Universität des Saarlandes

Fachrichtung 6.1, Mathematik

Prof. Dr. Ernst-Ulrich Gekeler

Dipl.-Math. Dominik Faas

Testat 3 vom 03.06.2008 zur MfN II

Name, Vorname:

Matrikelnummer:

Unter den folgenden Aussagen sind einige richtig und einige falsch. Kreuzen Sie die richtigen an!

Aussage 1. Es sei D eine offene Teilmenge von \mathbb{R}^n und $\underline{f}=\begin{pmatrix}f_1\\\vdots\\f_m\end{pmatrix}:D\to\mathbb{R}^m$ sei stetig partiell differenzierbar.

a) Die Jacobi-Matrix $J_f\left(\underline{x}^{(0)}\right)$ an der Stelle $\underline{x}^{(0)}\in D$ ist definiert durch

$$\left(\frac{\partial f_j}{\partial x_i} \left(\underline{x}^{(0)}\right)\right)_{1 \le i \le n, 1 \le j \le m} \in \mathbb{R}^{n \times m}.$$

- b) Ist m=n, so ist $J_{\underline{f}}\left(\underline{x}^{(0)}\right)$ stets symmetrisch.
- c) Ist m=1, so zeigt der Vektor $\left(J_{\underline{f}}\left(\underline{x}^{(0)}\right)\right)^t$ stets in Richtung der größten Änderung von \underline{f} im Punkt $x^{(0)}$.

1a)	1b)	1c)
		X

Aussage 2. Es sei D eine offene Teilmenge von $\mathbb{R}^3,\ f:D\to\mathbb{R},\ \underline{g}:D\to\mathbb{R}^3$ und $\underline{h}:D\to\mathbb{R}^3$ seien zweimal stetig partiell differenzierbar. Es gelten

- a) div $(\operatorname{grad} f) = 0$.
- b) rot $(\operatorname{grad} f) = \underline{0}$.
- c) $(\operatorname{rot} g) \times (\operatorname{rot} \underline{h}) = \operatorname{rot} (g \times \underline{h}).$

2a)	2b)	2c)
	X	

Aussage 3. Es seien D und D' offene Teilmengen von \mathbb{R}^n , $\underline{f}:D\to D'$ und $\underline{g}:D'\to D$ seien stetig partiell differenzierbar.

- a) Ist \underline{g} invers zu \underline{f} , so ist $J_{\underline{f}}\left(\underline{x}^{(0)}\right) \in \mathbb{R}^{n \times n}$ für jedes $\underline{x}^{(0)} \in D$ invertierbar.
- b) Ist $J_{\underline{f}}\left(\underline{x}^{(0)}\right)$ für jedes $\underline{x}^{(0)}\in D$ invertierbar, so ist \underline{f} invertierbar.
- c) Ist $\overline{\text{für ein }}\underline{x}^{(0)} \in D$ die Matrix $J_{\underline{f}}\left(\underline{x}^{(0)}\right)$ invertierbar, so ist \underline{f} in einer Umgebung von $\underline{x}^{(0)}$ invertierbar.

3a)	3b)	3c)
X		X

Aussage 4. Es sei D offen in \mathbb{R}^n und $F:D\to\mathbb{R}$ stetig partiell differenzierbar.

- a) Die Gleichung $F(x_1, \ldots, x_n) = 0$ kann immer nach x_n aufgelöst werden, d.h. es existiert eine Funktion g auf einem geeigneten Definitionsbereich, so dass $F(x_1, \ldots, x_n) = 0$ äquivalent ist zu $x_n = g(x_1, \ldots, x_{n-1})$.
- b) Die Aussage aus a) gilt lokal, d.h. zu gegebenem $\underline{x}^{(0)} = \left(x_1^{(0)}, \dots, x_n^{(0)}\right)$ aus D gibt es eine solche Funktion g, die in einer Umgebung von $\left(x_1^{(0)}, \dots, x_{n-1}^{(0)}\right)$ definiert ist.
- c) Die Aussage aus a) gilt lokal in einer Umgebung von $\underline{x}^{(0)}$, wenn $\frac{\partial F'}{\partial x_n} (\underline{x}^{(0)}) \neq 0$ ist.

4a)	4b)	4c)
		X