UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK Johannes Lengler

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Wintersemester 2009/2010

Blatt 4

Aufgabe 16

(3+5+2=10 Punkte)

Benutzen Sie Satz 2.18 zur Beantwortung der folgenden Fragen:

- (a) Sind die Vektoren $\begin{pmatrix} -3 \\ 0 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ linear unabhängig?
- (b) Für welche Zahlen $x \in \mathbb{R}$ ist die Matrix

$$A(x) = \begin{pmatrix} x - 1 & -1 & x + 1 \\ -1 & 1 & -2 \\ 2 & x & 4 \end{pmatrix}$$

invertierbar?

(c) Was ist die Determinante von

$$B = \left(\begin{array}{rrr} 1 & 1 & 1\\ 10 & 100 & 1000\\ 11 & 101 & 1001 \end{array}\right)?$$

Aufgabe 17

(10 Punkte)

Berechnen Sie mit Hilfe des Gauß-Algorithmus die Determinante von

$$\begin{pmatrix} 1 & -1 & 1 & 2 & -5 \\ -1 & -3 & 2 & -4 & 4 \\ -1 & 3 & -1 & 1 & 0 \\ -3 & -1 & 5 & -1 & -5 \\ -5 & 3 & 1 & -1 & -1 \end{pmatrix}.$$

Aufgabe 18

- (a) Geben Sie eine 2×2 -Matrix A an, deren zugehörige lineare Abbildung $f_A : \mathbb{R}^2 \to \mathbb{R}^2$ einer Drehung um 60° (gegen den Uhrzeigersinn) entspricht. (Mit anderen Worten: Ist $x \in \mathbb{R}^2$ ein Vektor, so soll $A \cdot x$ der um 60° gedrehte Vektor sein.)
- (b) Berechnen Sie die inverse Matrix A^{-1} . Wie wirkt die dazu gehörige lineare Abbildung $f_{(A^{-1})}$ auf einen Vektor $x \in \mathbb{R}^2$?
- (c) Wie wirkt die Matrix $A^6 = A \cdot A \cdot A \cdot A \cdot A \cdot A$ auf einen Vektor $x \in \mathbb{R}^2$? Bestimmen Sie A^6 , ohne zu rechnen.
- (d) Geben Sie weiterhin eine 2×2 -Matrix B an, deren zugehörige lineare Abbildung $f_B : \mathbb{R}^2 \to \mathbb{R}^2$ einem Vektor $x \in \mathbb{R}^2$ den an der x_1 -Achse gespiegelten Vektor zuordnet.
- (e) Gesucht ist nun schließlich eine 2×2 -Matrix C, deren zugehörige lineare Abbildung einem Vektor $x \in \mathbb{R}^2$ den Vektor zuordnet, den man erhält, wenn man x zuerst um 60° gegen den Uhrzeigersinn dreht und dann an der x_1 -Achse spiegelt. Berechnen Sie C mithilfe von A und B.

Aufgabe 19

(2+3+5=10 Punkte)

Geben Sie die folgenden komplexen Zahlen in der Form a+bi mit $a,b\in\mathbb{R}$ an.

(a)
$$(2+4i)+(1-2i)$$
, $(\frac{1}{2}-\frac{3}{5}i)-(-1+i)$, $5-(3i-(2+2i))$

(b)
$$(2-3i)\cdot(1+2i)$$
, $i\cdot i\cdot i\cdot i$, $(\frac{1}{3}+\frac{2}{3}i)\cdot(1-i-(4+2i))$

(c) $\frac{1+2i}{3-4i}$, $\frac{5-i}{2+i}$, $\frac{1}{i}$.

Aufgabe 20

(5+5=10 Punkte)

(a) Geben Sie die Matrix A an, die zu folgender lineare Abbildung $f_A: \mathbb{R}^3 \to \mathbb{R}^3$ gehört:

$$f_A\left(\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right)\right) := \left(\begin{array}{c} 2x_1 - x_3\\ x_2 + x_3\\ x_1 + x_2 \end{array}\right).$$

Ist die Abbildung f_A umkehrbar? Hat die Gleichung $f_A(x) = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ eine Lösung, und wenn ja, wie viele? (Sie brauchen die Lösung(en) nicht explizit zu berechnen.)

(b) Sei $B \in M(m \times n)$ eine Matrix und f_B die dazugehörige lineare Abbildung. Sei $b \in \mathbb{R}^m$ gegeben, und sei $x \in \mathbb{R}^n$ eine Lösung der Gleichung $f_B(x) = b$. Zeigen Sie:

Ist $x' \in \mathbb{R}^n$ eine Lösung der homogenen Gleichung $f_B(x) = 0$, so ist x + x' ebenfalls eine Lösung der Gleichung $f_B(x) = b$.

Nun sei B außerdem quadratisch (also m=n) mit $\det(B)=0$. Was können Sie über die Zahl der Lösungen der Gleichung $f_B(x)=b$ sagen?