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Purpose of Lesson
To introduce the idea of explicit finite-difference methods and show
how they can be used to solve hyperbolic and parabolic problems.

To show how time-dependent problems can be solved by another
finite-difference scheme known as implicit methods.
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We can solve elliptic BVPs (steady-state problems) where the
PDE was satisfied in a given region of space, and the solution (or
its derivative) was specified on the boundary.

In those types of problems, we find the approximate solution at the
interior grid points by solving a system of algebraic equations. In
other words, the solution at all the interior grid points was found
simultaneously.
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An Explicit Finite-Difference Method

An Explicit Finite-Difference Method

Now we will show how time-dependent problems can be solved by
finite-difference approximations.

The idea is that if we are given the solution when time is zero, we
can then find the solution for t = ∆t ,2∆t ,3∆t , . . . by means of a
marching process.

Replacing both the space and time derivatives by their
finite-difference approximations, we can then solve for the solution
ui,j in the difference equation explicitly in terms of the solution at
earlier values of time.

This process is called an explicit-type marching process, since we
find the solution at a single value of time in terms of the solution at
earlier values of time.
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

The Explicit Method for Parabolic Equations

To show how the explicit finite-difference method works, we
consider a representative problem from heat flow.

Heat flows along a rod initially at temperature zero, where the left
end of the rod is fixed at temperature one, and the right-hand side
experiences a heat loss (or gain) proportional to the difference
between the temperature at that end and an outside temperature
that is given by g(t).
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

The Explicit Method for Parabolic Equations (cont.)

Problem 20-1
To find a function u(x , t) that satisfies

PDE: ut = uxx , 0 < x < 1, 0 < t <∞

BCs:

{
u(0, t) = 1

ux (1, t) = − [u(1, t)− g(t)]
0 < t <∞

IC: u(x ,0) = 0 0 6 x 6 1

To solve problem 20-1 by finite differnces, we start by drawing the
usual rectangular grid system with grid points

xj = jh j = 0,1,2, . . . ,n
ti = ik i = 0,1,2, . . . ,m
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

Note that on the figure of the grid system, the ui,j on the left and
bottom are given BCs and ICs, and our job is to find the other
ui,j ’s.

To do this, we begin by replacing the partial derivatives ut and uxx
in the heat equation with their approximations

ut =
1
k

[u(x , t + k)− u(x , t)] =
1
k
(
ui+1,j − ui,j

)
uxx =

1
h2 [u(x + h, t)− 2u(x , t) + u(x − h, t)]

=
1
h2

(
ui,j+1 − 2ui,j + ui,j−1

)
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

By substituting these approximations into ut = uxx and solving for
the solution at the largest value of time, we have

ui+1,j = ui,j +
k
h2

[
ui,j+1 − 2ui,j + ui,j−1

]
(20.1)

Remark
(20.1) is the formula we are looking for, since it gives us the solution at
one value of time in terms of the solution at earlier values of time.
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

We are almost ready to begin the computations for problem 20-1.
First, we must approximate the derivatives in the right-hand BC

ux (1, t) = − [u(1, t)− g(t)]

by
1
h
[
ui,n − ui,n−1

]
= −

[
ui,n − gi

]
, (20.2)

where gi = g(ik) is given.

Note that in (20.2) we have replaced ux (1, t) by the
backward-difference approximation, since the forward-difference
approximation would require knowing values of ui,j outside the
domain.

Solving (20.2) for ui,n gives us

ui,n =
ui,n−1 + hgi

1 + h
. (20.3)
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

Algorithm for the Explicit Method

1. Find the solution at the grid points for t = ∆t by using the explicit
formula

u2,i = u1,i +
k
h2

[
u1,j+1 − 2u1,j + u1,j−1

]
j = 2,3, . . . ,n − 1

2. Find u2,n from formula (20.3)

u2,n =
u2,n−1 + hg2

1 + h
.
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

Remark
Steps 1 and 2 find the solution for t = ∆t .

To find the solution for t = 2∆t repeat steps 1 and 2, moving up
one more row (increase i by 1) and using the values of ui,j just
computed.

For t = 3∆t ,4∆t , . . . keep repeating the same process.

On the flow diagram on the next page we explain in a precise manner
how the computations should be carried out.
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

	  

Input	  N=number	  of	  grid	  points	  in	  x-‐direction	  
M=number	  of	  grid	  points	  in	  t-‐direction	  

T=maximum	  value	  of	  t	  
G(i)=g(ti)	  	   i=1,2,….,M	  

Compute	  the	  step	  sizes:	   H=1/(N-1)	  
	   	   	   	   	   	   K=T/(M-1)	  
and	  compute	  the	  ratio:	   	   R=K/H2	  

Fill	  in	  the	  N	  ICs	  u(x,0)=0	  the	  first	  row;	  
Fill	  in	  the	  M	  BC	  u(0,t)=0	  the	  first	  column;	  Set	  the	  row	  counter	  l=1	  

Compute:	   u(i+1,j)=u(i,j)+R[u(i,j+1)-2u(i,j)+u(1,j-1)	  
	   	   	   for	  j=2,3,…,N-1	  
Compute:	   u(i+1,N)=[u(i+1,N-1)+HG(i+1)]/(H+1)	  

Is	  i=M-1?	  

Yes	   We	  now	  have	  the	  approximate	  solution	  at	  the	  grid	  points	  

No	  

l=i+1	  
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An Explicit Finite-Difference Method The Explicit Method for Parabolic Equations

Remarks
There is a serious dificiency in the explicit method, for if the step
size in t is large compared to the step size in x , then machine
roundoff error can grow until it ruins the accuracy of the solution.

The relative size of these steps depends on the particular
equation and the BCs, but, generally, the step size in t should be
much smaller than the step size in x . We must have k/h2 6 0.5 in
order this method to work.

A general rule of thumb is that as the step sizes ∆t and ∆x are
made smaller, the truncation error of approximating partial
derivatives by finite differences decreases. However, the smaller
these grid sizes, the more computations necessary, and, hence,
the roundoff error, as a result of rounding off our computations,
will increase.
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An Explicit Finite-Difference Method The Explicit Method for Hyperbolic Equation

The Explicit Method for Hyperbolic Equation

Problem 20-2
To find a function u(x , t) that satisfies

PDE: utt = uxx , 0 < x < 1, 0 < t <∞

BCs:

{
u(0, t) = g1(t)
u(1, t) = g2(t)

0 < t <∞

ICs:

{
u(x ,0) = φ(x)

ut (x ,0) = ψ(x)
0 6 x 6 1
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An Explicit Finite-Difference Method The Explicit Method for Hyperbolic Equation

Problem 20-2 can also be solved by the explicit finite-difference
method. Here, we can approximate the derivatives utt and uxx by

utt ∼=
1
k2 [u(x , t + k)− 2u(x , t) + u(x , t − k)]

uxx ∼=
1
h2 [u(x + h, t)− 2u(x , t) + u(x − h, t)]

and the derivative ut (x ,0) in the IC by

ut (x ,0) ∼=
1
k

[u(x , k)− u(x ,0)] =
1
k

[u(x , k)− φ(x)] .
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An Explicit Finite-Difference Method The Explicit Method for Hyperbolic Equation

Solving for u(x , t + k) explicitly in terms of the solution at earlier
values of time gives

u(x ,t + k) = 2u(x , t)− u(x , t − k)

+

(
k
h

)2

[u(x + h, t)− 2u(x , t) + u(x − h, t)]
(20.4)

From (20.4) it is clear that we must already know the solution at
two previous time steps, and, hence, we must use the
initial-velocity condition

1
k

[u(x , k)− φ(x)] = ψ(x)

to get us started. Solving for u(x , k) gives u(x , k) = φ(x) + kψ(x),
and, thus, we can find the solution for t = ∆t .
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An Implicit Finite-Difference Method (Crank-Nicolson Method)

An Implicit Finite-Difference Method (Crank-Nicolson
Method)

In implicit method, we again replace the partial derivatives in the
problem by their finite-difference approximations, but unlike explicit
methods (where we solved for ui+1,j explicitly in terms of earlier
values), in implicit methods, we solve a system of equations in
order to find the solution at the largest value of time.

In other words, for each new value of time we solve a system of
algebraic equations to find all the values.

It should be mentioned that implicit methods allow us to take
larger steps by doing more work per step.
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An Implicit Finite-Difference Method (Crank-Nicolson Method) The Heat-Flow Problem Solved by an Implicit Method

The Heat-Flow Problem Solved by an Implicit Method

Problem 20-3
To find a function u(x , t) that satisfies

PDE: ut = uxx , 0 < x < 1, 0 < t <∞

BCs:

{
u(0, t) = 0
u(1, t) = 0

0 < t <∞

IC: u(x ,0) = 1 0 6 x 6 1
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An Implicit Finite-Difference Method (Crank-Nicolson Method) The Heat-Flow Problem Solved by an Implicit Method
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An Implicit Finite-Difference Method (Crank-Nicolson Method) The Heat-Flow Problem Solved by an Implicit Method

We replace the partial derivatives ut and uxx by the following
approximations:

ut (x , t) =
1
k

[u(x , t + k)− u(x , t)]

uxx (x , t) =
λ

h2 [u(x + h, t + k)− 2u(x , t + k) + u(x − h, t + k)]

+
(1− λ)

h2 [u(x + h, t)− 2u(x , t) + u(x − h, t)] ,

where λ is a chosen number in the interval [0,1].

Note that our approximation for uxx is a weighted average of the
central-difference approximation to the derivative uxx at time
values t and t + k .
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An Implicit Finite-Difference Method (Crank-Nicolson Method) The Heat-Flow Problem Solved by an Implicit Method

Remarks
In the special case when λ = 0.5, it is just the ordinary average of
these two central differences.

If λ = 0.75, our approximation puts weights of 0.75 and 0.25 on
each of the two terms.

If λ = 0, it is usual explicit finite-difference method.
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An Implicit Finite-Difference Method (Crank-Nicolson Method) The Heat-Flow Problem Solved by an Implicit Method

If we now substitute the approximations for ut and uxx into our
problem, we get the new finite-difference problem

Problem 20-3a
1
k
(
ui+1,j − ui,j

)
=

λ

h2

(
ui+1,j+1 − 2ui+1,j + ui+1,j−1

)
+

(1− λ)

h2

(
ui,j+1 − 2ui,j + ui,j−1

)
BCs:

{
ui,1 = 0
ui,n = 0

, i = 1,2, . . . ,m

IC: u1,j = 1, j = 2, . . . ,n − 1
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An Implicit Finite-Difference Method (Crank-Nicolson Method) The Heat-Flow Problem Solved by an Implicit Method

If we rewrite the difference equation in problem 20-3a, putting the
ui,j ’s with the largest time subscript (i-subscript) on the left-hand
side of the equation, we arrive at

−λrui+1,j+1 + (1 + 2rλ)ui+1,j − λrui+1,j−1

= r(1− λ)ui,j+1 + [1− 2r(1− λ)] ui,j

+ r(1− λ)ui,j−1,

(20.5)

where we have set r = k/h2 for convenience.

Note that for a fixed subscript i and for j going from 2 to n − 1, this
is a system of n− 2 equations in the n− 2 unknowns ui+1,2, ui+1,3,
ui+1,4, . . . ,ui+1,n−1 [which are the interior grid points at
t = (i + 1)∆t .

To help show exactly how ui,j ’s are involved into (20.5), we write it
in the symbolic or molecular form (see next page)
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An Implicit Finite-Difference Method (Crank-Nicolson Method) The Heat-Flow Problem Solved by an Implicit Method
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x	  

j-1	   j	   j+1	  

i+1	  

i	   r(1-λ)	   1-2r(1-λ)	   r(1-λ)	  +	   +	  

-rλ	   1+2rλ	   -rλ	  +	   +	  
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