Universität des Saarlandes Fachrichtung 6.1, Mathematik Prof. Dr. Ernst-Ulrich Gekeler Anne Wald, M.Sc.

Übung 6 zur Mathematik für Naturwissenschaftler II im SS 2012

Aufgabe 1 (2+3+2+3=10 Punkte) Gegeben sei die Geradenschar

$$g_t = \left\{ \begin{pmatrix} 3\\2\\1 \end{pmatrix} + r \cdot \begin{pmatrix} 0\\2\\t \end{pmatrix}, r \in \mathbb{R} \right\}, \quad t \in \mathbb{R},$$

sowie die Ebenen

$$E_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 2x - 2y + z = 6 \right\} \quad \text{und} \quad E_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + 2y - 4z = 0 \right\}.$$

- a) Geben Sie die Ebene E_1 in der Form $E_1 = \{\underline{a} + r \cdot \underline{u} + s \cdot \underline{v} : r, s \in \mathbb{R}\}$ an.
- b) Bestimmen Sie die Schnittmenge von E_1 und E_2 .
- c) Bestimmen Sie t so, dass die Gerade g_t parallel zur Ebene E_2 verläuft.
- d) Welche Punkte der Geraden

$$g_1 = \left\{ \begin{pmatrix} 3\\2\\1 \end{pmatrix} + r \cdot \begin{pmatrix} 0\\2\\1 \end{pmatrix}, \ r \in \mathbb{R} \right\}$$

haben von E_1 den Abstand 2?

Aufgabe 2 (3+4+3=10 Punkte)

Es sei A der dreidimensionale affine Unterraum (Hyperebene) von Vektoren $\underline{v} = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$ mit

$$x + y - z + w = 4.$$

- a) Finden Sie einen Punkt \underline{p} auf A und einen Normalenvektor \underline{N} zu A und schreiben Sie A in der Form $\{\underline{v} \in \mathbb{R}^4 : \langle \underline{N}, \underline{v} p \rangle = 0\}.$
- b) Beschreiben Sie A durch $\underline{p} + U$ mit einem dreidimensionalen Unterraum U von \mathbb{R}^4 , d.h. finden Sie eine Basis von U und schreiben Sie A in der Form $\{\underline{p} + \alpha \underline{u}^{(1)} + \beta \underline{u}^{(2)} + \gamma \underline{u}^{(3)} : \alpha, \beta, \gamma \in \mathbb{R}\}$ mit geeigneten Vektoren $\underline{u}^{(1)}, \underline{u}^{(2)}, \underline{u}^{(3)} \in \mathbb{R}^4$.
- c) Beschreiben Sie den Abstand $d(\underline{y}, A)$ des Punktes $\underline{y} = \begin{pmatrix} 5 \\ 1 \\ 2 \\ -2 \end{pmatrix}$ zu A.

Abgabe am 31.05.2012 vor der Vorlesung in die Briefkästen in E2 5