# PDE and Boundary-Value Problems Winter Term 2014/2015 

Lecture 20

Saarland University
5. Februar 2015

## Purpose of Lesson

- To introduce the idea of explicit finite-difference methods and show how they can be used to solve hyperbolic and parabolic problems.
- To show how time-dependent problems can be solved by another finite-difference scheme known as implicit methods.
- We can solve elliptic BVPs (steady-state problems) where the PDE was satisfied in a given region of space, and the solution (or its derivative) was specified on the boundary.
- In those types of problems, we find the approximate solution at the interior grid points by solving a system of algebraic equations. In other words, the solution at all the interior grid points was found simultaneously.


## An Explicit Finite-Difference Method

- Now we will show how time-dependent problems can be solved by finite-difference approximations.
- The idea is that if we are given the solution when time is zero, we can then find the solution for $t=\Delta t, 2 \Delta t, 3 \Delta t, \ldots$ by means of a marching process.
- Replacing both the space and time derivatives by their finite-difference approximations, we can then solve for the solution $u_{i, j}$ in the difference equation explicitly in terms of the solution at earlier values of time.
- This process is called an explicit-type marching process, since we find the solution at a single value of time in terms of the solution at earlier values of time.


## The Explicit Method for Parabolic Equations

- To show how the explicit finite-difference method works, we consider a representative problem from heat flow.
- Heat flows along a rod initially at temperature zero, where the left end of the rod is fixed at temperature one, and the right-hand side experiences a heat loss (or gain) proportional to the difference between the temperature at that end and an outside temperature that is given by $g(t)$.


## The Explicit Method for Parabolic Equations (cont.)

## Problem 20-1

To find a function $u(x, t)$ that satisfies

$$
\left.\begin{array}{cl}
\text { PDE: } u_{t}=u_{x x}, & 0<x<1, \quad 0<t<\infty \\
\text { BCs: }\left\{\begin{array}{c}
u(0, t)=1 \\
u_{x}(1, t)=-[u(1, t)-g(t)]
\end{array}\right. & 0<t<\infty
\end{array}\right] \begin{array}{ll}
\text { IC: } u(x, 0)=0 & 0 \leqslant x \leqslant 1
\end{array}
$$

To solve problem 20-1 by finite differnces, we start by drawing the usual rectangular grid system with grid points

$$
\begin{array}{rlrl}
x_{j} & =j h & j & =0,1,2, \ldots, n \\
t_{i} & =i k & i & =0,1,2, \ldots, m
\end{array}
$$

## Grid svstem for a heat-flow problem



Typical computational molecule

- Note that on the figure of the grid system, the $u_{i, j}$ on the left and bottom are given BCs and ICs, and our job is to find the other $u_{i, j}$ 's.
- To do this, we begin by replacing the partial derivatives $u_{t}$ and $u_{x x}$ in the heat equation with their approximations

$$
\begin{aligned}
u_{t}= & \frac{1}{k}[u(x, t+k)-u(x, t)]=\frac{1}{k}\left(u_{i+1, j}-u_{i, j}\right) \\
u_{x x} & =\frac{1}{h^{2}}[u(x+h, t)-2 u(x, t)+u(x-h, t)] \\
& =\frac{1}{h^{2}}\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right)
\end{aligned}
$$

- By substituting these approximations into $u_{t}=u_{x x}$ and solving for the solution at the largest value of time, we have

$$
\begin{equation*}
u_{i+1, j}=u_{i, j}+\frac{k}{h^{2}}\left[u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right] \tag{20.1}
\end{equation*}
$$

## Remark

(20.1) is the formula we are looking for, since it gives us the solution at one value of time in terms of the solution at earlier values of time.

- We are almost ready to begin the computations for problem 20-1. First, we must approximate the derivatives in the right-hand BC

$$
u_{x}(1, t)=-[u(1, t)-g(t)]
$$

by

$$
\begin{equation*}
\frac{1}{h}\left[u_{i, n}-u_{i, n-1}\right]=-\left[u_{i, n}-g_{i}\right] \tag{20.2}
\end{equation*}
$$

where $g_{i}=g(i k)$ is given.

- Note that in (20.2) we have replaced $u_{x}(1, t)$ by the backward-difference approximation, since the forward-difference approximation would require knowing values of $u_{i, j}$ outside the domain.
- Solving (20.2) for $u_{i, n}$ gives us

$$
\begin{equation*}
u_{i, n}=\frac{u_{i, n-1}+h g_{i}}{1+h} \tag{20.3}
\end{equation*}
$$

## Algorithm for the Explicit Method

1. Find the solution at the grid points for $t=\Delta t$ by using the explicit formula

$$
u_{2, i}=u_{1, i}+\frac{k}{h^{2}}\left[u_{1, j+1}-2 u_{1, j}+u_{1, j-1}\right] \quad j=2,3, \ldots, n-1
$$

2. Find $u_{2, n}$ from formula (20.3)

$$
u_{2, n}=\frac{u_{2, n-1}+h g_{2}}{1+h}
$$

## Remark

- Steps 1 and 2 find the solution for $t=\Delta t$.
- To find the solution for $t=2 \Delta t$ repeat steps 1 and 2 , moving up one more row (increase $i$ by 1 ) and using the values of $u_{i, j}$ just computed.
- For $t=3 \Delta t, 4 \Delta t, \ldots$ keep repeating the same process.

On the flow diagram on the next page we explain in a precise manner how the computations should be carried out.

Input $N=$ number of grid points in $x$-direction $M=$ number of grid points in $t$-direction $T=$ maximum value of $t$

$$
G(i)=g\left(t_{i}\right) \quad i=1,2, \ldots, M
$$



Set the row counter $l=1$
Fill in the $N \operatorname{ICs} u(x, 0)=0$ the first row; Fill in the $M$ BC $u(0, t)=0$ the first column;

```
Compute: }u(i+1,j)=u(i,j)+R[u(i,j+1)-2u(i,j)+u(1,j-1
            for j=2,3,...,N-1
    Compute: }u(i+1,N)=[u(i+1,N-1)+HG(i+1)]/(H+1
```



We now have the approximate solution at the grid points

## Remarks

- There is a serious dificiency in the explicit method, for if the step size in $t$ is large compared to the step size in $x$, then machine roundoff error can grow until it ruins the accuracy of the solution.
- The relative size of these steps depends on the particular equation and the BCs, but, generally, the step size in $t$ should be much smaller than the step size in $x$. We must have $k / h^{2} \leqslant 0.5$ in order this method to work.
- A general rule of thumb is that as the step sizes $\Delta t$ and $\Delta x$ are made smaller, the truncation error of approximating partial derivatives by finite differences decreases. However, the smaller these grid sizes, the more computations necessary, and, hence, the roundoff error, as a result of rounding off our computations, will increase.


## The Explicit Method for Hyperbolic Equation

Problem 20-2
To find a function $u(x, t)$ that satisfies
PDE: $u_{t t}=u_{x x}, \quad 0<x<1, \quad 0<t<\infty$
BCs: $\left\{\begin{array}{l}u(0, t)=g_{1}(t) \\ u(1, t)=g_{2}(t)\end{array} \quad 0<t<\infty\right.$
ICs: $\left\{\begin{array}{r}u(x, 0)=\phi(x) \\ u_{t}(x, 0)=\psi(x)\end{array} \quad 0 \leqslant x \leqslant 1\right.$

- Problem 20-2 can also be solved by the explicit finite-difference method. Here, we can approximate the derivatives $u_{t t}$ and $u_{x x}$ by

$$
\begin{aligned}
u_{t t} & \cong \frac{1}{k^{2}}[u(x, t+k)-2 u(x, t)+u(x, t-k)] \\
u_{x x} & \cong \frac{1}{h^{2}}[u(x+h, t)-2 u(x, t)+u(x-h, t)]
\end{aligned}
$$

and the derivative $u_{t}(x, 0)$ in the IC by

$$
u_{t}(x, 0) \cong \frac{1}{k}[u(x, k)-u(x, 0)]=\frac{1}{k}[u(x, k)-\phi(x)] .
$$

- Solving for $u(x, t+k)$ explicitly in terms of the solution at earlier values of time gives

$$
\begin{align*}
& u(x, t+k)=2 u(x, t)-u(x, t-k) \\
& \quad+\left(\frac{k}{h}\right)^{2}[u(x+h, t)-2 u(x, t)+u(x-h, t)] \tag{20.4}
\end{align*}
$$

- From (20.4) it is clear that we must already know the solution at two previous time steps, and, hence, we must use the initial-velocity condition

$$
\frac{1}{k}[u(x, k)-\phi(x)]=\psi(x)
$$

to get us started. Solving for $u(x, k)$ gives $u(x, k)=\phi(x)+k \psi(x)$, and, thus, we can find the solution for $t=\Delta t$.

## An Implicit Finite-Difference Method (Crank-Nicolson Method)

- In implicit method, we again replace the partial derivatives in the problem by their finite-difference approximations, but unlike explicit methods (where we solved for $u_{i+1, j}$ explicitly in terms of earlier values), in implicit methods, we solve a system of equations in order to find the solution at the largest value of time.
- In other words, for each new value of time we solve a system of algebraic equations to find all the values.
- It should be mentioned that implicit methods allow us to take larger steps by doing more work per step.


## The Heat-Flow Problem Solved by an Implicit Method

Problem 20-3
To find a function $u(x, t)$ that satisfies

$$
\begin{aligned}
& \text { PDE: } u_{t}=u_{x x}, \quad 0<x<1, \quad 0<t<\infty \\
& \text { BCs: } \begin{cases}u(0, t)=0 & 0<t<\infty \\
u(1, t)=0\end{cases} \\
& \text { IC: } u(x, 0)=1 \quad 0 \leqslant x \leqslant 1
\end{aligned}
$$

Grid system for implicit scheme ( $\Delta x=0.2$ )


- We replace the partial derivatives $u_{t}$ and $u_{x x}$ by the following approximations:

$$
\begin{gathered}
u_{t}(x, t)=\frac{1}{k}[u(x, t+k)-u(x, t)] \\
u_{x x}(x, t)=\frac{\lambda}{h^{2}}[u(x+h, t+k)-2 u(x, t+k)+u(x-h, t+k)] \\
+\frac{(1-\lambda)}{h^{2}}[u(x+h, t)-2 u(x, t)+u(x-h, t)]
\end{gathered}
$$

where $\lambda$ is a chosen number in the interval $[0,1]$.

- Note that our approximation for $u_{x x}$ is a weighted average of the central-difference approximation to the derivative $u_{x x}$ at time values $t$ and $t+k$.


## Remarks

- In the special case when $\lambda=0.5$, it is just the ordinary average of these two central differences.
- If $\lambda=0.75$, our approximation puts weights of 0.75 and 0.25 on each of the two terms.
- If $\lambda=0$, it is usual explicit finite-difference method.

If we now substitute the approximations for $u_{t}$ and $u_{x x}$ into our problem, we get the new finite-difference problem

Problem 20-3a

$$
\begin{aligned}
& \begin{aligned}
\frac{1}{k}\left(u_{i+1, j}-u_{i, j}\right) & =\frac{\lambda}{h^{2}}\left(u_{i+1, j+1}-2 u_{i+1, j}+u_{i+1, j-1}\right) \\
& +\frac{(1-\lambda)}{h^{2}}\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right)
\end{aligned} \\
& \text { BCs: } \begin{cases}u_{i, 1}=0 \\
u_{i, n}=0\end{cases} \\
& \text { IC: } \quad i=1,2, \ldots, m
\end{aligned} u_{1, j=1, \quad j=2, \ldots, n-1}=1 .
$$

- If we rewrite the difference equation in problem 20-3a, putting the $u_{i, j}$ 's with the largest time subscript ( $i$-subscript) on the left-hand side of the equation, we arrive at

$$
\begin{align*}
-\lambda r u_{i+1, j+1} & +(1+2 r \lambda) u_{i+1, j}-\lambda r u_{i+1, j-1} \\
& =r(1-\lambda) u_{i, j+1}+[1-2 r(1-\lambda)] u_{i, j}  \tag{20.5}\\
& +r(1-\lambda) u_{i, j-1},
\end{align*}
$$

where we have set $r=k / h^{2}$ for convenience.

- Note that for a fixed subscript $i$ and for $j$ going from 2 to $n-1$, this is a system of $n-2$ equations in the $n-2$ unknowns $u_{i+1,2}, u_{i+1,3}$, $u_{i+1,4}, \ldots, u_{i+1, n-1}$ [which are the interior grid points at $t=(i+1) \Delta t$.
- To help show exactly how $u_{i, j}$ 's are involved into (20.5), we write it in the symbolic or molecular form (see next page)


