Universität des Saarlandes Fachrichtung 6.1, Mathematik Prof. Dr. Ernst-Ulrich Gekeler M.Sc. Philipp Stopp

10. Übung zu Algebra, SS 2012

Aufgabe 1. (10 Punkte)

Es sei K ein Körper, R der Polynomring K[X], $V = K^n$ und φ ein K-Endomorphismus von V. Wir fassen V als R-Modul auf vermöge $f(X) \cdot v = (f(\varphi))(v)$ für $f(X) \in R$ und $v \in V$.

Unter welchen Voraussetzungen ist der R-Modul V einfach bzw. halbeinfach?

Aufgabe 2. (5 Punkte)

Es sei R der Unterring der oberen Dreiecksmatrizen in $\mathbb{C}^{n\times n}$. Bestimmen Sie die Kommutante R' von R in $\mathbb{C}^{n\times n}$.

Aufgabe 3. (25 Punkte)

Es sei R ein Ring und M ein R-Modul. Wir setzen $S(M) := \sum M_i$, wobei M_i die einfachen R-Untermoduln von M durchläuft. Man nennt S(M) den Sockel von M.

- (i) Zeigen Sie, dass S(M) der größte halbeinfache Untermodul von M ist.
- (ii) Zeigen Sie: Jeder Homomorphismus $f:M\to N$ bildet S(M)nach S(N)ab.
- (iii) Wir definieren eine aufsteigende Folge von Teilmengen von M durch

$$S_0(M) := 0,$$
 $S_1(M) := S(M),$ $S_{i+1}(M) := \pi_i^{-1}(S(M/S_i(M))),$

wobei $\pi_i: M \to M/S_i(M)$, mit $i=1,2,\ldots$, die Restklassenabbildung bezeichne. Zeigen Sie, dass die $S_i(M)$ Untermoduln sind, und verallgemeinern Sie (ii) auf die Folge der $S_i(M)$.

(iv) Berechnen Sie die Sockelreihe des \mathbb{Z} -Moduls $M=\mathbb{Z}/(n)$, wobei n die Primfaktorzerlegung

$$n = \prod p_i^{e_i}$$

besitze.

(v) Berechnen Sie die Sockelreihe des R-Moduls V aus Aufgabe 1.