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Purpose of Lesson

To discuss the second and the third important types of BCs:

temperature of the surrounded medium specified,

heat flow across the boundary specified.

To show how the one-space dimensional heat equation

ut = α2uxx + f (x , t)

is derived from the basic principle of conversation of heat .

To show how the rate of heat transfer depends on thermal
conductivity , thermal capacity , and density .

To discuss a few variations of the basic heat equation.
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

Suppose we have the following experiment that we again break into
steps:

1. We consider again our laterally insulated copper rod. Recall that
laterally insulated means: heat can flow in and out of the rod at
the ends, but not across the lateral boundary.

2. We put the left side of the rod in a container that has a changing
temperature g1(t), while the right end is putted in another liquid
with temperature g2(t).
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

1 We cannot say the boundary temperatures of the rod will be the
same as the liquid temperatures g1(t) and g2(t).

2 We know (Newton’s law of cooling) that whenever the rod
temperature at one of the boundaries is less than the respective
liquid temperatures, then heat will flow into the rod at a rate
proportional to this difference.
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

Newton’s law of cooling states:{
Outward flux of heat (at x = 0) = h [u(0, t)− g1(t)]

Outward flux of heat (at x = L) = h [u(L, t)− g2(t)] .

Here
Outward flux of the heat = the number of calories crossing the
ends of the rod per second.

h is a heat-exchange coefficient, which is the measure of how
many calories flow across the boundary per unit of temperature
difference per second per cm.
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

Remark
Note that the outward flux of heat will be positive at either end provided
the temperature of the rod is greater than the surrounding medium.

Otherwise, the outward flux of heat will be negative at either end
provided the temperature of the rod is less than the surrounding
medium.
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

In addition to Newton’s law we state Fourier’s law (proven
experimentally)

Outward flux of heat across a boundary is proportional
to the inward normal derivative across the boundary

This law says that if the temperature is increasing rapidly in the
direction outward from the boundary of a domain, then heat will flow
from the surrounding medium into the domain.
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

In our 1-dimensional problem, Fourier’s law takes the form:


Outward flux of heat (at x = 0) = k

∂u(0, t)
∂x

Outward flux of heat (at x = L) = −k
∂u(L, t)
∂x

,

where k is the thermal conductivity of the metal, which is a measure of
how well the material conducts heat.
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

Remark
Fourier’s law actually holds anywhere inside the rod and not just at the
boundary; for example,

Flux of heat crossing x0 (from left to right) = −k
∂u(x0, t)
∂x

Fourier’s law says that if ux (x0, t) < 0, then heat will flow from left to
right; if ux (x0, t) > 0, then the flow of heat through point x0 will be from
right to left.

Heat always flows from high to low temperatures!
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

Finally, combining two expressions for heat flux, we get our desired
BCs in purely mathematical terms; namely,

BCs


∂u(0, t)
∂x

=
h
k

[u(0, t)− g1(t)]

∂u(L, t)
∂x

= −h
k

[u(L, t)− g2(t)]

0 < t <∞

Quite often, the constant h/k is simply written as λ.
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Boundary conditions for parabolic-type problems Type 2 BC

Type 2 BC (Temperature of the surrounding medium specified)

In higher dimensions, we have similar BCs.

Example
For example, if the boundary of a circular disc is interfaced with a
moving liquid that has a temperature g(θ, t), our BCs would be

∂u(R, θ, t)
∂r

= −h
k

[u(R, θ, t)− g(θ, t)] .

This type of BCs would be called a linear BC (since it is linear in u and
ur ) but nonhomogeneous due to the right-hand side g(θ, t).
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Boundary conditions for parabolic-type problems Type 3 BC

Type 3 BC (Flux specified - including the special case of insulated
boundaries)

Insulated boundaries are those that do not allow any flow of heat to
pass, and, hence, the normal derivative (inward or outward) must be
zero on the boundary (since the normal derivative is proportional to the
flux).

Example
In the case of the 1-dimensional rod with insulated ends at x = 0 and
x = L, the BCs are {

ux (0, t) = 0
ux (L, t) = 0

0 < t <∞.
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Boundary conditions for parabolic-type problems Type 3 BC

Type 3 BC (Flux specified - including the special case of insulated
boundaries)

In 2-dimensional domains, an insulated boundary would mean that the
normal derivative of the temperature across the boundary is zero.

Example
For example, if the circular disc were insulated on the boundary, then
the BC would be

ur (R, θ, t) = 0 ∀ 0 6 θ < 2π and ∀ 0 < t <∞.
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Boundary conditions for parabolic-type problems Type 3 BC

Type 3 BC (Flux specified - including the special case of insulated
boundaries)

On the other hand, if we specify the amount of heat entering across
the boundary of our disc, the BC is

ur (R, θ, t) = f (θ, t),

where f (θ, t) would represent the amount of heat crossing into the
circular disc from am outside heating source.
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Boundary conditions for parabolic-type problems Typical BCs for 1-dimensional heat flow

Typical BCs for 1-dimensional heat flow

Let us consider the following experiment

1 Suppose we have a copper rod 200 cm long that is laterally
insulated and has an initial temperature of 0◦C.

2 Suppose the top of the rod (x = 0) is insulated, while the bottom
(x = 200) is immersed in moving water that has a constant
temperature of g(t) = 20◦C.
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Boundary conditions for parabolic-type problems Typical BCs for 1-dimensional heat flow

Typical BCs for 1-dimensional heat flow

The mathematical model for this problem would be the following four
equations:

PDE ut = α2uxx 0 < x < 200 0 < t <∞

BCs


ux (0, t) = 0

ux (200, t) = −h
k

[u(200, t)− 20]
0 < t <∞

IC u(x ,0) = 0◦C 0 6 x 6 200,

where
α2 = 1.16 cm2/sec is the diffusivity constant for copper;
k = 0.93 cal/cm − sec◦C is the termal conductivity of copper;
h is heat exchange coefficient.
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Boundary conditions for parabolic-type problems Typical BCs for 1-dimensional heat flow

Typical BCs for 1-dimensional heat flow

Remark
To find h is a hard problem itself. It measures the rate that heat is being
exchanged between bottom of the rod and the surrounding water.

We would have to carry out an experiment to determine the value of h.
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Derivation of the heat equation

Derivation of the heat equation

Suppose that we have a 1-dimensional rod of length L for which we
make the following assumptions:

1 The rod is made of a single homogeneous conducting material.

2 The rod is laterally insulated (heat flows only in the x-direction).

3 The rod is thin (the temperature at all points of a cross section is
constant).
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Derivation of the heat equation

Derivation of the heat equation

If we apply the principle of conversation of heat to the segment
[x , x + ∆x ], we can claim

Net change of heat inside [x , x + ∆x ]

= total heat generated inside [x , x + ∆x ]

+ net flux of heat across the boundaries
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Derivation of the heat equation

Derivation of the heat equation

Observe that the total amount of heat (in calories) inside [x , x + ∆x ] at
any time t is measured by

Total heat inside [x , x + ∆x ] =

x+∆x∫
x

cρAu(s, t)ds ,

where
c = thermal capacity of the rod (measures the ability of the rod to
store heat);
ρ = density of the rod;
A = cross-section ares of the rod.
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Derivation of the heat equation

Derivation of the heat equation

Therefore,
Net change of heat inside [x , x + ∆x ]

=
d
dt

(Total heat inside [x , x + ∆x ])

=
d
dt

x+∆x∫
x

cρAu(s, t)ds
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Derivation of the heat equation

Derivation of the heat equation

In addition,

Net flux of heat across the boundaries
= kA [ux (x + ∆x , t)− ux (x , t)]

It remains only to estimate total heat generated inside [x , x + ∆x ].
If we assume that our rod has no internal heat source, then

Total heat generated inside[x , x + ∆x ] = 0 .

Otherwise, if our rod is supplied with an internal heat source, then

Total heat generated inside[x , x + ∆x ] = A

x+∆x∫
x

f (s, t)ds .
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Derivation of the heat equation

Derivation of the heat equation

Combining all three equations we can write the conservation of energy
equation as

d
dt

x+∆x∫
x

cρAu(s, t)ds = cρA

x+∆x∫
x

ut (s, t)ds

= kA [ux (x + ∆x , t)− ux (x , t)] + A

x+∆x∫
x

f (s, t)ds,

(4.1)

where
k = thermal conductivity of the rod (measures the ability to
conduct the heat)
f (x , t) = internal heat source (calories per cm per sec).
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Derivation of the heat equation

Derivation of the heat equation

The problem now is to replace equation (4.1) by one that does not
contain integrals.

Recall the Mean Value Theorem from calculus:

Mean Value Theorem
If f (x) is a continuous function on [a,b], then there exists at least one
number ξ, a < ξ < b that satisfies

b∫
a

f (x)dx = f (ξ)(b − a).
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Derivation of the heat equation

Derivation of the heat equation

Applying the Mean Value Theorem to equation (4.1) we arrive for
x < ξi < x + ∆x at the following equation:

cρAut (ξ1, t)∆x = kA [ux (x + ∆x , t)− ux (x , t)] + Af (ξ2, t)∆x

or

ut (ξ, t) =
k
cρ

{
ux (x + ∆x , t)− ux (x , t)

∆x

}
+

1
cρ

f (ξ, t).
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Derivation of the heat equation

Derivation of the heat equation

Finally, letting ∆x → 0, we have the desired result

ut (x , t) = α2uxx (x , t) + F (x , t) ,

where
α2 = k

cρ (called the diffusivity of the rod);

F (x , t) = 1
cρ f (x , t) (heat source density).
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Derivation of the heat equation

Derivation of the heat equation

Suppose the rod is not laterally insulated and the heat can flow across
the lateral boundary at a rate proportional to the differnce between the
temperature u(x , t) and the surrounding medium that we keep at zero.

In this case, the conservation of heat principle will give

ut = α2uxx − βu + F (x , t),

where β = rate constant for the lateral heat flow (β > 0).
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Derivation of the heat equation

Remarks
1 The constant k is the thermal conductivity of the rod and a

measure of the heat flow (in calories) that is transmitted per
second through a plate 1 cm thick across an area of 1 cm2 when
the temperature difference is 1◦C.

2 If the material of the rod is uniform, then k will not depend on x .
For some materials, the value of k depends on the temperature u.

3 The constant c is known as thermal capacity of the substance and
measures the amount of energy the substance can store.
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