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Purpose of Lesson
To show how the wave equation can describe the vibrations of a
drumhead.

To explain how PDEs that don’t involve the time derivative occur in
nature. These differential equations have no initial conditions, but
only boundary conditions.

To discuss the most common types of BCs for elliptic-type
problems.
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

€ 

un (x, t) = sin(nπx /L) an sin(nπct /L) + bn cos(nπct /L)[ ]
n =1,2,3,...
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

The Vibrating Drumhead (Wave Equation in Polar Coordinates)

We want to find the vibrations of a circular drumhead with given
boundary and initial conditions.

Problem 16-1
To find the function u(r , θ, t) that satisfies

PDE: utt = c2 (urr + 1
r ur + 1

r2 uθθ

)
, 0 < r < 1

BC: u(1, θ, t) = 0, 0 < θ < 2π, 0 < t <∞

ICs:

{
u(r , θ,0) = f (r , θ)

ut (r , θ,0) = g(r , θ)
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Recall that for violin-string problem the solution is a superposition
of an infinite number of simple vibrations.

If we approach the drumhead in a similar manner, we will look for
solutions of the form

u(r , θ, t) = U(r , θ)T (t). (16.1)

This gives the shape U(r , θ) of the vibrations times the oscillatory
factor T (t).
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Step 1. (Separation of Variables)

Substituting (16.1) into PDE and BC, we arrive at the equations
Urr +

1
r

Ur +
1
r2 Uθθ + λ2U = 0 (Helmholtz equation)

U(1, θ) = 0

T ′′ + λ2c2T = 0 (Simple harmonic motion)

We now have to find the shapes U(r , θ) of the fundamental
vibrations Urr +

1
r

Ur +
1
r2 Uθθ + λ2U = 0

U(1, θ) = 0
(16.2)
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Step 1. (Separation of Variables)

(16.2) is the Helmholtz eigenvalue problem (very famous), and our
purpose is to seek all λ’s (if any) that yield nonzero solutions.

Step 2. (Solving of the Helmholtz Eigenvalue Problem)

To solve (16.2) we let U(r , θ) = R(r)Θ(θ) and plug it into (16.2).
Doing this, we arrive at

r2R′′ + rR′ + (λ2r2 − n2)R = 0
R(1) = 0
R(0) <∞ (Physical condition)

Θ′′ + n2Θ = 0

Note that we have chosen the new separation constant n2,
n = 0,1,2, . . . .
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Step 2. (Solving of the Helmholtz Eigenvalue Problem (cont.))

The equation
r2R′′ + rR′ + (λ2r2 − n2)R = 0

is well known in ODE theory; it is called Bessel’s equation and has
two linearly independent solutions. They are

R1(r) = AJn(λr) nthorder Bessel function of the first kind

R2(r) = BYn(λr) nthorder Bessel function of the second kind

Hence, the general solution to the Helmholtz equation is

R(r) = AJn(λr) + BYn(λr)
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Step 2. (Solving of the Helmholtz Eigenvalue Problem (cont.))

Since the functions Yn(λr) are unbounded at r = 0, we set B = 0.
Therefore

R(r) = AJn(λr). (16.3)

Substituting the BC R(1) = 0 into (16.3), we have

Jn(λ) = 0.

In other words, in order for R(r) to be zero on the boundary of the
circle, we must pick the separation constant λ to be one of the
roots of Jn(r) = 0; that is,

λ = knm

where knm is the m-th root of Jn(r) = 0.
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

The m-th Root of Jn(r) = 0

n
0 1 2 3 4

1 | 2.40 3.83 5.13 6.38 7.59
2 | 5.52 7.02 8.42 9.76 11.06

m 3 | 8.65 10.17 11.62 13.02 14.37
4 | 11.79 13.32 14.80 16.22 17.62
5 | 14.93 16.47 17.96 19.41 20.83
... |

...
...

...
...

...
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Step 2. (Solving of the Helmholtz Eigenvalue Problem (cont.))

Thus, the corresponding eigenfunctions Unm(r , θ) are

Unm(r , θ) = Jn(knmr) [A sin (nθ) + B cos (nθ)]

n = 0,1,2, . . . m = 1,2,3, . . .

We plot the fundamental vibrations Unm(r , θ) for the different
values of n and m.
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Step 3. (Solving the Time Equation)

Each Unm(r , θ) represents a fundamental vibration of the circular
membrane with frequency

fnm = knm
c

2π
cycles / unit time

We find these frequences by solving the time equation

T ′′ + k2
nmc2T = 0

to get
Tnm(t) = A sin (knmct) + B cos (knmct) .
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Remarks
The ratio

fnm

f01
=

knm

k01

is not an integer as it was in the one-dimensional wave equation.

In other words, higher vibrations for the drumhead are not pure
overtones of the basic frequencies.

The nodal circles (where no vibration takes place) have radii

kn1

knm
,

kn2

knm
, . . . ,

knm

knm
= 1
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Thus, the solution to our problem 16-1 will be

u(r , θ, t) =
∞∑

n=0

∞∑
m=1

Jn(knmr) cos (nθ)×

× [Anm sin (knmct) + Bnm cos (knmct)]

.

Remarks
Note that A sin (nθ) + B cos (nθ) was replaced by cos (nθ) by
proper choice of the angle θ.

We have lumped together the constants as Anm and Bnm.
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Step 4. (Substituting into ICs)

Rather than going through the complicated process of finding Anm
and Bnm for the general case, we will find the solution for the
situation where u is independent of θ (very common).

In particular, we consider

u(r , θ, 0) = f (r)

ut (r , θ, 0) = 0

With these assumptions, the solution now becomes

u(r , t) =
∞∑

m=1

AmJ0(k0mr) cos (k0mct) .
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Step 4. (Substituting into ICs (cont.))

Our goal is to find Am so that

f (r) =
∞∑

m=1

AmJ0(k0mr).

Using the orthogonality condition of the Bessel functions

1∫
0

rJ0(k0i r)J0(k0j r)dr =


0, i 6= j
1
2

J2
1 (k0i), i = j

we get

Aj =
2

J2
1 (k0j)

1∫
0

rf (r)J0(k0j r)dr , j = 1,2, . . .
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Interpretation of J0(k01r), J0(k02r), . . .

We start by drawing J0(r). In order to graph the functions J0(k01r),
J0(k02r), . . . , J0(k0mr) we rescale the r -axis so that m − th root
passes through r = 1.
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The Vibrating Drumhead (Wave Equation in Polar Coordinates)

Remark
For the vibrating membrane with ICs u = f (r), ut = 0, we can
interpret the solution as expanding the IC f (r) as a sum of basic
building blocks AmJ0(k0mr) and let each of them vibrate with its
own frequency cos (k0mct), giving the fundamental vibration

AmJ0(k0mr) cos (k0mct).

We then add them up to get vibration resulting from the IC f (r).
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General Nature of BVPs

Chapter 4. Elliptic-Type Problems

Until now, the problems we’ve discussed involved phenomena that
changed over space and time. There are, however, many
important problems whose outcomes do not change with time, but
only with respect to space.

These problems, for the most part, are described by elliptic
boundary-value problems.

There are two common situations that give rise to PDEs that don’t
involve time; they are

1 Steady-state problems.

2 Problems where we factor out the time component in the solution.
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General Nature of BVPs Steady-State Problems

Steady-State Problems

Steady-state solution is a solution when t →∞.

It’s obvious if the solution doesn’t change in time, then ut = 0. To
find the steady-state solution u(x ,∞) (if it exists), we let ut = 0
and solve the corresponding BVP.

For some problems, a steady-state solution may not exist.
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General Nature of BVPs Factoring out the Time Component

Factoring out the Time Component in Hyperbolic and Parabolic
Problems

In the circular drumhead problem 16-1 we looked for solutions of
the form u(r , θ, t) = U(r , θ)T (t) which yielded the Helmholtz BVP

PDE: ∆U + λ2U = 0
BC: U(1, θ) = 0

This situation is common in PDEs where the solution represents a
shape factor U(r , θ) multiplied by a time factor T (t).

As a matter of fact, we arrive at the same Helmholtz equation by
factoring out the time component in the heat equation.
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General Nature of BVPs The Three Main Types of BCs in BVPs

The Three Main Types of BCs in BVPs

There are three types of BCs that are most common for elliptic-type
problems.

1. BVPs of the First Kind (Dirichlet Problems)

The PDE holds over the given region of space, and the solution is
specified on the boudary of the region.

There are interior and exterior Dirichlet problems.

Dirichlet problems are common in electrostatics when we want to
find the potential in a region with the potential given on the
boundary.
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General Nature of BVPs The Three Main Types of BCs in BVPs

2. BVPs of the Second Kind (Neumann Problems)

The PDE holds in some region of space, but now the outward

normal derivative
∂u
∂n

(which is proportional to the inward flux) is
specified on the boundary.

Neumann problems are common in steady-state heat flow and
electrostatistics, where the flux (in heat energy, electrons, and so
forth) is given over the boundary.

Neumann problems make sense only if the net gain across the
boundary is zero. Mathematically, this says that∫

C

∂u
∂n

= 0.

Otherwise the problem has no solution.

The Neumann problem differs from other BCs in that solutions are
not unique.
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General Nature of BVPs The Three Main Types of BCs in BVPs

3. BVPs of the Third Kind (Mixture Problems)

These problems correspond to the PDEs being given in some
region of space, but now the condition on the boundary is a mixture
of the first two kinds

∂u
∂n

+ h(u − g) = 0,

where h is a constant (input to the problem) and g is a given
function that can vary over the boundary.

A more suggestive form of this BC would be

∂u
∂n

= −h(u − g)

which says the inward flux across the boundary is proportional to
the difference between the temperature u and some specified
temperature g.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 16 19. Januar 2015 30 / 30


	The Vibrating Drumhead (Wave Equation in Polar Coordinates)
	General Nature of BVPs
	Steady-State Problems
	Factoring out the Time Component
	The Three Main Types of BCs in BVPs


