Universität des Saarlandes Fachrichtung 6.1, Mathematik Prof. Dr. Ernst-Ulrich Gekeler Anne Wald, M.Sc.

Übung 11 zur Mathematik für Naturwissenschaftler II im SS 2012

Aufgabe 1 (1+3+3=7 Punkte)Es sei

$$\underline{p}: (0,1) \times (0,2\pi) \to \mathbb{R}^3, \begin{pmatrix} r \\ \varphi \end{pmatrix} \mapsto \begin{pmatrix} r\cos(\varphi) \\ r\sin(\varphi) \\ 1 - \sqrt{1 - r^2} \end{pmatrix}.$$

- a) Beschreiben Sie die Bildmenge von p.
- b) Bestimmen Sie die Polarkoordinaten $\begin{pmatrix} r \\ \varphi \end{pmatrix}$ zu

$$\underline{P}^{(0)} = \frac{1}{2} \begin{pmatrix} \sqrt{3}/2 \\ 3/2 \\ 1 \end{pmatrix},$$

d.h. finden Sie $\underline{x}^{(0)}$ aus $(0,1) \times (0,2\pi)$ mit $p(\underline{x}^{(0)}) = \underline{P}^{(0)}$.

c) Berechnen Sie die Richtungsableitung von \overline{p} in $\underline{x}^{(0)}$ in der Richtung

$$\underline{v}_1 = \begin{pmatrix} 1/2 \\ -1 \end{pmatrix},$$

d.h. die Richtungsableitungen der drei Komponentenfunktionen von p.

Aufgabe 2 (3+3=6 Punkte)

Es sei $U \subset \mathbb{R}^n$ offen, $f, g : U \to \mathbb{R}$ sowie $\underline{f}, \underline{g} : U \to \mathbb{R}^m$ in $C^1(U)$.

a) Begründen Sie die Produktregel

$$D(f \cdot g) = g \cdot D(f) + f \cdot D(g)$$

für die vollständigen Ableitungen D(f), D(g) und $D(f \cdot g)$.

b) Finden Sie eine analoge Produktregel für die skalarwertige Funktion

$$h = \langle \underline{f}, \underline{g} \rangle.$$

Aufgabe 3 (1+1+2+3=7 Punkte)

Eine (punktförmige) Masse m werde am Ort $\underline{x}^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 25 \end{pmatrix}$ so geworfen, dass die Masse zum Zeitpunkt t = 0 die Geschwindigkeit $\underline{v}^{(0)} = \begin{pmatrix} 20 \\ 0 \\ 20 \end{pmatrix}$ besitzt. Durch die Gravitation wird die

Masse konstant in negativer z-Richtung beschleunigt. Die Beschleunigung sei $\underline{a} = \begin{pmatrix} 0 \\ 0 \\ -10 \end{pmatrix}$.

- a) In welcher Ebene bewegt sich die Masse?
- b) Finden Sie eine Parametrisierung des Ortes x nach der Zeit t.
- c) Bestimmen Sie die z-Komponente in Abhängigkeit von der x-Komponente. Welche Form besitzt die Kurve, auf der sich die Masse bewegt?
- d) Wann trifft die Masse auf dem Boden auf? Wie lang ist der Weg im \mathbb{R}^3 , den die Masse bis zu ihrem Auftreffen auf dem Boden zurückgelegt hat?

Abgabe am 05.07.2012 in die Briefkästen in E2 5