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Purpose of Lesson

To show how parabolic PDEs are used to model heat-flow and
diffusion-type problems. To discuss the physical meaning of
different terms (such as ut , ux , uxx , and u) and present a few
examples of parabolic equations.

To give an intuitive feeling for parabolic-type problems.

To show how heat-flow and diffusion-type problems can give rise
to a variety of boundary conditions and to introduce the important
concept of flux .
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Purpose of Lesson (continued)

To discuss first of three important types of BCs:

1 temperature specified on the boundary.
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Chapter 2. Parabolic-Type Problems

Chapter 2. Parabolic (Diffusion)-Type Problems.

We introduce a simple physical problem and show how it can be
described by means of a mathematical model (model involves PDEs).

Then we complicate the problem and show how new PDEs can
describe the new situations.

Remark
Today we will not derive or solve PDEs. It will be done later.
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Chapter 2. Parabolic-Type Problems A simple heat-flow experiment

A simple heat-flow experiment

Suppose we have the following simple experiment that we break into
steps:

1. We start with a reasonable long (say L = 2m) rod 2 cm in
diameter. The heat can flow in and out of the rod at the end, but
not across the lateral boundary.

2. Next, we place this rod in an enviroment whose temperature is
fixed at T0 = 10◦C for a sufficiently long time. The temperature of
the entire rod comes to a steady state temperature similar to the
enviroment.
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Chapter 2. Parabolic-Type Problems A simple heat-flow experiment

3. We take the rod out of the enviroment at the time that we call
t = 0 and attach two temperature elements to the end of the rod.
These elements keep the ends at specific temperature T1 = 0◦C
and T2 = 50◦C.

4. Now we monitor the temperature profile of the rod on some type
of display.
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Chapter 2. Parabolic-Type Problems The mathematical model of the heat-flow experiment

The mathematical model of the heat-flow experiment

The description of our heat-transfer problem requires three types of
equations

1 The PDE describing the physical phenomenon of heat flow.

2 The boundary conditions describing the physical nature of our
problem on the boundaries

3 The initial conditions describing the physical phenomenon at the
start of the experiment.
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Chapter 2. Parabolic-Type Problems The mathematical model of the heat-flow experiment

The heat equation

The basic equation of one-dimensional heat flow is the relationship

ut = α2uxx , 0 < x < L, 0 < t <∞ (3.1)

which relates the quantities

ut = the rate of change in temperature w.r.t. time

and
uxx = the concavity of the temperature profile u(x , t).
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Chapter 2. Parabolic-Type Problems The mathematical model of the heat-flow experiment

Remarks
uxx compares the temperature at one point to the temperature at
neighboring points.

Equation (3.1) will be derived later from the basic conservation of
heat equation.

Eq. (3.1) says that the temperature u(x , t) at some point x and at
some moment t is increasing (ut > 0) or decreasing (ut < 0)
according to whether uxx is positive or negative.

The proportionality constant α2 is a property of the material.
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Chapter 2. Parabolic-Type Problems The mathematical model of the heat-flow experiment

How uxx can be interpreted to measure heat flow?

We approximate uxx by the difference quotient

uxx (x , t) ∼=
1

(∆x)2 [u(x + ∆x , t)− 2u(x , t) + u(x −∆x , t)]

=
2

(∆x)2

[
u(x + ∆x , t) + u(x −∆x , t)

2
− u(x , t)

]
.
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Chapter 2. Parabolic-Type Problems The mathematical model of the heat-flow experiment

There is the following interpretation of uxx :

If u(x , t) < average of the two neighboring temperatures, then
uxx > 0 (the net flow of the heat into x is positive).

If u(x , t) = average of the two neighboring temperatures, then
uxx = 0 (the net flow of the heat into x is zero).

If u(x , t) > average of the two neighboring temperatures, then
uxx < 0 (the net flow of the heat into x is negative).

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 3 30. Oktober 2014 11 / 22



Chapter 2. Parabolic-Type Problems The mathematical model of the heat-flow experiment

Boundary conditions

All physical problems have boundaries of some kind, so we must
describe mathematically what goes on there in order to adequately
describe the problem.

Boundary conditions in our experiment:

{
u(0, t) = T1

u(L, t) = T2
0 < t <∞. (3.2)

Remark
Temperature u was fixed for all time at T1 and T2 at the two ends x = 0
and x = L.
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Chapter 2. Parabolic-Type Problems The mathematical model of the heat-flow experiment

Initial conditions

All physical problems must start from some value of time (generally
called t = 0), so we must specify the physical apparatus at this time.

Initial conditions in our experiment

u(x ,0) = T0 0 6 x 6 L. (3.3)

Remark
We started monitoring the rod temperature from the time the rod had
achieved a constant temperature of T0.
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Chapter 2. Parabolic-Type Problems The mathematical model of the heat-flow experiment

We have described the experiment.

Writing (3.1)-(3.3) together, we get an initial boundary value problem:
ut = α2uxx 0 < x < L, 0 < t < +∞

u(0, t) = T1 0 < t < +∞
u(L, t) = T2 0 < t < +∞
u(x ,0) = T0 0 6 x 6 L.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 3 30. Oktober 2014 14 / 22



Chapter 2. Parabolic-Type Problems More diffusion-type equations

Lateral heat loss proportional to the temperature difference

The equation
ut = α2uxx − β (u − u0) β > 0

decribes heat flow in the rod with both
1 diffusion α2uxx along the road and
2 heat loss (or gain) across the lateral sides of the rod.

Remark
Heat loss (u > u0) or gain (u < u0) is proportional to the difference
between the temperature u(x , t) of the rod and the surrounding
medium u0.
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Chapter 2. Parabolic-Type Problems More diffusion-type equations

Internal heat source

The nonhomogeneous equation

ut = α2uxx + f (x , t)

correspond to the case where the rod is being supplied with an internal
heat source (everywhere along the rod and for all time).
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Chapter 2. Parabolic-Type Problems More diffusion-type equations

Diffusion-convection equation

Suppose a pollutant is carried along in a stream moving with velocity ν.

Let u(x , t) be a concentration of the substance. The rate of change ut
is measured by the diffusion-convection equation

ut = α2uxx − νux ,

where
α2uxx is the diffusion contribution

and
−νux is the convection component.
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Chapter 2. Parabolic-Type Problems More diffusion-type equations

Heat equation with variable coefficient

The heat equation
ut = α2(x)uxx

corresponds to a problem where the diffusion within the rod depends
on x (the material is nonhomogeneous).
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Boundary conditions for parabolic-type problems

Boundary conditions for parabolic-type problems

Three basic types of boundary conditions can occur for heat-flow
problems:

1 u = g(t);

2
∂u
∂n

+ λu = g(t).

3
∂u
∂n

= g(t).

Here n ist the outward normal direction to the boundary.
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Boundary conditions for parabolic-type problems Type 1 BC

Type 1 BC (Temperature specified on the boundary){
u(0, t) = g1(t)
u(L, t) = g2(t)

(The same heat-flow experiment as in the beginning of the lecture)

Remarks
Problems with BCs of this kind are fairly common.

It may be that the goal of the problem is to find the boundary
temperatures (boundary control) g1(t) and g2(t) that will force the
temperature to behave in a suitable manner.

Similar types of BCs also apply to higher dimensional domains.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 3 30. Oktober 2014 20 / 22



Boundary conditions for parabolic-type problems Type 1 BC

Type 1 BC (Temperature specified on the boundary)

Example
In two dimensions we could imagine the problem of finding the
temperature inside the circular disc (of radius R) when the boundary
temperature is specified in polar coordinates to be

u(R, θ, t) = cos t sin θ.
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Boundary conditions for parabolic-type problems Type 1 BC

Type 1 BC (Temperature specified on the boundary)

u(R, θ, t) = cos t sin θ.

Figure 1: Oscillating boundary temperature
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