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Abstract

In this paper, I will introduce a link between the volume of a finite
abelian p-group in the Cohen-Lenstra measure and partitions of a certain
type. These partitions will be classified by the output of an algorithm.
Furthermore, I will derive a formula (7.2) for the probability of a p-group
to have a specific exponent.

1 Introduction

In [2], Cohen and Lenstra introduced a measure on finite abelian p-groups that
seems to describe how those groups behave if they are “randomly” generated.
This seems to be the case for some important examples. E.g., take for each
positive, squarefree n the field Q(

√
−n). This field has a (finite abelian) class

group over Q. We consider the p-part of this group for some prime p 6= 2. In
this way, we get a sequence of finite abelian p-groups.
A lot of effort has been put into investigating this sequence. It is conjectured
(and all computational tests give strong evidence) that it behaves precisely like
a randomly generated sequence (w.r.t the Cohen Lenstra measure). If this could
be proven, the implications would be overwhelming. For example, the fraction
of imaginary quadratic fields with cyclic class group (neglecting the even part,
see [2]) would be 97.75...%.
Even more interesting is the case of realquadratic number fields. It is not known
whether there are infinitely many such fields with unique prime element fac-
torization. However, the Cohen-Lenstra conjectures predicts that 75.44...% of
those groups have this property. (The conjectured distribution is not exactly
the Cohen-Lenstra distribution, but can be derived from it, see [2] for details.)
There are similar conjectures for other sequences of finite abelian p-groups. But
at the moment, no promising approach to proving such conjectures is known.
However, there is a hint that comes out of the measure itself. The total volume
of the space of all finite abelian p-groups is (non-normalized; see below for
definitions)
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∑
G finite

abelian p-group

volume({G}) =
∑
n∈N

∑
n is a par-
tition of n

qn, (1)

with q = p−1.
On the left hand side (as we will see) each summand is a power series with
positive coefficients. On the right hand side we have a sum of monomials. So
it is natural to suppose that not only the sums are equal, but rather each term
on the left hand side corresponds to a selection of terms on the right hand side,
in some natural way. In other words, there should be a link between finite
abelian p-groups and partitions. (Beyond the obvious one stemming from the
elementary divisor theorem.)
This paper presents such a link, alongside giving a new proof of formula (1).
One hope is that this connection might help to tackle the conjectures mentioned
above. Instead of finding a link between fields Q(

√
−n) and some mysterious

formulas, we only need to find a link between fields and concrete combinatorial
objects (namely partitions), which might be easier.
The connection established in this paper also allows to immediately derive a
new theorem: Namely, an explicit formula (Theorem 7.1) for the probability of
a p-group to have a specific exponent, which is not obvious from the standard
formulas concerning the Cohen-Lenstra measure.

2 Preliminaries and Notation

In this paper, I will use the following facts without proof.

• For any prime p, finite abelian p-groups can be indexed by partitions
(up to isomorphism, i.e., groups which are isomorphic are treated as the
same group). E.g. the group Z/pZ×Z/pZ×Z/p4Z gets identified with
(1, 1, 4). Throughout this article, all groups are finite abelian p-groups.
For simplicity, I will just refer to those as “p-groups”, although this is
formally incorrect.

• Partitions can be visualized via Young tableaux, in which each row refers
to one term. In this paper, the longest row of a Young tableau is at the
bottom, e.g.

,
which corresponds to the partition (1, 1, 5). The total number of boxes
corresponds to the number that is partitioned, in the example 7 = 1+1+5.

• The set of all p-groups can be endowed with a probability measure such
that the volume of the one-element set {G} is given by η∞(p) 1

|Aut(G)| (cf.
Cohen and Lenstra’s original work [2], or [3]).
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Here, η∞(p) :=
∏∞

i=1(1− p−i) is a constant scaling factor.
I will refer to this measure as “Cohen-Lenstra measure”.

• If

G =
k∏

i=1

(Z/peiZ)ri , where 0 < e1 < e2 < . . . < ek,

then

|Aut(G)| =

(
k∏

i=1

(
ri∏

s=1

(1− p−s)

)) ∏
1≤i,j≤k

p−min(ei,ej)rirj

 .

The weight of G is the formal power series

w(G) :=

(
k∏

i=1

(
ri∏

s=1

(1− qs)−1

)) ∏
1≤i,j≤k

qmin(ei,ej)rirj

 .

which, by plugging in q := p−1, yields |Aut(G)|−1. This agrees with the nota-
tion in the Cohen-Lenstra paper [2], except that Cohen and Lenstra work with
evaluated series instead of formal series.
Throughout the article, I will use the following notation:

• N = {0, 1, . . .}.

• P := Set of all partitions. (Partitions will usually be increasing in this
paper, e.g. (1, 1, 3, 4).)

• Partitions will appear in several distinct roles. In particular, as mentioned
above, p-groups can be identified with partitions. If partitions are used
for indexing p-groups, I will denote the set by PG, although as a set it is
identical with P.
If I use placeholders for partitions, I will usually flag them with an under-
score, e.g. n = (1, 1, 11).

3 The statement

Cohen and Lenstra have shown ([2]) that

∑
G

w(G) =
∞∏

i=1

(1− qi)−1 =
∑
n∈N

p(n)qn =
∑
n∈N

∑
n is a par-
tition of n

qn,

where p(n) is the number of partitions of n. (As usual, p(0) = 1.)
In the introduction, we claimed that the right hand sum should decompose into
portions that correspond to the power series on the left hand side. Of course,
the existence of some arbitrary decomposition of this kind is trivial, but we want
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furthermore that each portion should reflect in a “natural” way the associated
group.
The main theorem of this paper will give such a decomposition. I will define
an (easy to compute) surjective map Λ that assigns to each partition a p-group,
hence decomposes the set of all partitions into a number of subsets labelled by
p-groups such that each set has exactly the “correct” size.
Formally speaking, I define a map Λ : P → PG with the following property:

3.1 Theorem. For a finite p-group G, the mapping Λ defined in sections 4 and
5 can be used to compute w(G) via:

w(G) =
∑
n≥0

aG(n)qn,

where
aG(n) =

∣∣{Λ−1(G)
}
∩ {n ∈ P| n is a partition of n ∈ N}

∣∣ (2)

is the number of partitions of n that are mapped onto G.

Hence, Λ has the properties announced in the introduction.
A proof of the theorem will follow in section 6.
Beforehand of course, I have to define the mapping Λ. This will be done in two
ways: via Young tableaux and numerically. The next two chapters are devoted
to this purpose.
I want to mention that instead of describing Λ directly, there is also another,
more intrinsic way indicated by the following commutative diagram.

P

,

Pbase

π

? ∼=- PG

Λ
-

where Pbase is a subset of P.
From a theoretical point of view, it may be more appropriate to work with
π instead of Λ since π has nicer properties. In particular, π is a projection
(π2 = π). However, for computational applications, one needs the composite
map Λ. In this paper I will usually work directly with Λ. Details about Pbase,
π and the bijection ι : PG

∼=←→Pbase can be found in section 6.

4 Definition of Λ (via Young tableaux)

Let us turn to the definition of the mapping Λ.
The definition in this section is probably harder to read than the one in the
next section, but it is closer to the proof of the main theorem. That is why I
decided to include this version also. In particular, the example 4.5 will indicate
where the object Pbase and the numbers ai from the proof come into play.
First I introduce a new (non-standard) notation:
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4.1 Notation. • In the Young tableau, we denote by (i, j) ∈ Z×Z the box
in the i-th row (counted from the bottom) and the j-th column (counted
from the left).

So in the diagram below, the (2, 3)-box is marked:

×

• Let (i, j) ∈ Z × Z, and let λ ∈ Z. The λ-successor sλ(i, j) of (i, j) is the
point (i + 2, j − λ) ∈ Z×Z. For any M ⊂ Z×Z, let sλ(M) be the image
of M under sλ.

Now Λ can be defined by the following algorithm:

4.2 Algorithm. Let n ∈ P.

1. Let M1 ⊂ N×N be the Young tableau of n. Put k := 1.

2. Let Qk := {(i, j) ∈ Z×Z| j ≥ 1, i ≥ 2k − 1}.
Find λk ∈ Z minimal s.t. sλk

(Mk) ∩Qk ⊂Mk.

3. Find the maximum ik ∈ Z s.t. there is a j ∈ Z with:

• (ik, j) ∈Mk and

• sλk−1(ik, j) ∈ Qk \Mk.

4. Let Ck := {(i, j)| i ≤ ik} \Mk.
Put Qk+1 := {(i, j) ∈ Z×Z| j ≥ 1, i ≥ 2k + 1}.
Put Mk+1 := (Mk \ sλk

(Ck)) ∩Qk+1.
Increase k by 1.

5. Repeat step 2-4 until Mk ∩Qk is empty.

If the algorithm terminates after k loops, it returns integers λ1, . . . , λk.
Put Λ(n) := (λk, λk−1, . . . , λ1) ∈ PG.

4.3 Remark. • The algorithm always terminates, so Λ is well-defined.

• The λi are sorted: λ1 ≥ . . . ≥ λk. Note that we have reversed the order
in Λ(n) in order to get a partition.

If one wants to write down a rigorous proof, then the following facts are helpful.
This remark may be ignored if the reader is willing to believe that the algorithm
works as claimed.
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4.4 Remark. In the k-th loop, define

ak := |(Mk)|−|(Mk+1)|−|{(i, j) ∈Mk| i = 2k + 1}|−|{(i, j) ∈Mk+1| i = 2k + 3}| .

The ak quantify the difference between Mk and Mk+1, where the two latter
terms compensate (roughly speaking) for the two lowest lines, which are cut off
from Mk+1.
Define further jk,max := max{j| ∃i s.t. (i, j) ∈ Mk}. Then in each step after

the first we have the invariant n = |(Mk+1)|+ 2kjk,max +
(∑k

i=1 λi(2i− 1)
)

+∑k
i=1 ai.

In particular, after termination the first two terms will vanish, so we get n =(∑k
i=1 λi(2i− 1)

)
+
∑k

i=1 ai.

4.5 Example. Let us consider the partition n = (1, 1, 2, 3, 4, 4, 4, 6, 8, 8, 9, 9, 9, 11, 11).
Its Young tableau is

In each round, I will give a partition nk that reflects Mk in the following sense:
If you draw the Young tableau of nk and intersect it with Qk (i.e., you forget
the 2k − 2 lowest lines), then you get Mk.
In order to save some space, I have only drawn those parts of the Young tableaux
that really count, i.e., I have drawn Mk and not the whole of nk.
At the beginning, Qk is the whole first quadrant, so we consider the whole
tableau. We find that λ1 = 4 and i1 = 7, because the box (7, 8) is in M1, but
s4−1 = s3 maps (7, 8) to (9, 5) /∈M1.
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15
14
13
12
11
10
9
8
7 ×
6
5
4
3
2
1

The boxes that are marked in the next diagram will be removed according to
step 4 of the algorithm. Note that also the two lowest lines will be removed, so
it is not really necessary to mark any box in line 2. However, in this way the
number of marked boxes is exactly a1 (cf. remark 4.4). (In general, in the i-th
step the number of marked boxes will be ai.)
If the reader is not interested in the proof, he/she may ignore these data.

15
14
13
12
11
10
9
8 × ×
7 × × ×
6 × × ×
5 × × × ×
4 × ×
3 × ×
2 × × × ×
1

So we get the partition

n2 = (1, 1, 2, 3, 4, 4, 4, 4, 5, 5, 5, 7, 7, 7, 11).

Now we find that λ2 = 2 and i2 = 3, because the box (12, 3) is not mapped into
M2 by sλ2−1. Remember that, in order to find λ2 and i2, we must ignore line 1
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and 2, because they do not belong to Q2.
Again, we label the boxes which are going to be removed. And again, the reader
who is not interested in the proof may ignore line 3 and 4:

15
14
13
12 ×
11 × ×
10 × ×
9 ×
8 ×
7 × ×
6
5
4 × ×
3

We obtain
n3 = (1, 1, 2, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 11),

Now we look at M3 and find λ3 = 2 and i3 = 6:

15
14
13
12
11
10
9
8
7
6 × ×
5

n4 = (1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 7, 7, 11).

We get λ4 = 1, i4 = 15:
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15
14
13 ×
12 ×
11
10
9 ×
8 ×
7

n5 = (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 7, 7, 11)

Next, λ5 = 1, i5 = 15.

15 ×
14 ×
13
12
11 ×
10 ×
9

n6 = (0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11)

Finally, λ6 = 1, i6 = 13 and
15
14
13 ×
12 ×
11

n7 = (0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11)

M7 is empty, so the algorithm has terminated and yields:

Λ(n) = (λ6, λ5, λ4, λ3, λ2, λ1) = (1, 1, 1, 2, 2, 4) ∈ PG.

We identify this partition with the group Z/pZ × Z/pZ × Z/pZ × Z/p2Z ×
Z/p2Z×Z/p4Z.

5 Definition of Λ (numerical)

5.1 Algorithm (numerical). Let n = (n1, n2, . . . , nm) ∈ P. The algorithm
works as follows:
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1. We replace n by the sequence n = (n1, n2, . . . nm), where ni := ni − ni−2,
putting n0 := n−1 := 0.

We put k := 1 and n1 := n.

2. Let λk := maxl {nk
l }, and let ik := min{l| nk

l = λk}.

3. Remove the entries with indices ik − 1, ik and ik + 1 from nk and replace
them by the single new entry nk

ik−1 + nk
ik+1 − nk

ik
, thereby getting nk+1.

Increase k by 1.

(We might need to use some nk
l that is out of range at this point. In this

case, we may add a 0 on the left. The invariants given below guarantee
that this cannot happen on the right.)

4. Repeat step 2 and 3 until nk consists only of zeros.

The output of the algorithm is (λk, λk−1, λk−2, . . . , λ1) ∈ PG.

5.2 Remark. • In loop k, all values in the sequence are integers between
0 and λk−1. In particular, the λk are monotonically decreasing.

Furthermore, it is helpful to note that we have nk
i−1 + nk

i+1 ≥ nk
i for all i,

k.

These statements can be proved by simple induction.

• This form of the algorithm is much handier and should be used for com-
putations rather than the Young tableau version.

5.3 Example. Let n = (1, 1, 2, 3, 4, 4, 4, 6, 8, 8, 9, 9, 9, 11, 11).
I mark the places where something will happen in the next step by bold type.
We compute

n1 = n = (1, 1, 1, 2, 2, 1, 0,2,4,2, 1, 1, 0, 2, 2).

Obviously, λ1 = 4 and i1 = 9. We have to replace the part 2, 4, 2 by the single
entry 2 + 2− 4 = 0, getting:

n2 = (1, 1,1,2,2, 1, 0, 0, 1, 1, 0, 2, 2).

We see that λ2 = 2 and i2 = 4. We replace 1, 2, 2 by 1:

n3 = (1, 1, 1, 1, 0, 0, 1, 1,0,2,2)

λ3 = 2, i3 = 10, so we must replace 0, 2, 2 by 0:

n4 = (1,1, 1, 1, 0, 0, 1, 1, 0)

Now λ4 = 1 and i4 = 1. We fill up one 0 at the left and replace 0, 1, 1 by 0:

n5 = (0,1,1, 0, 0, 1, 1, 0)

λ5 = 1, i5 = 2 and we replace 0, 1, 1 by 0:

n6 = (0,0,1,1, 0)
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Finally, λ6 = 1, i6 = 3, and after replacing one last time, we get a sequence of
zeros:

n7 = (0, 0, 0),

so we are done.
The result is (λ6, λ5, λ4, λ3, λ2, λ1) = (1, 1, 1, 2, 2, 4) ∈ PG, which by our bijec-
tion corresponds to the group Z/pZ×Z/pZ×Z/pZ×Z/p2Z×Z/p2Z×Z/p4Z.

6 Proof of Theorem 3.1

The set Pbase ⊂ P will under Λ correspond one-to-one with the set PG of all
partitions. I will define it by constructing an (injective) section ι : PG → P,
i.e., Λ ◦ ι = idPG

. Then Pbase will be the image under this map.

6.1 Definition. (Pbase)
Let G be a (finite abelian) p-group, given by a partition n = (n1, n2, . . . , nk) ∈
PG, 0 < n1 ≤ n2 ≤ . . . ≤ nk. Then its corresponding element ι(n) ∈ Pbase is
defined as the partition

nbase := ι(n) := (n1, n1, n1 + n2, n1 + n2, n1 + n2 + n3, n1 + n2 + n3,

n1 + n2 + n3 + n4, . . . , n1 + n2 + . . . + nk),

where each term appears twice, except for the last one, which appears only once.
Pbase := ι(PG)

6.2 Example. The group Z/pZ × Z/p2Z × Z/p2Z × Z/p4Z with partition
n = (1, 2, 2, 4) corresponds to nbase = (1, 1, 3, 3, 5, 5, 9).
The correspondence can be visualized in the Young Tableau:

1︷︸︸︷
1→
1→ 2︷ ︸︸ ︷
3→
3→ 2︷ ︸︸ ︷
5→
5→ 4︷ ︸︸ ︷
9→

A brief look shows that a partition m = (m1,m2, . . . ,mk) belongs to Pbase iff
it satisfies the following conditions:

• k is odd.

• m1 = m2 < m3 = m4 < m5 = . . . = mk−1 < mk.

• 0 < m1 ≤ m3 −m1 ≤ m5 −m3 ≤ m7 −m5 ≤ . . . ≤ mk −mk−2.

In this case m is the image of the partition (m1,m3 −m1,m5 −m3, . . . ,mk −
mk−2) ∈ PG.
Now we can turn to the
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Proof of the main theorem (3.1).
In Remark 4.4, I introduced numbers ai, which were illustrated in the succeeding
example. Recall that if

G =
k∏

i=1

(Z/peiZ)ri , where 0 < e1 < e2 < . . . < ek,

then

w(G) =

(
k∏

i=1

(
ri∏

s=1

(1− qs)−1

)) ∏
1≤i,j≤k

qmin(ei,ej)rirj

 . (3)

Expanding a factor (1− qs)−1 yields 1 + qs + q2s + q3s + . . ..
What is the coefficient of qn if we multiply out the products? It equals the
number of tuples (bi,s), each bi,s in N, where i, s run between 1 and k, 1 and
ri, respectively, and such that∑

i,s

sbi,s +
∑
i,j

min(ei, ej)rirj = n. (4)

We denote by e ∈ PG the partition that is formed by the ei (counted with
multiplicities ri).
Now we compute λ̃ := ι(e) ∈ Pbase from e. (See 6.1 for the exact mapping). Let
λ̃ = (λ̃1, λ̃2, λ̃3, . . . , λ̃2k+1). One checks that

∑
i,j

min(ei, ej)rirj =
2k+1∑
i=1

λ̃i.

Thus equation (4) looks:

∑
i,s

sbi,s +
2k+1∑
i=1

λ̃i = n. (5)

The introduction of λ̃ and the preceding formula, though easy to verify, seem
rather poorly motivated. If the reader returns to Example 4.5, the “remainder”
n7 is a partition in Pbase, namely n7 = λ̃ (cf. diagram below). Since n consists
of these boxes and of the boxes that were removed (counted by the ai), the
connection to the term

∑2k+1
i=1 λ̃i in equation (5) becomes obvious.
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11
10
9
8
7
6
5
4
3
2
1

On the other hand, if we start with some partition of n, the algorithm yields
a sequence λk ≤ λk−1 ≤ . . . ≤ λ1. Furthermore, we get (ai), 1 ≤ i ≤ k (cf.
Remark 4.4). It is easy to see that if λi = λi+1, then ai ≥ ai+1. Hence, if we
have a sequence λ1 = λ2 = . . . = λr1 of r1 equal terms, we also get a monotone
sequence a1 ≥ a2 ≥ . . . ≥ ar1 . By defining b1,s := as − as−1 (a0 := 0), we get
numbers which satisfy

r1∑
s=1

sb1,s =
r1∑

i=1

ai.

In the same way, we can define bi,s for the other i.
Now we define λ̃ = (λ̃1, . . . , ˜λ2k+1) as the image ι(λ) of λ in Pbase. Then it is
immediate to check that

k∑
i=1

λi(2i− 1) =
2k+1∑
i=1

λ̃i.

We recall that

n =
k∑

i=1

ai +
k∑

i=1

λi(2i− 1)

=
∑
i,s

sbi,s +
2k+1∑
i=1

λ̃i,

which is exactly equation (5).
So we have seen that each partition n of n with Λ(n) = e ∈ PG corresponds
to a solution (bi,s)i,s of equation (4). On the other hand, given such a solution
(bi,s)i,s, we can compute the data λi and ai. But given these data, we can
reverse every single step of the algorithm, so we can recover the partition n.
Altogether, the terms in (3) contributing to qn are in bijection with the parti-
tions n of n with Λ(n) = e, which proves the claim.
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7 Some consequences

Theorem (3.1) enables us to compute the probability of a group to have a certain
exponent. To simplify notation, I use the p-logarithmic exponent, i.e., if a p-
group has exponent e, I mean that it is annihilated by pe.

7.1 Theorem. Let e ≥ 0 be fixed. Then we have∑
G is a p-group
of exponent ≤e

w(G) =
∏

j 6≡0,±(e+1)
mod 2e+3

(1− qj)−1.

(Note that j runs through all positive integers, not only through all residue
classes mod 2e + 3.)

Proof. Recall that, by the main theorem,

w(G) =
∑
n≥0

aG(n)qn,

where
aG(n) =

∣∣Λ−1(G) ∩ {n ∈ P| n is a partition of n ∈ N}
∣∣ .

Hence, ∑
G is a p-group
of exponent ≤e

w(G) =
∑
n≥0

∣∣∣∣{n ∈ P| n is a partition of n and
Λ(n) has exponent ≤ e

}∣∣∣∣ qn.

But if G is interpreted as a partition in PG, then the exponent is simply the
largest part. Given a partition n = (n1, . . . , nm) ∈ P, the largest part of Λ(n)
will be λ1, since the λi are sorted. On the other hand, it is easy to see that
λ1 = maxi (ni+2 − ni). So we know that∑
G is a p-group
of exponent ≤e

w(G) =
∑
n≥0

∣∣∣∣{n = (n1, . . . , nm) ∈ P| n is a partition of n and
ni+2 − ni ≤ e for all i

}∣∣∣∣ qn,

where again we put n0 = n−1 = 0. But the right hand side is a well-known
generating function, and its value is∏

j 6≡0,±(e+1)
mod 2e+3

(1− qj)−1

(cf. [1], Thm 7.5, k := i := e + 1), which proves the theorem.

7.2 Corollary. The probability (in the Cohen-Lenstra heuristic) that a p-group
has exponent ≤ e is ∏

j≡0,±(e+1)
mod 2e+3

(1− p−j).
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Proof. The heuristic tells us that the volume of the one-element set {G} is w(G)
η∞(p)

(here w(G) is interpreted as an evaluated, not a formal series), so the probability
of a p-group having exponent ≤ e is

1
η∞(p)

 ∑
G is a p-group
of exponent ≤e

w(G)

 =

∏
j≥1

(1− p−j)


 ∏

j 6≡0,±(e+1)
mod 2e+3

(1− p−j)−1


=

∏
j≡0,±(e+1)
mod 2e+3

(1− p−j).

To give a feeling for those probabilities, here is a table that lists the probability
for a finite abelian p-group to have p-exponent e.

e = 0 e = 1 e = 2 e = 3 e > 4
p = 2 28.879% 33.965% 18.521% 9.361% 9.374%
p = 3 56.013% 29.178% 9.871% 3.292% 1.646%
p = 5 76.033% 19.167% 3.840% 0.768% 0.192%
p = 7 83.680% 13.988% 1.999% 0.286% 0.048%
p = 11 90.083% 9.015% 0.820% 0.075% 0.007%

7.3 Remark. This corollary is a generalisation of [2, Example 5.3], where the
case e = 1 is treated. Also, similar formulas for the rank of a p-group are
known ([2, Thm. 6.1]). However, rank and exponent behave rather antipodal:
It is pretty straightforward to derive results about the rank from the original
Cohen-Lenstra approach, but the exponent gives very tough problems (except
for e = 1).
On the other hand, with the given partition-theoretic interpretation (Theorem
3.1), the exponent formula above is an almost trivial consequence, whereas it is
not clear at all what it means for a partition to be mapped under Λ to a group
of some given rank.
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