Universität des Saarlandes Fachrichtung 6.1, Mathematik Prof. Dr. Ernst-Ulrich Gekeler M.Sc. Philipp Stopp

11. Übung zur Linearen Algebra II, SS 2015

Aufgabe 1. $(5 + 5 = 10 \ Punkte)$

- (i) Sind die folgenden Teilmengen des \mathbb{C} -Vektorraums $\mathbb{C}^{n\times n}$ lineare Unterräume? Falls nicht, welche andere Struktur tragen sie jeweils?

 - $\begin{array}{l} \bullet \ \left\{ A \in \mathbb{C}^{n \times n} \mid A \text{ symmetrisch} \right\} \; ; \\ \bullet \ \left\{ A \in \mathbb{C}^{n \times n} \mid A \text{ hermitesch} \right\} \; . \end{array}$
- (ii) Sei U ein zweidimensionaler Untervektorraum von \mathbb{C}^3 . Zeigen Sie, dass $U \cap \mathbb{R}^3 \neq \{0\}$ und $\mathbb{R}^3 \nsubseteq U$ gilt.

Aufgabe 2. (10 Punkte)

Gegeben sei ein \mathbb{C} -Vektorraum V.

Eine reelle Struktur auf V ist eine \mathbb{R} -lineare Abbildung $c: V \to V$ mit

- für alle $\lambda \in \mathbb{C}$, für alle $v \in V$: $c(\lambda v) = \overline{\lambda} \cdot c(v)$ und
- c ist eine Involution, d.h. $c^2 = id_V$.

Sei U ein \mathbb{R} -Untervektorraum von V.

Zeigen Sie:

V ist genau dann die Komplexifizierung von U (bzw. kanonisch isomorph dazu), wenn es eine reelle Strukur c auf V gibt mit $c|_{U} = \mathrm{id}_{U}$.

Aufgabe 3. (5 + 5 + 10 = 20 Punkte)

Bekanntlich wird durch

$$\langle f, g \rangle := \int_{-1}^{1} f(x) \overline{g(x)} dx$$

ein Skalarprodukt auf $\mathbb{C}[X]$ definiert.

Das n-te Legendre-Polynom P_n wird durch

- P_n hat Grad n;
- $P_n(1) = 1$;
- $\bullet \ \ {\rm alle \ Legendre-Polynome \ stehen \ paarweise \ orthogonal \ aufeinander};$

definiert

- (i) Zeigen Sie, dass die Legendre-Polynome dadurch wohldefiniert sind.
- (ii) Bestimmen Sie P_0 bis P_4 .
- (iii) Zeigen Sie, dass die Legendre-Polynome einer linearen Rekursion der Tiefe 2 genügen, d.h. finden Sie für jedes n>1 Polynome $S_n,T_n\in\mathbb{C}[X]$ mit

$$P_n = S_n P_{n-1} + T_n P_{n-2} \,.$$