substituting into ICs)
Using the orthogonality condition

L∫
0

sin
(mπx

L

)
sin
(nπx

L

)
dx =


0, m 6= n
L
2
, m = n

we can find the coefficients an and bn

an =
2

nπc

L∫
0

g(x) sin
(nπx

L

)
dx

bn =
2
L

L∫
0

f (x) sin
(nπx

L

)
dx

(14.1)
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Step 4. (Substituting into ICs)

The solution is

u(x , t) =
∞∑

n=1

sin
(nπx

L

)[
an sin

(
nπct

L

)
+ bn cos

(
nπct

L

)]
,

where the coefficients an and bn are given by (14.1).
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Remarks
If the initial velocity of the string is zero, then the solution takes the
form

u(x , t) =
∞∑

n=1

bn sin
(nπx

L

)
cos

(
nπct

L

)
and has the following interpretation. Suppose we break the initial
string position into simple sine components

u(x ,0) = f (x) =
∞∑

n=1

bn sin
(nπx

L

)
and let each sine term vibrate on its own according to

un(x , t) = bn sin
(nπx

L

)
cos

(
nπct

L

)
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Remarks (cont.)
If we now add each individual vibration of the type (this is a
fundamental vibration)

un(x , t) = bn sin
(nπx

L

)
cos

(
nπct

L

)
,

we will get the solution of our problem.
The n-th term in the solution

sin
(nπx

L

)[
an sin

(
nπct

L

)
+ bn cos

(
nπct

L

)]
is called n-th mode of vibration or the n-th harmonic.
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Remarks (cont.)
By using a trigonometric identity, we can write this harmonic as

Rn sin
(nπx

L

)
cos

[
nπc(t − δn)

L

]
,

where Rn and δn are the new arbitrary constants (amplitude and
phase angle). This new form of the n-th mode is more useful for
analyzing the vibrations.
The frequency ωn (rad / sec) of the n-th mode is

ωn =
nπc

L
=

nπ
L

√
T
ρ

(T , ρ are tension and density of the string, respectively).
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The Finite Vibrating String (Standing Waves) Separation-of-Variables Solution to the Finite Vibrating String

Remarks (cont.)
The frequency ωn is n times the fundamental frequency ω1.

ωn = n · ω1

The property that all sound frequencies are multiples of a basic
one is not shared by all types of vibrations.

This has something to do with the pleasing sound of a violin or
guitar string in contrast to a drumhead, where the higher-order
frequencies are not multiple frequencies of the fundamental one.
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The Vibrating Beam (Fourth-Order PDE)

The Vibrating Beam (Fourth-Order PDE)

The major difference between the transverse vibrations of a violin
string and the transverse vibrations of a thin beam is that the
beam offers resistance to bending.

The resistance is responsible for changing the wave equation to
the fourth-order beam equation

utt = −α2uxxxx ,

where
α2 = K/ρ
K = rigidity constant
ρ = linear density of the beam
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The Vibrating Beam (Fourth-Order PDE)

The Simply Supported Beam

Consider the small vibrations of a thin beam whose ends are
simply fastened to two foundations.

By „simply fastened", we mean that the ends of the beam are held
stationary, but the slopes at the end points can move ( the beam is
held by a pin-type arrangement).

It seems clear that the BCs at the ends of the beam should be

u(0, t) = 0
u(1, t) = 0

but what isn’t so obvious is that the two BCs

uxx(0, t) = 0
uxx(1, t) = 0

also hold at the two ends.
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The Vibrating Beam (Fourth-Order PDE)

The Simply Supported Beam

Hence, the vibrating beam can be described by the following IVBP
(α is set equal to one for simplicity)

Problem 14-2
To find the function u(x , t) that satisfies

PDE: utt = −uxxxx , 0 < x < 1, 0 < t <∞

BCs:


u(0, t) = 0

uxx(0, t) = 0
u(1, t) = 0

uxx(1, t) = 0

0 < t <∞

ICs:

{
u(x ,0) = f (x)

ut(x ,0) = g(x)
0 6 x 6 1
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The Vibrating Beam (Fourth-Order PDE)

To solve problem 14-2, we use the separation of variables method and
look for arbitrary periodic solutions; that is, vibrations of the form

u(x , t) = X (x) [A sin (ωt) + B cos (ωt)] . (14.2)

Remark
By choosing the solution in the form (14.2), we are essentially saying
that the separation constant in the separation of variables method has
been chosen to be negative.
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The Vibrating Beam (Fourth-Order PDE)

Step 1. (Separation of Variables)

Substituting

u(x , t) = X (x) [A sin (ωt) + B cos (ωt)]

into the beam equation to get the ODE in X (x)

X (iv) + ω2X = 0

which has the general solution

X (x) = C cos (
√
ωx) + D sin (

√
ωx)

+ E cosh (
√
ωx) + F sinh (

√
ωx)
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The Vibrating Beam (Fourth-Order PDE)

Step 2. (Substituting into BCs)
Calculation of X ′′(x) gives

X ′′(x) = −ωC cos (
√
ωx)− ωD sin (

√
ωx)

+ ωE cosh (
√
ωx) + ωF sinh (

√
ωx)

Further, substitution of the expression for u into the BCs provides

u(0, t) = T (t) [C + E ] = 0
uxx(0, t) = T (t) [−ωC + ωE ] = 0

⇒ C = E = 0 .

u(1, t) = T (t)
[
D sin (

√
ω) + F sinh (

√
ω)
]

= 0
uxx(1, t) = T (t)

[
−ωD sin (

√
ω) + ωF sinh (

√
ω)
]

= 0

⇒ F = 0
sin (
√
ω) = 0
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The Vibrating Beam (Fourth-Order PDE)

Step 2. (Substituting into BCs)
Substituting the expression for u into the BCs, giving

C = E = F = 0

ω = (πn)2 n = 1,2, . . .

Therefore, the fundamental solutions un (solutions of the PDE and
BCs) are

un(x , t) = Xn(x)Tn(t)

=
[
an sin (πn)2t + bn cos (πn)2t

]
sin (πnx)

Since the PDE and BCs are linear and homogeneous, we can
conclude that the sum

u(x , t) =
∞∑

n=1

[
an sin (πn)2t + bn cos (πn)2t

]
sin (πnx)
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The Vibrating Beam (Fourth-Order PDE)

Step 3. (Substituting into ICs)
Substituting the expression for u into the ICs gives us

u(x ,0) = f (x) =
∞∑

n=1

bn sin (πnx)

ut(x ,0) = g(x) =
∞∑

n=1

(πn)2an sin (πnx)

Using the fact that the family {sin (πnx)} is orthogonal on the
interval [0,1] we arrive at

an =
2

(πn)2

1∫
0

g(x) sin (πnx)dx

bn = 2

1∫
0

f (x) sin (πnx)dx
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The Vibrating Beam (Fourth-Order PDE)

Remarks.
Beams are generally fastened in one of three ways

1 Free (unfastened)

2 Simply fastened

3 Rigidly fastened

Another important vibrating-beam problem is the cantilever-beam
problem. The solution to this vibrating beam is not the usual sum
of products of sines and cosines, but due to the nonstandard BCs,

u(0, t) = 0 uxx(1, t) = 0
ux(0, t) = 0 uxxx(1, t) = 0

we arrive at the more complicated solution.
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The Vibrating Beam (Fourth-Order PDE)

Remarks (cont.)
The solution of the cantilever-beam problem has the form

u(x , t) =
∞∑

n=1

Xn(x) [an sin (ωnt) + bn cos (ωnt)] ,

where the eigenfunctions (basic shapes of vibrations) are given by
linear combinations of sines, cosines, hyperbolic sines and
hyperbolic cosines.
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