Universität des Saarlandes FR 6.1, Mathematik Prof. Dr. Ernst-Ulrich Gekeler Dr. Johannes Lengler

2.4.5 Rechenregeln in \mathbb{R}

Für die Addition, die Multiplikation, die kleiner/gleich-Beziehung und den Absolutbetrag auf \mathbb{R} gelten die folgenden Regeln: Für alle $a,b,c\in\mathbb{R}$ ist

$$(a+b)+c=a+(b+c)$$
 (Assoziativgesetz der Addition)
 $a+b=b+a$ (Kommutativgesetz der Addition)
 $a+0=0+a$ (0 ist Neutralelement für die Addition)

$$a + (-a) = (-a) + a = 0$$
 (Existenz der additiven Inverse zu a)

Die Regeln bis hier besagen, dass $(\mathbb{R}, +)$ eine abelsche (= kommutative) Gruppe ist;

$$(ab)c = a(bc)$$
 (Assoziativgesetz der Multiplikation)
 $ab = ba$ (Kommutativgesetz der Multiplikation)
 $a \cdot 1 = 1 \cdot a = a$ (1 ist Neutralelement der Multiplikation)
 $(a+b)c = ac + bc$ (Distributivgesetz)

Die Regeln bis hier besagen, dass $(\mathbb{R}, +, \cdot)$ ein kommutativer Ring ist; Ist $a \neq 0$, so gibt es ein wohlbestimmtes a^{-1} mit

$$a \cdot a^{-1} = a^{-1} \cdot a = 1$$
 (Existenz der multiplikativen Inverse)

Die Regeln bis hier besagen, dass $(\mathbb{R}, +, \cdot)$ ein Körper ist;

$$a \le b \implies a + c \le b + c$$

 $a < b \text{ und } c > 0 \implies ac < bc$

Die Regeln bis hier besagen, dass $(\mathbb{R}, +, ., "\leq")$ ein geordneter Körper ist;

$$|a| \ge 0$$
, $|a| = 0 \Leftrightarrow a = 0$
 $|ab| = |a| |b|$
 $|a+b| \le |a| + |b|$

Die letzten drei Regeln besagen, dass "| |" ein Absolutbetrag auf dem Körper R ist.