
PDE and Boundary-Value Problems
Winter Term 2014/2015

Lecture 6

Saarland University

17. November 2014

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 6 17. November 2014 1 / 40



Purpose of Lesson
To show how problems with nonhomogeneous BCs can be solved
by transforming them into others with zero BCs.

To show how more complicated heat-flow problems can be solved
by separation of variables.

Eigenvalue problems, known as Sturm-Liouville problems, are
introduced, and some properties of these general problems are
discussed.

To show how to solve the IBVP with nonhomogeneous PDE by the
eigenfunction expansion method.
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Transforming Nonhomogeneous BCs into Homogeneous Ones

Transforming Nonhomogeneous BCs into
Homogeneous Ones

Problem 6-1
Consider heat flow in an insulated rod where two ends are kept at
constant temperature k1 and k2; that is,

PDE: ut = α2uxx , 0 < x < L, 0 < t <∞

BCs:

{
u(0, t) = k1

u(L, t) = k2
, 0 < t <∞

IC: u(x ,0) = φ(x), 0 6 x 6 L.

The difficulty here is that since the BCs are not homogeneous, we
cannot solve this problem by separation of variables.
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Transforming Nonhomogeneous BCs into Homogeneous Ones

Transforming Nonhomogeneous BCs into
Homogeneous Ones

It is obvious that the solution of problem 6-1 will have a
steady-state solution (solution when t =∞) that varies linearly (in
x) between the boundary temperatures k1 and k2.

It seems reasonable to think of our temperature u(x , t) as the sum
of two parts

u(x , t) = steady state + transient,

where steady state is eventual solution for large times, while
transient is a part of the solution that depends on the IC (and will
go to zero). So,

u(x , t) =
[
k1 +

x
L

(k2 − k1)
]

+ U(x , t).
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Transforming Nonhomogeneous BCs into Homogeneous Ones

Transforming Nonhomogeneous BCs into
Homogeneous Ones

Our goal is to find the transient U(x , t). By substituting

u(x , t) =
[
k1 +

x
L

(k2 − k1)
]

+ U(x , t)

in the original problem 6-1, we will arrive at a new problem in
U(x , t).

We can solve this new problem for U(x , t) and add it to the steady
state to get u(x , t).
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Transforming Nonhomogeneous BCs into Homogeneous Ones

Transforming Nonhomogeneous BCs into
Homogeneous Ones

Problem 6-1a

PDE: Ut = α2Uxx , 0 < x < L,

BCs:

{
U(0, t) = 0
U(L, t) = 0

, 0 < t <∞

IC: U(x ,0) = φ(x), 0 6 x 6 L,

where φ(x) := φ(x)−
[
k1 + x

L (k2 − k1)
]

new IC. But it is known!!!

The problem 6-1a (fortunately) has a homogeneous PDE as well as
homogeneous BCs, and so we can solve it by separation of variables.
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Transforming Nonhomogeneous BCs into Homogeneous Ones

Question:
What about more realistic-type BCs with time-varying right-hand
sides?

Answer:
The ideas are similar to the previous problem 6-1 but a little more
complicated.

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 6 17. November 2014 7 / 40



Transforming Nonhomogeneous BCs into Homogeneous Ones Transforming Time Varying BCs to Zero BCs

Transforming Time Varying BCs to Zero BCs

Problem 6-2
Consider the typical problem

PDE: ut = α2uxx , 0 < x < L, 0 < t <∞

BCs:

{
u(0, t) = g1(t)
ux(L, t) + hu(L, t) = g2(t)

, 0 < t <∞

IC: u(x ,0) = φ(x), 0 6 x 6 L.
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Transforming Nonhomogeneous BCs into Homogeneous Ones Transforming Time Varying BCs to Zero BCs

Transforming Time Varying BCs to Zero BCs

We seek a solution of the form

u(x , t) = A(t)
[
1− x

L

]
+ B(t)

x
L

+ U(x , t)

where A(t) and B(t) are chosen so that the steady-state part

S(x , t) = A(t)
[
1− x

L

]
+ B(t)

x
L

satisfies the BCs of the problem 6-2.

The transformed problem in U(x , t) will have homogeneous BCs.
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Transforming Nonhomogeneous BCs into Homogeneous Ones Transforming Time Varying BCs to Zero BCs

Transforming Time Varying BCs to Zero BCs

Substituting S(x , t) into BCs we get equations for A(t) and B(t)

A(t) = g1(t)

B(t) =
g1(t) + Lg2(t)

1 + Lh
.

Hence, we have

u(x , t) = g1(t)
[
1− x

L

]
+

g1(t) + Lg2(t)
1 + Lh

x
L

+ U(x , t).
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Transforming Nonhomogeneous BCs into Homogeneous Ones Transforming Time Varying BCs to Zero BCs

Transforming Time Varying BCs to Zero BCs

The transformed problem in U(x , t) has a form

Problem 6-2a

PDE: Ut = α2Uxx − St , (nonhomogeneous PDE)

BCs:

{
U(0, t) = 0
Ux(L, t) + hU(L, t) = 0

, (homogeneous BCs)

IC: U(x ,0) = φ(x)− S(x ,0), (new IC - but known).

The problem 6-2a has zero BCs (unfortunately, the PDE is
nonhomogeneous). We can’t solve this problem by separation of
variables. But it can be solve by some other methods.
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Transforming Nonhomogeneous BCs into Homogeneous Ones Transforming Time Varying BCs to Zero BCs

Remark
For BCs of the form {

u(0, t) = g1(t)
u(L, t) = g2(t)

the method discussed in the problem 6-2 will give us the transformation

u(x , t) = g1(t) +
x
L

[g2(t)− g1(t)] + U(x , t).
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More Complicated Problems and Separation of Variables

More Complicated Problems and Separation of
Variables

We start with a 1-dimensional heat-flow problem where one of the BCs
contains derivatives.
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More Complicated Problems and Separation of Variables

Heat-Flow Problem with Derivative BC
Suppose we have a laterally insulated rod of length 1.

Consider an apparatus in which we fix the temperature at the left
end of the rod at u(0, t) = 0 and immerse the right end of the rod
in a solution of water fixed at the same temperature of zero (zero
refers to some reference temperature).

Newton’s law of cooling says that the BC at x = 1 is

ux(1, t) = −hu(1, t).

Suppose now that the initial temperature of the rod is u(x ,0) = x ,
but instantaneously thereafter (t > 0), we apply our BCs.
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More Complicated Problems and Separation of Variables

To find the ensuing temperature, we must solve the IBVP

Problem 6-3
To find the function u(x , t) that satisfies

PDE: ut = α2uxx , 0 < x < 1, 0 < t <∞

BCs:

{
u(0, t) = 0

ux(1, t) + hu(1, t) = 0
, 0 < t <∞

IC: u(x ,0) = x , 0 6 x 6 1

To apply the separation of variables method, we carry out the following
steps:
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More Complicated Problems and Separation of Variables

Step 1 (Finding elementary solutions to the PDE)

We look for solutions of the form u(x , t) = X (x)T (t) by substituting
X (x)T (t) into the PDE and solving for X (x)T (t). As a result we get

u(x , t) = e−λ
2α2t (A sin (λx) + B cos (λx))

(with A, B and λ arbitrary).

c© Daria Apushkinskaya (UdS) PDE and BVP lecture 6 17. November 2014 16 / 40



More Complicated Problems and Separation of Variables

Step 2 (Finding solutions to the PDE and the BCs)

The next step is to choose a certain subset of solutions

e−λ
2α2t (A sin (λx) + B cos (λx)) (6.1)

that satisfy BCs.
To do this, we substitute solutions (6.1) into BCs, getting

Be−λ
2α2t = 0 ⇒ B = 0

Aλe−λ
2α2t cosλ+ hAe−λ

2α2t sinλ = 0.

Performing alittle algebra on this last equation gives us the
condition on λ

tan (λ) = −λ/h.
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More Complicated Problems and Separation of Variables

Step 2 (Finding solutions to the PDE and the BCs)

In other words, to find λ, we must find the intersections of the curves
tan (λ) and −λ/h.
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More Complicated Problems and Separation of Variables

Step 2 (Finding solutions to the PDE and the BCs)

These values λ1, λ2, . . . can be computated numerically for a
given h on a computer and are called the eigenvalues of the
boundary-value problem

X ′′ + λ2X = 0
X (0) = 0

X ′(1) + hX (1) = 0
(6.2)

In other words, they are the values of λ for which there exitst a
nonzero solution.
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More Complicated Problems and Separation of Variables

Step 2 (Finding solutions to the PDE and the BCs)

The eigenvalues λn of (6.2), which, in this case, are the roots of

tan (λ) = −λ/h,

have been computed (for h = 1) numerically, and the first five values
are listed in Table 6.1

n λn
1 2,02
2 4,91
3 7,98
4 11,08
5 14,20

Table 6.1: Roots of tan (λ) = −λ.
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More Complicated Problems and Separation of Variables

Step 2 (Finding solutions to the PDE and the BCs)

The solutions of (6.2) corresponding to the eigenvalues λn are
called the eigenfunctions Xn(x), and for problem (6.2), we have

Xn(x) = sin(λnx).
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More Complicated Problems and Separation of Variables

Step 2 (Finding solutions to the PDE and the BCs)

We have now finished the second step; we have found an infinite
number of functions (fundamental solutions),

un(x , t) = e−λ
2
nα

2t sin (λnx)

each one satisfying the PDE and BCs.
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More Complicated Problems and Separation of Variables

Step 3 (Finding solutions to the PDE, BCs, and the IC)

The last step is to add the fundamental solutions

u(x , t) =
∞∑

n=1

Ane−(λnα)2t sin (λnx) (6.3)

in such a way (pick the coefficients An) that the initial condition
u(x ,0) = x is satisfied.

Substituting (6.3) into the IC gives

x =
∞∑

n=1

An sin (λnx).
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More Complicated Problems and Separation of Variables

Step 3 (Finding solutions to the PDE, BCs, and the IC)

We are now in position to solve for the coefficients in the expression

x =
∞∑

n=1

An sin (λnx). (6.4)

We multiply each side of (6.4) by sin (λmx) (m is an arbitrary
integer) and integrate from zero to one. As a result we get

1∫
0

x sin (λmx)dx = Am

1∫
0

sin2(λmx)dx

= Am

(
λm − sin (λm) cos (λm)

2λm

)
.
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More Complicated Problems and Separation of Variables

Step 3 (Finding solutions to the PDE, BCs, and the IC)

Solving for An (we’ll change the notation to An), we get

An =
2λn

λn − sin (λn) cos (λn)

1∫
0

x sin (λnx)dx . (6.5)

We are done; our solution is

u(x , t) =
∞∑

n=1

Ane−(λnα)2t sin (λnx) ,

where the constants An are given by (6.5).
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More Complicated Problems and Separation of Variables

For problem 6-3 the first five constants An have been computed and
are listed in Table 6.2:

n An
1 0,24
2 0,22
3 −0,03
4 −0,11
5 −0,09

Table 6.2: Coefficients An.

Hence, the first three terms of the IBVP 6-3 are

u(x , t) ≈ 0,24e−4t sin (2x) + 0,22e−24t sin (4,9x)

+ 0,03e−63,3t sin (7,98x) + . . .
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Sturm-Liouville problems

Remark
The eigenvalue problem (6.2) is a special case of the general
problem

ODE: [p(x)Y ′(x)]′ − q(x)Y (x) + λr(x)Y (x) = 0,

BCs:

{
α1Y (0) + β1Y ′(0) = 0
α2Y (1) + β2Y ′(1) = 0

,

known as Sturm-Liouville problem.
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Sturm-Liouville problems

Sturm and Liouville proved that under suitable conditions on the
functions p(x), q(x) and r(x), the SLP has

An infinite sequence of eigenvalues

λ1 < λ2 < λ3 < · · · < λn < · · · → ∞

Corresponding to each eigenvalue λn, there is one nonzero
solution Yn(x).

If Yn(x) and Ym(x) are two different eigenfunctions (corresponding
to λn 6= λm), then they are orthogonal with respect to the weight
function r(x) on the interval [0,1]; that is, they satisfy

1∫
0

r(x)Yn(x)Ym(x)dx = 0.
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions)

Solving Nonhomogeneous PDEs (Eigenfunction
Expansions)

We have discussed how transform nonhomogeneous BCs into
homogeneous ones. Unfortunately, the PDE was left
nonhomogeneous by this process and we were left with the problem

Problem 6-4

PDE: ut = α2uxx + f (x , t), 0 < x < 1, 0 < t <∞

BCs:

{
α1ux(0, t) + β1u(0, t) = 0
α2ux(1, t) + β2u(1, t) = 0

, 0 < t <∞

IC: u(x ,0) = φ(x), 0 6 x 6 1
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions)

Solving Nonhomogeneous PDEs (Eigenfunction
Expansions)

We solve problem 6-4 by a method that is analogous to the method of
variation of parameters in ODEs and is known as the eigenfunction
expansion method.

The idea is quite simple. The solution of problem 6-4 with f (x , t) = 0
(corresponding homogeneous problem) is given by

u(x , t) =
∞∑

n=1

Ane−(λnα)2tXn(x),

where λn and Xn(x) are the eigenvalues and eigenfunctions of the
Sturm-Liouville problem,

X ′′ + λ2X = 0
α1X ′(0) + β1X (0) = 0
α2X ′(1) + β1X (1) = 0
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions)

Solving Nonhomogeneous PDEs (Eigenfunction
Expansions)

We ask whether the solution of the nonhomogeneous problem 6-4 can
be written in the slightly more general form

u(x , t) =
∞∑

n=1

Tn(t)Xn(x)?

To show how this method works, we apply it to a problem more simple
as problem 6-4. So, the details aren’t as complicated.
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions)

Solution by the Eigenfunction Expansion Method

Consider the nonhomogeneous problem

Problem 6-5

PDE: ut = α2uxx + f (x , t), 0 < x < 1, 0 < t <∞

BCs:

{
u(0, t) = 0
u(1, t) = 0

, 0 < t <∞

IC: u(x ,0) = φ(x), 0 6 x 6 1

To solve problem 6-5 we divide the procedure into the following steps:
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Solution by the Eigenfunction Expansion Method

Step 1 (Find Xn(x), that is, the solutions of the associated SLP)

We find the functions Xn(x) which are the eigenvectors of the
associated Sturm-Liouville system

X ′′ + λ2X = 0
X (0) = 0
X (1) = 0.

It is clear that

Xn(x) = sin (nπx), n = 1,2, . . .
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Solution by the Eigenfunction Expansion Method

Step 2 (Decomposion of f (x , t))

We decompose the heat source f (x , t) into simple components

f (x , t) = f1(t)X1(x) + f2(t)X2(x) + · · ·+ fn(t)Xn(x) + . . .

For problem 6-5, our decomposion of the heat source has the form

f (x , t) =
∞∑

n=1

fn(t) sin (nπx). (6.6)
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Solution by the Eigenfunction Expansion Method

Step 2 (Decomposion of f (x , t))

To find the functions fn(t) we merely multiply each side of (6.6) by
sin (mπx) and integrate from zero to one (with respect to x);
hence, we have

1∫
0

f (x , t) sin (mπx)dx =
∞∑

n=1

fn(t)

1∫
0

sin (mπx) sin (nπx)dx

=
1
2

fm(t).

Changing m to n we get

fn(t) = 2

1∫
0

f (x , t) sin (nπx)dx .
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Solution by the Eigenfunction Expansion Method

Step 3 (Find the responce un(x , t) = Tn(t)Xn(x))

We try to find our solution as a sum of the individual responses

u(x , t) =
∞∑

n=1

un(x , t) =
∞∑

n=1

Tn(t) sin (nπx);

in other words, we seek the functions Tn(t).
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Solution by the Eigenfunction Expansion Method

Step 3 (Find the responce un(x , t) = Tn(t)Xn(x))

Substituting u(x , t) =
∞∑

n=1
Tn(t) sin (nπx) into the system 6-5 gives

us

PDE:
∞∑

n=1

[
T ′n(t) + (nπα)2Tn(t)− fn(t)

]
sin (nπx) = 0

BCs:



∞∑
n=1

T ′n(t) sin (0) = 0 (says nothing; zero=zero)

∞∑
n=1

T ′n(t) sin (nπ) = 0 (says nothing; zero=zero)

IC:
∞∑

n=1
Tn(0) sin (nπx) = φ(x).
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Solution by the Eigenfunction Expansion Method

Step 3 (Find the responce un(x , t) = Tn(t)Xn(x))

From PDE and IC it follows that Tn(t) will satisfy the simple initial
value problem

T ′n + (nπα)2Tn = fn(t)

Tn(0) = 2

1∫
0

φ(x) sin (nπx)dx =: an

This ODE problem has the solution

Tn(t) = ane−(nπα)2t +

1∫
0

e−(nπα)2(t−τ)fn(τ)dτ .
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Solution by the Eigenfunction Expansion Method

Step 4 (Find the solution u(x , t))

Hence, the solution of problem 7-2 is

u(x , t) =
∞∑

n=1

[
ane−(nπα)2t sin (nπx)

]

+
∞∑

n=1

sin (nπx)

1∫
0

e−(nπα)2(t−τ)fn(τ)dτ

 .

Here
∞∑

n=1

[
ane−(nπα)2t sin (nπx)

]
is the transient part (because of

IC), and
∞∑

n=1

[
sin (nπx)

1∫
0

e−(nπα)2(t−τ)fn(τ)dτ

]
is the „steady

state“ (because of the right-hand side f (x , t)).
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Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Solution by the Eigenfunction Expansion Method

Remarks
The method of eigenfunction expansion is one of the most
powerful for solving nonhomogeneous PDEs.

The eigenfunctions Xn(x) in the expansion change from problem
to problem and depend on PDE and BCs.
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