PDE and Boundary-Value Problems Winter Term 2014/2015

Lecture 17

Saarland University
22. Januar 2015

Purpose of Lesson

- To show how to solve the interior Dirichlet problem for the circle by separation of variables and to discuss also an alternative integral-form of this solution (Poisson integral formula).
- To solve the Dirichlet problem between two circles (annulus)
- To discuss briefly the solution to the exterior Dirichlet problem for the circle

There are many regions of interest where we might solve the Dirichlet problem. Just to name a few, we could have the Dirichlet problem:

- Inside a circle
- In an annulus
- Outside a circle
- Inside a sphere
- Between two spheres
- Between two lines (in two dimensions)
- Between two planes (in three dimensions)

Remarks

- The list of the Dirichlet problems is endless.
- Our intention is to solve a representative sample of Dirichlet problems and learn the general principles.

Interior Dirichlet Problem for a Circle

Problem 17-1

To find the function $u(r, \theta)$ that satisfies

$$
\begin{array}{lll}
\mathrm{PDE}: & u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, & 0<r<1 \\
\mathrm{BC}: & u(1, \theta)=g(\theta), & 0 \leqslant \theta<2 \pi .
\end{array}
$$

Remarks

- Problem 17-1 can be interpreted as finding the electrostatic potential inside a circle when the potential is given on the boundary.
- Another application is the soap film model. If we start with a circular wire hoop and distort it so that the distortion is measured by $g(\theta)$ and dip it into a soap solution, a film of soap is formed within the wire. The height of the film is represented by the solution of problem 17-1, provided the displacement $g(\theta)$ is small.

Step 1.

- Substituting $u(r, \theta)=R(r) \Theta(\theta)$ into the Laplace equation we get

$$
\begin{aligned}
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda^{2} R & =0 \quad \text { (Euler's equation) } \\
\Theta^{\prime \prime}+\lambda^{2} \Theta & =0
\end{aligned}
$$

- The separation constant λ must be nonnegative. If the separation constant were negative, the function $\Theta(\theta)$ would not be periodic.
- If $\lambda=0$, then Euler's equation reduces to

$$
r^{2} R^{\prime \prime}+r R^{\prime}=0
$$

and it is easy to see that the general solution is

$$
R(r)=a+b \ln r, \quad \Theta(\theta)=\beta+\gamma \theta
$$

Since we are looking for bounded and periodic solution, we would throw out the terms $\ln r$ and $\gamma \theta$. So, in this case

$$
u(r, \theta)=\text { const } .
$$

Step 1. (cont.)

- If $\lambda^{2}>0$, then Euler's equation is

$$
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda^{2} R=0
$$

and to solve this, we look for solutions of the form $R(r)=r^{\alpha}$. The goal is to find two values of α (say α_{1} and α_{2}) so that the general solution will be

$$
R(r)=a r^{\alpha_{1}}+b r^{\alpha_{2}} .
$$

Plugging $R(r)=r^{\alpha}$ into Euler's equation yields $\alpha= \pm \lambda$ and, hence,

$$
R(r)=a r^{\lambda}+b r^{-\lambda}
$$

- For $\lambda^{2}>0$ the solution of the equation

$$
\Theta^{\prime \prime}(\theta)+\lambda^{2} \Theta=0
$$

has the form

$$
\Theta(\theta)=\beta \cos (\lambda \theta)+\gamma \sin (\lambda \theta)
$$

Step 1. (cont.)

- Since Θ should be periodic, we conclude that $\lambda=0,1,2, \ldots$. Consequently, all solutions $R(r) \Theta(\theta)$ has the form

$$
u_{n}(r, \theta)=r^{n}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right]
$$

Thus,

$$
\begin{equation*}
u(r, \theta)=\sum_{n=0}^{\infty} r^{n}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right] \tag{17.1}
\end{equation*}
$$

Step 2.

- Substituting (17.1) into the BC, we conclude

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta \\
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cos (n \theta) d \theta \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \sin (n \theta) d \theta
\end{aligned}
$$

Step 3.

- To summarize, the solution to the interior Dirichlet problem 17-1 is

$$
\begin{equation*}
u(r, \theta)=\sum_{n=0}^{\infty} r^{n}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right] \tag{17.2}
\end{equation*}
$$

Observations on the Dirichlet Solution:

- The interpretation of our solution (17.2) is that we should expand boundary function $g(\theta)$ as a Fourier series

$$
g(\theta)=\sum_{n=0}^{\infty}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right]
$$

and then solve the problem for each sine and cosine in the series.
Since each of these terms will give rise to solutions $r^{n} \sin (n \theta)$ and $r^{n} \cos (n \theta)$, we can then say (by superposition) that

$$
u(r, \theta)=\sum_{n=0}^{\infty} r^{n}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right]
$$

- The solution of

$$
\text { PDE: } \Delta u=0, \quad 0<r<1
$$

$\mathrm{BC}: \quad u(1, \theta)=1+\sin \theta+\frac{1}{2} \sin (3 \theta)+\cos (4 \theta), \quad 0 \leqslant \theta<2 \pi$.
would be

$$
u(r, \theta)=1+r \sin \theta+\frac{r^{3}}{2} \sin (3 \theta)+r^{4} \cos (4 \theta)
$$

Here, the $g(\theta)$ is already in the form of a Fourier series, with

$$
\begin{array}{ll}
a_{0}=1 & b_{1}=1 \\
a_{4}=1 & b_{3}=0.5
\end{array}
$$

All other $a_{n} ' s=0 \quad$ All other b_{n} 's $=0$
and so we don't have to to use the formulas for a_{n} and b_{n}.

- If the radius of the circle were arbitrary (say R), then the solution would be

$$
u(r, \theta)=\sum_{n=0}^{\infty}\left(\frac{r}{R}\right)^{n}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right]
$$

- Note that the constant term a_{0} in solution (19.2) represents the average of $g(\theta)$

$$
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta
$$

- We start with the separation of variables solution

$$
u(r, \theta)=\sum_{n=0}^{\infty}\left(\frac{r}{R}\right)^{n}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right]
$$

(we now take an arbitrary radius for the circle) and substitute the coefficients a_{n} and b_{n}.

- After a few manipulations involving algebra, calculus, and trigonometry, we have

$$
\begin{aligned}
u(r, \theta) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta \\
& +\frac{1}{\pi} \sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n} \int_{0}^{2 \pi} g(\alpha)[\cos (n \alpha) \cos (n \theta)+\sin (n \alpha) \sin (n \theta)] d \alpha \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+2 \sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n} \cos [n(\theta-\alpha)]\right\} g(\alpha) d \alpha \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+\sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n}\left[e^{i n(\theta-\alpha)}+e^{-i n(\theta-\alpha)}\right]\right\} g(\alpha) d \alpha \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+\frac{r e^{i(\theta-\alpha)}}{R-r e^{i(\theta-\alpha)}}+\frac{r e^{-i(\theta-\alpha)}}{R-r e^{-i(\theta-\alpha)}}\right\} g(\alpha) d \alpha
\end{aligned}
$$

$$
\begin{align*}
u(r, \theta) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+\frac{r e^{i(\theta-\alpha)}}{R-r e^{i(\theta-\alpha)}}+\frac{r e^{-i(\theta-\alpha)}}{R-r e^{-i(\theta-\alpha)}}\right\} g(\alpha) d \alpha \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\frac{R^{2}-r^{2}}{R^{2}-2 r R \cos (\theta-\alpha)+r^{2}}\right] g(\alpha) d \alpha \tag{17.3}
\end{align*}
$$

It is the Poisson Integral Formula. So what we have is an alternative form for the solution to the interior Dirichlet problem.

Remarks

- We can interpret the Poisson integral solution (17.3) as finding the potential u at (r, θ) as a weighted average of the boundary potentials $g(\theta)$ weighted by the Poisson kernel

$$
\text { Poisson kernel }=\frac{R^{2}-r^{2}}{R^{2}-2 r R \cos (\theta-\alpha)+r^{2}}
$$

- For boundary values $g(\alpha)$ close to (r, θ), the Poisson kernel gets large, since the denominator of the Poisson kernel is the square of the distance from (r, θ) to (R, α).

Remarks (cont.)

- Unfortunately, if (r, θ) is extremely close to the boundary $r=R$, then the Poisson kernel gets very large for those values of α that are closest to (r, θ). For this reason, when (r, θ) is close to the boundary, the series solution works better for evaluating the numerical value of the solution.
- If we evaluate the potential at the center of the circle by the Poisson integral, we find

$$
u(0,0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\alpha) d \alpha
$$

In other words, the potential at the center of the circle is the average of the boundary potentials.

Remarks (cont.)

- We can always solve the BVP (nonhomogeneous PDE)

PDE: $\quad \Delta u=f, \quad$ Inside D

BC: $\quad u=0, \quad$ On the boundary of D
by
(1) Finding any solution V of $\Delta V=f$ (A particular solution).
(2) Solving the new BVP

PDE: $\quad \Delta W=0, \quad$ Inside D
BC: $\quad W=V, \quad$ On the boundary of D
(3) Observing that $u=V-W$ is our desired solution.

In other words, we can transfer the nonhomogeneity from the PDE to BC.

Remarks (cont.)

- We can solve the BVP (nonhomogeneous BC)

PDE: $\quad \Delta u=0, \quad$ Inside D
BC: $\quad u=f, \quad$ On the boundary of D
by
(1) Finding any solution V that satisfies $V=f$ on the boundary of D.
(2) Solving the new BVP

PDE: $\quad \Delta W=\Delta V, \quad$ Inside D $\mathrm{BC}: \quad W=0, \quad$ On the boundary of D
(3) Observing that $u=V-W$ is the solution to our problem.

In other words, we can transfer the nonhomogeneity from the BC to the PDE.

The Dirichlet Problem in an Annulus

Problem 17-2
To find the function $u(r, \theta)$ that satisfies
PDE: $\quad u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad R_{1}<r<R_{2}$
BCs: $\left\{\begin{array}{l}u\left(R_{1}, \theta\right)=g_{1}(\theta), \\ u\left(R_{2}, \theta\right)=g_{2}(\theta)\end{array} \quad 0 \leqslant \theta<2 \pi\right.$.

Step 1. (Separation of Variables)

- Substituting $u(r, \theta)=R(r) \Theta(\theta)$ into the Laplace equation and arguing similar to the interior Dirichlet problem we arrive at our general solution

$$
\begin{align*}
u(r, \theta) & =a_{0}+b_{0} \ln r \\
& +\sum_{n=1}^{\infty}\left(a_{n} r^{n}+b_{n} r^{-n}\right) \cos (n \theta) \tag{17.4}\\
& +\sum_{n=1}^{\infty}\left(c_{n} r^{n}+d_{n} r^{-n}\right) \sin (n \theta)
\end{align*}
$$

Step 2. (Substituting into BCs)

- Substituting the solution (17.4) into the BCs and integrating gives the following equations:

$$
\left\{\begin{array}{l}
a_{0}+b_{0} \ln R_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{1}(s) d s \\
a_{0}+b_{0} \ln R_{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{2}(s) d s
\end{array}\right.
$$

(Solve for a_{0}, b_{0})

Step 2. (cont.)

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{n} R_{1}^{n}+b_{n} R_{1}^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g_{1}(s) \cos (n s) d s \\
a_{n} R_{2}^{n}+b_{n} R_{2}^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g_{2}(s) \cos (n s) d s \\
\left\{\begin{array}{l}
c_{n} R_{1}^{n}+d_{n} R_{1}^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g_{1}(s) \sin (n s) d s \\
c_{n} R_{2}^{n}+d_{n} R_{2}^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g_{2}(s) \sin (n s) d s
\end{array}\right.
\end{array} \begin{array}{l}
\end{array}\right.
\end{aligned}
$$

(Solve for a_{n}, b_{n})
(Solve for c_{n}, d_{n})

Exterior Dirichlet Problem

Problem 17-3
To find the function $u(r, \theta)$ that satisfies

$$
\begin{array}{lll}
\mathrm{PDE}: & u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, & 1<r<\infty \\
\mathrm{BC}: & u(1, \theta)=g(\theta), & 0 \leqslant \theta<2 \pi
\end{array}
$$

Problem 17-3 is solved exactly like the interior Dirichlet problem. The only exception is that now we throw out the solutions that are unbounded as r goes to infinity

$$
r^{n} \cos (n \theta), \quad r^{n} \sin (n \theta), \quad \ln r
$$

Exterior Dirichlet Problem (cont.)

Hence, we are left with the solution

$$
u(r, \theta)=\sum_{n=0}^{\infty} r^{-n}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right]
$$

where a_{n} and b_{n} are exactly as before

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(s) d s \\
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(s) \cos (n s) d s, \quad b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(s) \sin (n s) d s
\end{gathered}
$$

Remarks

- The exterior Dirichlet problem for arbitrary radius R

$$
\begin{array}{lll}
\mathrm{PDE}: & u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, & R<r<\infty \\
\mathrm{BC}: & u(R, \theta)=g(\theta), & 0 \leqslant \theta<2 \pi .
\end{array}
$$

has the solution

$$
u(r, \theta)=\sum_{n=0}^{\infty}\left(\frac{r}{R}\right)^{-n}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right]
$$

- The only solution of the 2-D Laplace equation that depend only on r are constants and $\ln r$. The potential $\ln r$ is very important and is called the logarithmic potential.

