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Abstract
In the last decades, a method has gained ever-increasing influence which
treats deterministic objects as if they were random objects and studies them
with probability theoretic means. A major breakthrough for this method
came in 1984, when Henri Cohen and Hendrik W. Lenstra noticed that the
sequence of class groups of quadratic number fields behaves essentially like
a random sequence with respect to a certain probability distribution on the
space of all finite abelian groups.
Later on, it turned out that this distribution occurs also in many other con-
texts and plays the role of a “natural” distribution, regulating the structure
of finite abelian groups in all situations where no obvious structural obstacles
for a random-like behaviour exist.
This thesis is devoted to studying this “Cohen-Lenstra heuristic”.

I will

• explain and motivate its fundamental assumption, namely that the
larger the automorphism group of a group is, the less likely it should
appear.

• review the basic formulas that were worked out by the pioneers of this
topic.

• point out and study a deep connection between the Cohen-Lenstra
probability measure and partitions.

• list methods for studying the distribution that were obtained by various
research groups; also list formulas about interesting group theoretic
quantities from a probabilistic point of view.

• show the difference between the local (i.e., for p-groups) and the global
Cohen-Lenstra measure. The global case is considerably more diffi-
cult, due to convergence reasons. I give a solution for the fundamental
problem underlying the global case.

• give applications of the Cohen-Lenstra measure to various fields of
mathematics. My main focus will be on number theory, but I also
mention applications from other mathematical areas.



Contents

0 Introduction 3

1 Basic Theory 7
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Finite abelian groups and p-groups . . . . . . . . . . . . . . . 8

1.2.1 The size of the automorphism group . . . . . . . . . . 10
1.2.2 Counting homomorphisms . . . . . . . . . . . . . . . . 14

1.3 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 q-series identities . . . . . . . . . . . . . . . . . . . . . 18

2 The Local Cohen-Lenstra Heuristic 20
2.1 The Cohen-Lenstra heuristic for finite abelian p-groups . . . . 20
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Automorphisms as weights . . . . . . . . . . . . . . . . 25
2.2.2 Numerical support . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Modelling p-groups by generators and relations . . . . 27

2.3 Computing special values . . . . . . . . . . . . . . . . . . . . . 30

3 The Cohen-Lenstra Heuristic and Partitions 33
3.1 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Why partitions? — CL-maps . . . . . . . . . . . . . . . . . . 36
3.3 The existence of an order-preserving CL-map Λ . . . . . . . . 43

3.3.1 Definition of Λ (via Young diagrams) . . . . . . . . . . 43
3.3.2 Definition of Λ (numerical) . . . . . . . . . . . . . . . . 50
3.3.3 Proof of the CL-property . . . . . . . . . . . . . . . . . 55

3.4 Some consequences . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Uniqueness of Λ . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Automorphisms of the set of partitions . . . . . . . . . 69
3.5.2 Uniqueness modulo the canonical section . . . . . . . . 70

1



2 CONTENTS

4 Computing Interesting Values 89
4.1 Zeta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 The Cohen-Lenstra heuristic: Interpretation via conjugacy

classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Interpretation via Markov chains . . . . . . . . . . . . . . . . 94
4.4 Interpretation in the Young lattice . . . . . . . . . . . . . . . 96
4.5 The Kung-Stong cycle index . . . . . . . . . . . . . . . . . . . 97
4.6 A collection of results . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.1 Order . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6.2 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6.3 Rank and order combined . . . . . . . . . . . . . . . . 101
4.6.4 Exponent . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.5 u-probabilities . . . . . . . . . . . . . . . . . . . . . . . 102

5 Global Theory 104
5.1 Global contents . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Densities . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.2 Restricted countability . . . . . . . . . . . . . . . . . . 109
5.1.3 Global quantities . . . . . . . . . . . . . . . . . . . . . 110

5.2 Uniform properties . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 The existence of a global measure . . . . . . . . . . . . . . . . 116

5.3.1 First properties of the global measure . . . . . . . . . . 116
5.3.2 The global outer measure . . . . . . . . . . . . . . . . 119
5.3.3 The global measure . . . . . . . . . . . . . . . . . . . . 126

5.4 Modifications of the global measure . . . . . . . . . . . . . . . 132
5.5 Combination of both methods . . . . . . . . . . . . . . . . . . 134

6 Applications and Extensions 136
6.1 Number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.1 Imaginary quadratic number fields . . . . . . . . . . . 137
6.1.2 Arbitrary number fields . . . . . . . . . . . . . . . . . 138

6.2 A Fiat-Shamir protocol based on real quadratic number fields 145
6.3 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 Modules over group rings . . . . . . . . . . . . . . . . . . . . . 149

Index 152

Nomenclature 152

Bibliography 155



Chapter 0

Introduction

Motivation: Randomness in real numbers

It is easy to show that there is no equidistributed probability measure on
the real numbers or on the integers. Yet we have plenty of examples where
such numbers do occur in nature:

• Data about our environment: The lengths of rivers, the weights of
planets, . . . , are reals. Other data like the number of inhabitants of
cities are integers.

• Results from experiments in physics are typically reals (such as mass,
speed, . . . ). However, since some physical parameters like electric
charge are quantized, we also have integers occurring in physical con-
text.

Whenever we can measure a parameter and if we can do this without any
knowledge about the result, the parameter must be distributed with respect
to some probability measure. As said above, this measure cannot be an
equidistribution because such a distribution does not exist. But what is the
distribution then?
It turns out that it is impossible to assign a non-zero probability to a real
number or an integer in a way that fits the data. However, there are some sub-
sets of the reals and the integers that appear to have a well-defined measure.
The most prominent example was discovered by Simon Newcomb [New81]
in 1881 and rediscovered by Frank Benford ([Ben38]) in 1938. They came
to the conclusion that the set of all integers (or reals) with first digit 1 has
measure log10(2) (and not, as one might expect, 1

9
), and similarly for other

digits. This is known as “Benford’s law”.
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The exact value is already determined if we assume the distribution to be
scaling invariant, i.e., if we require the distribution to stay the same when
changing our units, e.g., from meter to inches.
The exciting feature of these prognoses is that they fit the real-world data
stunningly well. All the examples listed above have been investigated. In all
cases, the first digits are in perfect accordance with Benford’s law. It seems
that we have found a universal property of nature. The concurrence seems
to hold for all physical parameters that come along with a non-trivial unit
(e.g. meter, gram, newton), and for many others.
Note however that the law fails if the domain is not all of the integers but
only a finite interval. If you investigate a telephone book, you will find a
different pattern, since telephone numbers are bounded (e.g. from 100000 to
999999).

We see that although there is no total probability measure on R or Z,
it is possible to assign probabilities to certain subsets. These probabilities
obviously reflect a deep principle of nature, so we might speak of a “natural”
distribution. This thesis is dedicated to the study of a similar “natural”
distribution (the Cohen-Lenstra distribution) — not of numbers, but rather
of finite abelian groups.
The basic idea of this distribution is that each group must occur with a
probability that is inverse proportional to the size of its automorphism group.
I will introduce and motivate this distribution and point out the obstacles
that arise. (We will see that in fact it is not a probability distribution on
the whole power set of the set of all finite abelian groups — but as with
Benford’s law, we will find that we can make some sensible predictions if we
restrict ourselves to certain subsets.) Also, I will prove some properties of
the Cohen-Lenstra distribution.
In a seminar in our Zahlentheorie AG (number theory group), Prof. Ernst-
Ulrich Gekeler, Bernd Mehnert, and myself discovered a mysterious connec-
tion between the distribution and partitions of natural numbers. We conjec-
tured that there might be a link and we determined the nature of this link.
This was the starting point for the work on this thesis.

Structure of the thesis
The structure of the thesis is as follows: In chapter 1, I will fix some notation
and revise some common statements about finite abelian groups, and about
partitions. Also, I will prove some preparatory, group-theoretical lemmas. In
chapter 2, I will introduce the local Cohen-Lenstra heuristic and give several
reasons why the heuristic is natural.
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Chapter 3 and 4 are devoted to presenting tools in order to work with the
Cohen-Lenstra heuristic. These tools should help us

(i) to compute interesting values about the Cohen-Lenstra heuristic, and

(ii) to prove that some interesting sequences of groups really behave like
random groups with respect to this heuristic.

The method in chapter 3 relies on the connection between the Cohen-Lenstra
heuristic and partitions mentioned above, and is new. The methods in chap-
ter 4 are not my work, but most of them are unknown to number theorists.
This strange fact is due to the incident that the very Cohen-Lenstra heuris-
tic has been studied in a completely different context by group theorists
without anyone (neither group theorist nor number theorist) recognizing the
connection.
In chapter 5, I will develop a global Cohen-Lenstra theory. A naive approach
must fail because it will lead to non-converging power-series. So the global
setting is considerably harder than the local theories, and the problem of giv-
ing a sound global probabilistic interpretation to the Cohen-Lenstra heuristic
was unsolved so far. I will give a satisfactory answer by restricting to a (still
rich) class of measurable sets.
Finally, in chapter 6, I will give applications of the Cohen-Lenstra heuristic.
In particular, I will explain in detail the (mostly conjectural) behaviour of
class groups of number fields and function fields, which basically behave like
random sequences with respect to the Cohen-Lenstra measure, and I will
explain what can be proven. I will also give a “real-world” example where
these heuristics play a crucial role for the success or failure of a cryptographic
protocol. This chapter does not contain new work but rather tries to give
a thorough but tight overview over the state of the art (at least in number
theory).

My contribution
Here is a list of what I think are the four main contributions of this thesis:

(i) Connecting the Cohen-Lenstra heuristic with partitions. This includes
the notion of CL-maps (def. 3.2.1), in particular order-preserving CL-
maps (def. 3.2.7), the existence and explicit construction of such a map
(alg. 3.3.2 and 3.3.6, cor. 3.3.26), and the demonstration of its usage
for obtaining information about the Cohen-Lenstra probabilities (sect.
3.4).

(ii) Establishing a global Cohen-Lenstra theory. In particular, the defini-
tion of uniform properties (def. 5.2.2), and the proof that there exists
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a global probability space compatible with the local Cohen-Lenstra
probabilities (thm. 5.2.6), giving rise to a criterion when a sequence
behaves randomly with respect to the Cohen-Lenstra heuristic (def.
5.4.1); also the discussion of other approaches, both of other researchers
(sect. 5.1.1) and of my own (sect. 5.1.2).

(iii) Discovering the overlap between the number theorist and the group
theorist community (thm. 4.2.1) and transferring the group theorists’
results to the number theory setting. Although this is only a small
thing to do, its importance lies in the big impact it may have on both
communities since it is possible to transfer a whole arsenal of methods
from one side to the other (all of sections 4.3–4.5 and part of 4.6).

(iv) Giving a sound overview about the state of the art in the probability-
theoretical treatment of class groups of number fields and related ob-
jects (especially sect. 6.1 and 6.3).
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Chapter 1

Basic Theory

In this chapter, I will introduce notation and provide some important facts
about finite abelian groups and about partitions. Since they are common
knowledge I will not prove them except for some less common formulas con-
cerning the size of the automorphism group and the number of homomor-
phisms with certain properties.

1.1 Notation
Throughout the thesis, I will use the following standard notation
N := {0, 1, 2, . . .} the set of natural numbers, including 0.
N+ := {1, 2, . . .} the set of natural numbers without 0.
Z,Q,R,C the set of integers, rationals, reals, and complex numbers, respec-
tively.
P the set of all (positive) primes.
Z/n := Z/nZ := {0, . . . , n− 1} the set of residue classes modulo n.
Fq the finite field with q elements, q a power of some prime p.
Zp the ring of p-adic integers.
Qp the field of p-adic rationals.
G the set of all (isomorphism classes of) finite abelian groups.
Gp the set of all (isomorphism classes of) p-primary finite abelian groups, for
a prime p (def. 1.2.2).
P the set of all integer partitions (definition 1.3.1).
#M, |M | the cardinality of the set M .

7



8 1.2. FINITE ABELIAN GROUPS AND P -GROUPS

1.1.1 Definition. Let T be the set of all tuples of non-negative integers of
arbitrary size. Then T carries a natural partial ordering: Let t = (tj)1≤j≤k,
u = (uj)1≤j≤l ∈ T.
We say that t dominates u (t ≥ u) if for all i ≥ 1 we have

i∑
j=1

tj ≥
i∑

j=1

uj,

where tj, uj := 0 for j > k, l, respectively.
We say that t strictly dominates u if t dominates u and t 6= u.

1.2 Finite abelian groups and p-groups
I start with repeating some basic facts and fixing some notation about finite
abelian groups and p-groups. I expect that the reader is familiar with the
theorems in this section. If not so, they can be found in any introductory
book about groups, e.g. [Lan65]. However, please check our definition of the
p-adic exponent (definition 1.2.3).
Throughout the whole thesis, we will work only with finite abelian groups.
So whenever I talk about groups, I automatically mean finite abelian groups.
Moreover, we will consider groups only up to isomorphism. So when I use
phrases or formulas like “sum over all groups”, then I mean that the sum runs
over all isomorphism classes of finite abelian groups. Also, when I use the
formula “G1 = G2” for groups G1 and G2, I only mean that the groups are
isomorphic.

1.2.1 Definition. Let G be a finite abelian group. Then the order ord(G)
of G is the number of elements in G. The rank rk(G) of G is the minimal
number of elements generating G.
We denote the set of all (isomorphism classes of) finite abelian groups by G.

1.2.2 Definition. A group is called a p-group or a (p-)primary group (for
p ∈ P), if the order of each element is a power of p. Unless otherwise stated,
we assume all p-groups to be finite and abelian. We denote the set of all finite
abelian p-groups by Gp.

1.2.3 Definition. Let G be a finite abelian p-group. We define its p-adic ex-
ponent exp(G) = expp(G) to be the smallest n ∈ N+ such that pn annihilates
every element of G.
This definition deviates from the standard definition of the exponent. The
usual definition would define pn instead of n as the exponent. In particular,
this definition applies only to p-groups.
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The next theorems are versions or corollaries of the Elementary Divisor The-
orem:

1.2.4 Theorem. Every finite abelian group is a direct product of cyclic
groups.

1.2.5 Theorem. Every finite abelian group G is the product of p-primary
groups: G =

∏
p∈PGp. The groups Gp are uniquely determined by G and

they are called p-parts of G or p-primary parts of G.

1.2.6 Example. Z/12× Z/4× Z/18 = Z/4× Z/4× Z/2︸ ︷︷ ︸
2−primary part

× Z/9× Z/3︸ ︷︷ ︸
3−primary part

Recall that “=” means “isomorphic”.

1.2.7 Theorem. A finite abelian p-group G can be (up to isomorphism)
uniquely written in the form

k∏
i=1

(Z/pei)ri ,

where k ∈ N, ei, ri ∈ N+ for all i, and where e1 > e2 > . . . > ek.
We call this the standard form of a finite abelian p-group. .

1.2.8 Definition. Fix a prime p. Recall that Gp denotes the set of all finite
abelian p-groups.
We define GP to be the set of all ordered tuples e = (e1, . . . , en), n ∈ N,
e1 ≥ . . . ≥ en > 0 of positive integers, of arbitrary size n. By the preceding
theorem, we may identify Gp and GP and whenever we are in a local situation
(i.e., with one fixed prime p), we will regularly do so without any further
comment.
In particular, by 0 := () ∈ GP = Gp, we denote the trivial p-group.
We endow GP (and hence, Gp) with the partial ordering of domination (cf.
1.1.1). Note that if n dominates m then ord(n) ≥ ord(m).

1.2.9 Remark.

• The ordering of domination is not the most natural ordering one could
impose on the set of all p-groups. One could, for example, define G1

to be smaller than G2 if G1 is isomorphic to a subgroup of G2. But
the ordering we have chosen is finer (in the sense that more elements
are comparable – so if G1 is isomorphic to a subgroup of G2 then G2

also dominates G1, but not vice versa), and it will turn out to be more
helpful in some proofs, especially in chapter 3.
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However, the ordering does not play any role in the motivational part
of chapter 3. Particularly, it does not contribute to the definition of an
order-preserving CL-map, cf. 3.2.7. To put it bluntly, if you think that
the ordering is unnatural, that’s just fine. It is only needed for proofs,
and a reader not interested in the proofs may completely ignore it.

• Ordered tuples as in GP are known as partitions, and that is why the
index P is chosen. The set of all partitions will get a symbol of its own,
P . So P and GP denote the same set. However, partitions will occur in
a very different role and to a wide extent in chapter 3. Since there is a
considerable danger of confusing the different roles, I have introduced
a distinct notation for GP .
In the local theory (chapters 2 – 4), we deal only with a single prime p
and we need not distinguish between Gp and GP .

1.2.1 The size of the automorphism group

The Cohen-Lenstra heuristic makes extensive use of the size of the automor-
phism group Aut(G) of G. I give an elementary computation of this size.
First note that if we have a p1-group G1 and a p2-group G2, where p1 and
p2 are two distinct primes, then there are no non-trivial homomorphisms
G1 → G2. Indeed, every element of G1 must be mapped onto an element of
G2 of order a power of p1, and the only such element in G2 is the neutral
element. Consequently, we have a natural bijection

Aut(G1 ×G2) ∼= Aut(G1)× Aut(G2) (G1 a p1-group, G2 a p2-group).

Thus we must only compute |Aut(G)| for G a p-group, which is done with
the following theorem.

1.2.10 Theorem. Let G =
∏k

i=1(Z/pei)ri be a finite abelian p-group in
standard form, i.e., k ≥ 0, e1 > . . . > ek > 0, ri > 0. The size of the
automorphism group of G is

|Aut(G)| =

(
k∏
i=1

(
ri∏
s=1

(1− p−s)

))( ∏
1≤i,j≤k

pmin(ei,ej)rirj

)
.

The rest of this section is devoted to proving this theorem. We will first
translate automorphisms into certain matrices. Afterwards, we will be able
to count the automorphisms quite easily.

Let G =
∏k

i=1(Z/pei)ri , with notation as above. In this decomposition, we
may choose generating elements (ai,j)i=1,...,k,j=1,...,ri , where ai,j has order pei .
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In order to determine an automorphism φ of G, we may as well specify a
matrix M of the following form:

r1

r2

r3

...

rk

{
{
{

{



A1 B1,2 B1,3 · · · B1,k

C2,1 A2 B2,3 · · · B2,k

C3,1 C3,2 A3 · · · B3,k

...
...

... . . . ...

Ck,1 Ck,2 Ck,3 · · · Ak


,

where Ai is an ri × ri-square matrix, Bi,j is an ri × rj-matrix and Ci,j is an
ri × rj-matrix.
What entries do the submatrices have? First consider Ai. It must describe
a map from (Z/pei)ri into itself. So we need it to be a ri × ri-matrix with
entries in Z/pei .
Now turn to Bi,j, i < j. This submatrix must map Z/pej to Z/pei . Since
ej < ei, we must take the entries of Bi,j to be in pei−ejZ/pei , which is (as a
group) isomorphic to Z/pej .
Finally, Ci,j, i > j, must map Z/pej to Z/pei , where ei < ej. So we take the
entries of Ci,j to be elements of Z/pei .
So far, we have described all endomorphisms of G. However, we want φ to
be an automorphism, i.e., to be bijective. The following lemma shows that
this is the case if and only if the diagonal blocks are invertible.

1.2.11 Lemma. Let M be a matrix as above, representing the homomor-
phism φ : G→ G. Then the following statements are equivalent:

(i) φ is bijective.

(ii) Ai is invertible for all i = 1, . . . , k.

(iii) The reduction Ai of Ai mod p is invertible for all i = 1, . . . , k.

Proof. “(ii) ⇔ (iii)”: This is clear: A matrix is invertible if and only if its
determinant is invertible, which means in both cases that the determinant is
not divisible by p.
“(i) ⇔ (iii)”: M is a module over the local ring Zp with maximal ideal pZp
and residue field Fp. Then the endomorphism φ of G := G/pG is represented
by a matrix M with entries in Fp of the form
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M =



A1 0 0 · · · 0

∗ A2 0 · · · 0

∗ ∗ A3 · · · 0

...
...

... . . . ...

∗ ∗ ∗ · · · Ak


.

We see that φ is bijective if and only if all Ai are invertible. On the other
hand, by Nakayama’s lemma, φ is bijective if and only if φ is bijective, which
proves the lemma.

The preceding lemma specifies the matrices we need to count. In order to
arrange the calculation neatly, we first treat a helpful special case.

1.2.12 Lemma. Let H := Aut ((Z/pe)r). Then

|H| = pr
2e

r∏
s=1

(1− p−s).

Proof. Let us first do the case e = 1. So we count invertible r × r-matrices
with entries in Z/p. The first column may contain any non-zero vector, which
gives pr − 1 possibilities.
The second column may contain any vector v which does not lie in the span
of the first column vector. This rules out p vectors, leaving pr−p possibilities
for the second column.
In the same manner, the s-th column may contain any vector which is not
in the span of the first s− 1 column vectors, giving pr − ps−1 possibilities for
the s-th column. Altogether, we get

r∏
s=1

(pr − ps−1) = pr
2

r∏
s=1

(1− ps−1−r)

= pr
2

r∏
s=1

(1− p−s)

matrices.
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For the case e > 1, we may use the exact sequence

0→ H1 ↪→ H → Aut((Z/p)r)→ 1,

where H1 := {M ∈ H | M ≡ Id mod p} and where the second map is
reduction mod p.
Since the sequence is exact, we have

#H = #H1 ·#Aut((Z/p)r)

= pr
2(e−1) · pr2

r∏
s=1

(1− p−s)

= pr
2e

r∏
s=1

(1− p−s).

Now we are ready to compute the size of the automorphism group of a general
finite abelian group, thus to complete the proof of theorem 1.2.10:

Proof of Theorem 1.2.10. We must count all matrices M of the form

r1

r2

r3

...

rk

{
{
{

{



A1 B1,2 B1,3 · · · B1,k

C2,1 A2 B2,3 · · · B2,k

C3,1 C3,2 A3 · · · B3,k

...
...

... . . . ...

Ck,1 Ck,2 Ck,3 · · · Ak


,

where Ai is an invertible ri× ri-square matrix with entries in Z/pei , Bi,j is a
ri × rj-matrix with entries in Z/pej , and Ci,j is a ri × rj-matrix with entries
in Z/pei .
By the previous lemma, there are p(ri)

2ei
∏ri

s=1(1−p−s) possibilities to choose
Ai.
For Bi,j we have pejrirj possibilities, for Ci,j we have peirirj possibilities. Note
that in the first case we always have i < j (⇔ ei > ej), and in the latter case
we always have i > j (⇔ ei < ej). We may unify both formulas by saying
that we have pmin(ei,ej)rirj possibilities for each pair (i, j), i 6= j.
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Altogether, we get

|Aut(G)| =

(
k∏
i=1

(
p(ri)

2ei

ri∏
s=1

(1− p−s)

))( ∏
1≤i,j≤k,i6=j

pmin(ei,ej)rirj

)

=

(
k∏
i=1

(
ri∏
s=1

(1− p−s)

))( ∏
1≤i,j≤k

pmin(ei,ej)rirj

)
,

as required.

1.2.2 Counting homomorphisms

In this section I collect some facts about group homomorphisms that we will
need in later chapters.

1.2.13 Lemma. Let e′ > e ≥ 0. The number of r × r-matrices A over
R := Z/pe

′
Z which satisfy (peR)r 6⊆ im(A) is less than or equal to

pr
2e′+r2−re

r∏
s=1

(1− p−s).

Proof. Given such a matrix A, we may compose the homomorphism defined
by A with an automorphism ϕ of Z/pe that is the identity when restricted to
Z/pe−1 in order to achieve that (0, 0, . . . , 0, pe) /∈ im(ϕ ◦A). (More precisely,
take such an automorphism ϕ mod pe and extend it in an arbitrary way to
an automorphism mod pe′ .) Then

(im(ϕ ◦ A)) ⊆ Z/pe′ × Z/pe′ × . . .× Z/pe′︸ ︷︷ ︸
r−1

×pe+1Z/pe
′
.

We have pr(re′−e) possibilities for ϕ ◦ A.
How many possibilities do we have for ϕ? Obviously, choosing ϕ is the same
as choosing an automorphism of (Z/pZ)r, so by lemma 1.2.12 we get

pr
2

r∏
s=1

(1− p−s)

possible choices for ϕ.
The choice of ϕ may not be unique, but in any case we have at most
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pr(re
′−e)pr

2
r∏
s=1

(1− p−s) = pr
2e′+r2−re

r∏
s=1

(1− p−s)

matrices A with (peR)r 6⊆ im(A).

1.2.14 Lemma. Let G ∈ Gp. Let N := ord(G) and r := rk(G). Let n ≥ r.
Then

#{Γ ⊆ Znp | Znp/Γ ∼= G} =
Nn

|Aut(G)|

(
n∏

i=n−r+1

(1− p−i)

)
.

Here, Γ runs through all submodules of Znp .

Proof. The lemma is a consequence of [CL84, 3.1.], and I present a simplified
version of the proof given there.
Let sn be the number of surjective homomorphisms (of Zp-modules) from
Znp to G and let sn be the number of surjective homomorphisms (of Z/pZ-
modules) from (Z/pZ)n to G/pG.
By the lemma of Nakayama, a homomorphism ϕ ∈ HomZp(Znp , G) is surjec-
tive if and only if its reduction ϕ = ϕ mod p ∈ HomZ/pZ((Z/pZ)n, G/pG) is
surjective. Hence,

sn = sn ·#{ϕ ∈ HomZp(Z
n
p , G/pG) | ϕ = 0}.

For the latter factor, ϕ = 0 if and only if all basis elements of Znp are mapped
into pG, hence this factor equals

#{ϕ ∈ HomZp(Z
n
p , G/pG) | ϕ = 0} =

(
N

pr

)n
.

Now let us compute sn. This number equals the number of n× r-matrices of
rank r over Z/pZ. In a similar way as in the proofs before, we see that the
number of possibilities for the i-th column is successively pn−pi−1. Therefore,

sn =
r∏
i=1

(pn − pi−1).

Together, we get

sn =

(
r∏
i=1

(pn − pi−1)

)(
N

pr

)n
= Nn

n∏
i=n−r+1

(1− p−i).
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Finally, each surjective homomorphism ϕ from Znp to G defines a submodule
Γ := ker(ϕ) such that Znp/Γ ∼= G. Two homomorphisms ϕ1 and ϕ2 define
the same Γ if and only if there exists an automorphism σ of G such that
ϕ1 = σ ◦ ϕ2. Hence,

#{Γ ⊆ Znp | Znp/Γ ∼= G} =
sn

|Aut(G)|
,

which proves the assertion.

1.3 Partitions

1.3.1 Notation. A partition n is a tuple of non-increasing positive integers
n1 ≥ n2 ≥ . . . ≥ nk. We call n :=

∑k
i=1 ni the size of n and say that n is a

partition of n. We call k the rank of n.
We always mark both partitions and their entries with underscores. The
reason for this rather unusual convention is that we need to distinguish them
from derivation, which will appear in chapter 3.
Every partition of n corresponds to a way of writing n as a sum of positive
integers.
We call P the set of all partitions.
Recall that we denote by GP the set of all finite abelian p-groups. This no-
tation is not incidental – you may have noticed that GP is also the set of all
partitions. However, this is a rather unfortunate coincidence. We will talk
extensively about partitions (especially in chapter 3), and they have a com-
pletely different meaning than the partitions in GP . In particular, they come
along with different partial orderings (definition 1.3.6 and 1.2.8). I will try
to help you avoid confusion about the different roles of partitions: Whenever
I refer to partitions n ∈ GP , then I will use these partitions exclusively to
label groups. They are not subject to any algorithm whatsoever, nor are they
derived, transformed, converted, processed, kneaded or anything else. The
only exception is that two such partitions may be compared with respect to
domination (definition 1.2.8).

1.3.2 Definition. Let n = (n1, n2, . . . , nk) ∈ P. Its Young diagram is a
finite collection of boxes, arranged in left-justified rows, where the i-th row
(counted from the top) contains ni boxes.
We label the boxes by pairs (i, j), where i is the row (counted from the top)
and j is the column (counted from the left) of the box.
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1.3.3 Remark. Young diagrams are a very convenient tool for visualising
partitions. My convention is called “English notation”. Some authors will use
another convention by counting the rows from the bottom (called “French
notation”, cf. [Mac79, p.2]).
The Young diagram is sometimes also referred to as “Ferrer’s diagram”.

1.3.4 Example. The diagram below shows the Young diagram of the par-
tition (5, 3, 3, 1), with its (2, 3)-box marked:

×

1.3.5 Definition. For any n ∈ P, we call its conjugate partition the parti-
tion whose Young diagram is obtained by reflecting the Young diagram of n
along its main diagonal.
Equivalently, you can read off from the original diagram the columns instead
of the rows.
For example, the partition (5, 3, 3, 1) from the above example has conjugate
(4, 3, 3, 1, 1). Obviously, conjugation is an involution.

1.3.6 Definition. We endow P with a partial ordering. We write n ≤ m if
the Young diagram of n is contained in the Young diagram of m. Equiva-
lently, we have n ≤ m if and only if ni ≤ mi for all i ≥ 1, where we declare
undefined entries to be 0.
Please do not confuse this ordering with the ordering on GP (cf. definition
1.2.8)!

1.3.7 Lemma. The number p(n) of partitions of n satisfies p(n) ≤ Fn+1,
where Fk denotes the k-th Fibonacci number, given by F1 := F2 := 1 and
Fn+1 := Fn + Fn−1.
In particular, p(n) ∈ O(φn), where φ = 1+

√
5

2
is the golden ratio.

Proof. The proof is elementary and follows immediately from the facts p(1) =
1, p(2) = 2, and from the formula p(n+ 1) < p(n) + p(n− 1), which is a fun
exercise.
For details, see [AE04, 3.3].

1.3.8 Remark. In fact, much more precise statements are known. Asymp-
totically, p(n) grows as 1

4n
√

3
exp(π

√
2
3
n) ([And76, Thm. 6.3]). However, the

weaker form given above is sufficient for us.
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1.3.1 q-series identities

There are plenty of interesting power series identities for partitions. We will
need some of them. For a very nice and down-to-earth introduction you may
consult the book of Andrews and Eriksson [AE04]. A much more thorough
treatment may be found in [And76]. The book [Sta97] lies somewhere in the
middle, but contains less material than the other two books.
We want to study the function p(n) := #{partitions of n} and variants
thereof. The basic tool for this (and many other purposes) is to consider
the Fourier transform of this function, which in the combinatorial context is
called generating function:

F (q) =
∞∑
n=0

p(n)qn.

The Fourier transform turns convolutions into multiplications, and deriva-
tions (discrete in this case, i.e., expressions like a(n) − a(n − 1)) to mere
multiplications with powers of q, thereby simplifying many relations. The
series considered in this section have all a positive radius of convergence, so
the generating functions are all well-defined as holomorphic functions.
We only need the most basic formulas: Investigating F (q), we first get a
product formula

F (q) =
∞∏
i=1

(1− qi)−1,

which can immediately be checked by using the geometric series expansion
(1− qi)−1 = 1 + qi + q2i + . . . and multiplying out.
Analogously, we get a generating function for the number pa(n) of partitions
of n into at most a integers:

∞∑
n=0

pa(n)qn =
a∏
i=1

(1− qi)−1.

By conjugation, we see that pa(n) also equals the number of partitions into
integers that are all ≤ a.
We will need one more formula, which is not quite so obvious:

1.3.9 Proposition. Let pa,b(n) be the number of partitions of n into at most
a integers of size at most b. Then the generating function ψa,b(q) satisfies:

ψa,b(q) =
∞∑
n=0

pa,b(n)qn =

∏a+b
i=1 (1− qi)

(
∏a

i=1(1− qi))(
∏b

i=1(1− qi))
.
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Proof. [AE04, 7.2]

The preceding formula for the generating function of pa(n) may be considered
as formula for ψa,∞(q) = ψ∞,a(q).

In the same manner, a lot of other formulas can be proven, and that is only
the top of the iceberg. If the reader is not familiar with the topic, I can
only encourage you to have a look at the treatment in the books mentioned
above — not because it is needed in this thesis, but rather because it is such
a beautiful field of mathematics.



Chapter 2

The Local Cohen-Lenstra
Heuristic

In this chapter, I introduce the Cohen-Lenstra heuristic for finite abelian
p-groups. We will call this the “local” Cohen-Lenstra heuristic.

2.1 The Cohen-Lenstra heuristic for finite abe-
lian p-groups

Let me first give a probabilistic formulation of the Cohen-Lenstra heuristic:
Let p be a prime. Assume we have a “natural”, unbiased stochastic process
producing finite abelian p-groups. If we fix a finite abelian p-group G then
the probability that an output of the process is isomorphic to G is inversely
proportional to the size of its automorphism group Aut(G).
In this formulation, the heuristic is not a theorem but rather a meta-principle.
It first became popular by the famous paper [CL84] of Henri Cohen and
Hendrik W. Lenstra. In honor to this paper I call the principle “Cohen-
Lenstra heuristic” or “Cohen-Lenstra principle”. In their paper they claimed
(without proof, but with some evidence) that the sequence of p-parts of
class groups of imaginary quadratic number fields (which is a deterministic
sequence!) behaves essentially like a random sequence in the above sense, for
p 6= 2. We will see an exact formulation in section 6.1.1.
In the definition above, “unbiased” is not a precise term but rather means
that we do not allow obvious obstacles. For example, there might well be
stochastic processes that produce only cyclic groups. Or some that produce
only groups of rank at most 2 (as is the case for the point group of elliptic
curves over various finite fields). Such processes may well be modelled via

20
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a probabilistic approach (done so for the elliptic curves in [Gek06]), but the
probability distribution is clearly biased.
You might ask why we restrict ourselves to p-groups and do not allow arbi-
trary finite abelian groups. Indeed, in some way the Cohen-Lenstra heuristic
seems to apply to the general setting as well. However, if one tries to make
the heuristic precise, one runs into serious trouble. In fact, for general fi-
nite abelian groups, there is no probability distribution that would allow us to
perform a stochastic process generating random sequences of groups that is
compatible with the Cohen-Lenstra heuristic, as we can do when restricting
to p-groups. So we can not compare a sequence of groups with a random
sequence because there is no adequate stochastic process that could generate
such a random sequence. We will examine this problem and analyze possible
workarounds in much detail in chapter 6.
Returning to p-groups, let us make a more precise definition:

2.1.1 Definition. The Cohen-Lenstra weight w is the measure on the set
Gp of all finite abelian p-groups that is defined via

w({G}) =
1

|Aut(G)|
for all one-element sets {G} ⊂ Gp.

The (local) Cohen-Lenstra probability measure P is the probability measure
on Gp that is obtained by scaling w:

P (M) :=
w(M)

w(Gp)
for M ⊆ Gp

In slight abuse of notation I will write w(G) and P (G) instead of w({G})
and P ({G}) when we measure one-element sets {G} ⊂ Gp.
Note that w and P depend on the prime p. If we need to distinguish several
primes, I write wp and Pp instead of w and P , respectively.

We must check that P is well-defined, i.e., that the measure w is finite,
w(Gp) <∞. More precisely, we prove the following theorem:

2.1.2 Theorem. The Cohen-Lenstra weight of the set of all finite abelian
p-groups is

w(Gp) =
∞∏
i=1

(1− p−i)−1.

Proof. I give a nice combinatorial proof due to Hall [Hal38]. Cohen and
Lenstra use a completely different method for their proof (cf. [CL84]). Their
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approach is more complicated but has the advantage that it generalizes nat-
urally to finite modules over the rings of integers of number fields.
Let G ∼= λ = (λ1, . . . , λl) ∈ Gp (∼= GP), and let µ = (µ

1
, . . . , µ

m
) be its

conjugate partition. Then the factor Z/piZ occurs exactly µ
i
− µ

i+1
times

in G.
By theorem 1.2.10, we have

|Aut(G)| =

 m∏
i=1

µ
i
−µ

i+1∏
s=1

(1− p−s)

( ∏
1≤i,j≤m

p
min(i,j)(µ

i
−µ

i+1
)(µ

j
−µ

j+1
)

)

=

 m∏
i=1

µ
i
−µ

i+1∏
s=1

(1− p−s)

( ∏
1≤i≤m

pµ
2
i

)
,

where the latter equality is obtained by counting for each pair (i, j) how often
the term µ

i
µ
j
appears. It is easily seen that the number of occurrences sums

up to 0 if i 6= j, and to 1 otherwise.
When λ runs through Gp then µ runs through Gp as well. So we need to show
that

∞∑
n=0

anp
−n =

∞∑
n=0

∑
µ∈Gp

size(µ)=n

Aut(Gµ)−1,

where an is the number of partitions of size n and Gµ is the group associated
to µ. For the left hand side, we use the identity of power series

∞∑
n=0

anq
n =

∞∑
n=0

qn
n∏
i=1

(1− qi)−1.

Evidently we only need to show for any n ≥ 0 the q-series identity

qn
n∏
i=1

(1− qi)−1 =
∑
µ∈Gp

size(µ)=n

 m∏
i=1

µ
i
−µ

i+1∏
s=1

(1− qs)−1

( ∏
1≤i≤m

qµ
2
i

)
, (2.1)

and the result will follow by plugging q := p−1 and summing over all n.
We prove (2.1) by interpreting both sides as the generating functions of
partitions of a certain kind. For the left hand side, the coefficient of qN+n



CHAPTER 2. THE LOCAL COHEN-LENSTRA HEURISTIC 23

equals the number of partitions of N with greatest part at most n. To such
a partition ν, we define a partition µ from the right hand side as follows:
Consider the Young diagram D of ν. Let µ

1
be the largest integer such that

the point (µ
1
, µ

1
) belongs to D. Think of it as the lower right corner point

of the largest square fitting into D. Now we recursively define µ
i
to be the

largest integer such that (µ
1

+µ
2

+ . . .+µ
i
, µ

i
) belongs to D. Thus µ

i
is the

size of the largest square that fits below the preceeding squares within D.
Let M := N − µ2

1
− µ2

2
− . . .. Then there are exactly M blocks of D outside

the mentioned squares. We divide those blocks up as follows: Define Mi to
be the number of blocks of D at the right of the i-th square, i.e. number of
blocks (x, y) ∈ D such that

µ
1

+ µ
2

+ . . .+ µ
i−1

< x ≤ µ
1

+ µ
2

+ . . .+ µ
i

and µ
i
< y.

Then clearly M = M1 + . . .+Mm. Furthermore, the blocks forming Mi form
a partition of height at most µ

i
and width at most µ

i−1
− µ

i
(if the width

were larger then µ
i−1

could have been chosen larger).
On the other hand it is clear that we can reverse our construction: Given
any term qN on the right hand side, specified by the choice of µ, numbers Mi

such that M1 + . . .+Mm = N −µ2
1
− . . .−µ2

m
and partitions of Mi of height

at most µ
i
and width at most µ

i−1
− µ

i
, then we can reconstruct the Young

diagram D and thus the partition ν.
Denoting by ψa,b(q) the generating function for the partitions of n with height
at most a and width at most b, we have proven that

qn
n∏
i=1

(1− qi)−1 =
∑
µ∈GP

size(µ)=n

(
m∏
i=1

ψµ
i+1

,µ
i
−µ

i+1
(q)

)( ∏
1≤i≤m

qµ
2
i

)
,

where we put µ
0

:=∞ and µ
m+1

:= 0.
But we have already seen in proposition 1.3.9 that for finite a and b

ψa,b =

∏a+b
i=1 (1− qi)(∏a

i=1(1− qi)
)(∏b

i=1(1− qi)
)

and

ψ∞,b =
1∏b

i=1(1− qi)
.

Plugging in those formulas, we obtain equation (2.1). This finishes our proof.
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2.1.3 Remark. In 3.2.1 I will define the notion of a CL-map, which exploits
the same idea; it gives a bijection between the set of all partitions and the
set of all terms in the sum over all w(G). However, note that the above
proof does not give a CL-map. It makes use of the cancellation of the ψa,b-
terms, and therefore breaks up into two steps: There is one proper bijection
establishing equation (2.1), and then there are formulas for the ψa,b used to
establish the link to equation (2.1).
The formulas for ψa,b can be obtained in many different ways, but I know
of no proof by bijection. But even if there should exist one, that does not
mean that there is an obvious way to combine those two bijections. If you
would apply the bijections for ψa,b within the other bijection, then you would
most likely drop out of the restriction that your local partition has height
and width limited to a and b, respectively, and therefore you would collide
with the definition of the µ

i
.

2.2 Motivation
So far, I have not given any justification for the Cohen-Lenstra heuristic.
Unfortunately, for the most important applications there are no proofs known
that the sequences in focus really behave as predicted by the Cohen-Lenstra
heuristic. However, there are at least three reasons that support the Cohen-
Lenstra principle:

(i) For probabilistic approaches, weighting the elements by the number of
their automorphisms has turned out to work very well — not only in
our setting with finite abelian (p-)groups, but also in many other cases
like lattices, quadratic forms, elliptic curves, . . .

(ii) Extensive tests have been carried out for some sequences. Especially
the sequence of class groups of quadratic number fields (cf. section
6.1.2) has been listed for some 100,000,000s groups. The numerical
data gives overwhelming support for the Cohen-Lenstra principle.

(iii) In [FW89], Friedman and Washington pointed out that the Cohen-
Lenstra heuristic arises naturally (and provably!) if one models finite
abelian p-groups in the following way: Take n generators and randomly
assign n relations on them. This can be done because the set of all such
relations is a matrix group over Zp on which we have a Haar measure.
If we do this, then in the limit (n→∞), we obtain the Cohen-Lenstra
heuristic.

In the following subsections, I will describe these three reasons in more detail.
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2.2.1 Automorphisms as weights

It seems to be a general principle in mathematics that counting should most
of the time be done in a weighted way, where the weights are inversely pro-
portional to the number of automorphisms. Examples are

• Quadratic forms: Instead of presenting a lot of formulas, I rather let a
greater mind speak for me. Here is what Ferdinand Eisenstein [Eis47]
says about classes K, K ′ of ternary quadratic forms with sizes of the
automorphism groups δ, δ′, respectively:
“Obgleich (...) jede Classe in der That unendlich viele Formen enthält,
so kann man doch, wenn δ und δ′ verschieden sind, nicht mit Recht
sagen, daß die Classe K ebenso viele Formen enthielte, als die Classe
K ′; im Gegentheil kann man behaupten, daß die Formen-Anzahlen
dieser beiden Classen im reciproken Verhältniß der beiden Zahlen δ und
δ′ stehen und daß der reciproke Werth von δ das wahre Maaß für die
Totalität der Formen einer Classe, gewissermaßen für die Dichtigkeit
der Classe sei. Man thut daher Unrecht, wenn man bei der Verglei-
chung oder Zusammenstellung mehrerer Classen, jede Classe als eine
Einheit zählt, weil, um mich so auszudrücken, nicht jede Classe gleiche
Berechtigung hat, man muß vielmehr jede Classe nach ihrem Maaße 1

δ

zählen.
Durch die Einführung dieses neuen Begriffs des Maaßes der Classen,
wird die ganze Theorie der ternären und die aller übrigen quadratis-
chen Formen außerordentlich vereinfacht und, wie ich zu glauben wage,
verschönert, während ohne denselben kaum irgendwie vorwärts zu kom-
men wäre. ”
“Although every class contains indeed infinitely many forms, one can,
when δ and δ′ are different, not rightly say that the class K would
contain as many forms as the class K ′; contrariwise one can claim that
the numbers of forms in either of those classes are in reciprocal propor-
tion to the two numbers δ and δ′ and that the reciprocal value of δ is
the true measure for the totality of the forms of a class, quasi for the
class’s density. Thence, one does mischief if in comparing or composing
several classes one counts every class as unit, for, to express it this way,
not every class has the same qualification, rather one must count each
class by its measure 1

δ
.

By introducing this new notion of the classes’ measures, the whole the-
ory of ternary and all other quadratic forms is extraordinarily simplified
and, as I dare believe, beautified, while advancing without that would
hardly be possible.”
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• Elliptic curves: If we count the number of elliptic curves over a finite
base field Fq up to isomorphism naively, we do not get a closed formula
but rather need to distinguish the residues of q modulo 12. (E.g., the
number is 2q + 6 if q ≡ 1 mod 12.)

However, if we count the same thing in a weighted way, then we obtain
simply q such curves, with no case distinction necessary. Similarly,
many formulas (the number of Weierstraß normal forms per equivalence
class; the number of elliptic curves with prescribed torsion group; . . .)
become “smoother”, and for approximation formulas, higher rates of
convergence are obtained. However, since almost all elliptic curves
over Fp have an automorphism class of the same size (namely, 2), the
difference is rather cosmetical.

For an abundance of examples, [Pau08] (as well as many other sources)
may be consulted.

If we do not consider a fixed finite field, but rather consider all elliptic
curves defined over any algebraic extension of Fp, then the differences
are bigger, and the weights do make a non-negligible contribution. A
famous example is

∑
E s.s.

1

#Aut(E)
=
p− 1

24
.

It is originally due to Eichler and Deuring [Deu41], and can also be
found in the very nice article of Tate [Tat74]. The sum needs explana-
tion: We fix a prime p and then E runs over all isomorphism classes
of super-singular elliptic curves defined over any algebraic extension of
Fp, up to isomorphism over the algebraic closure of Fp.

No unweighted analogue is known for this formula.

• Other applications include, for example, vector bundles over schemes
X/Fq, or lattices over Dedekind domains. These examples (as well as
some of the examples above) are linked on a higher level by the theory
of Tamagawa numbers, which integrates the weights into a canonical
(i.e., with a canonical choice of scaling) Haar measure on G(A)/G(K),
where G is an algebraic group over the number field (or function field)
K, and A is the adele ring over K. For details, you may consult [CF86]
or [Vos98].
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2.2.2 Numerical support

Extensive tests have been carried out that strongly support the Cohen-
Lenstra principle. In particular, the sequence of class groups of quadratic
number fields (cf.section 6.1.2) is extremely well-studied. Analyses of 100,000,000s
of class groups give evidence that class groups distribute in perfect accordance
with the Cohen-Lenstra distribution (e.g., see [Jac98] for real quadratic fields;
[tRW03] for imaginary quadratic number fields; [Mal08] for more general
number fields; [Fri00] for function fields).

2.2.3 Modelling p-groups by generators and relations

Assume that we would like to generate a random finite abelian p-group.
How could we possibly do this? To make life easier, let us say that we
want a group of rank ≤ r. One way, of course, would be to make use of
the structure theorems that classify finite abelian p-groups. So we could
specify an increasing sequence of r non-negative integers ei, obtaining the
group

∏
Z/pei . However, apart from practical problems (how to choose an

increasing sequence of integers, or even a single integer!?), this approach is
in some sense “unnatural”: It makes crucial use of our knowledge about all
possible structures of such groups. In a truly random process, we would
rather expect that it is not necessary to have a structure theory in order to
imitate this process.
Even more important: The process above is not very symmetric. If we think
about the elements in the group, we would need to first generate the elements
in the group with high exponent, and then generate other elements in strictly
decreasing exponent order. Such a strict order is rather uncharacteristic for
random processes.
Therefore, we might change our approach: Instead of using a structural
description of the group, we could instead work directly with the elements.
Since we want the group to have rank at most r, we might choose r generators
of the group, and afterwards impose relations onto the generators. In this
way, we would not make use of any structural knowledge and would preserve
symmetry. Fortunately, it turns out that it is possible to choose random
relations in a “natural” way.
This is the approach that Friedman and Washington proposed in [FW89].
I hope that I have convinced you that it is indeed the most natural way
to generate a random finite abelian p-group. Not surprisingly, this process
yields the Cohen-Lenstra distribution (when r →∞), therefore legitimating
our claim that Cohen-Lenstra is a “natural” distribution.
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Choosing relations

There is one question yet to be answered: How do we choose relations on the
generators?
A relation in an abelian group is an equation of the form e1g1 + . . .+ergr = 0,
where gi are the generators and ei are non-negative integers. Since we want
r relations (in order to get a finite group), we need an r × r-matrix A of
integers. The output group G is then Zr/im(A). We need one more change
in order for the group to be a p-group: We choose A to be an r × r-matrix
of p-adic integers and define G := Zrp/im(A).
So a finite abelian p-group is given by a matrix in Zr×rp . How to choose this
matrix? Note that Zp is a compact group, so it comes along with a Haar
measure (which we normalize to have total volume 1 in order to obtain a
probability measure). Consequently, Zr×rp also inherits a Haar (probability)
measure, and we can choose A with respect to this Haar measure.
There is still one drawback: It might happen that A does not have full rank.
In this case, the group G is infinite. But we will see that the probability for
this is zero. So with probability 1 we get a finite abelian p-group.

Calculating probabilities

We need to show the following facts.

2.2.1 Theorem (Friedman-Washington).
For a randomly (with respect to the Haar measure) chosen matrix A ∈ Zn×np :

(i) Pr(A has full rank) = 1 for all n > 0.

(ii) For any finite abelian p-group G,

Pr(coker(A) ∼= G)→ P (G) for n→∞,

where P is the Cohen-Lenstra probability.

Note that the probability on the left hand side implicitly depends on n.

Proof. (i) A matrix A has full rank if and only if there exists an e such
that (peZp)

n ⊆ im(A). For any e′ > e, this is equivalent to saying that
the reduction of A modulo pe′ satisfies (peZ/pe

′
)n ⊆ im(A mod pe′). In

other words, for all e ≥ 0 and all e′ > e we have

Pr(A has full rank over Zp) ≥ Pr ((peZp)
n ⊆ im(A))

= Pr
(

(peZ/pe
′
)n ⊆ im(A mod pe′)

)
.
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Since reduction mod pe is compatible with the Haar measures, we may
compute the latter probability simply by counting matrices. By lemma
1.2.13, we know that the number of matrices mod pe

′ which do not
satisfy (peZ/pe

′
)n ⊆ im(A) is at most

pn
2+n2e′−ne

n∏
s=1

(1− p−s).

By dividing by the total number pn2e′ of matrices in (Z/pe
′
Z)n×n we

may estimate the probability that a matrix in (Z/pe
′
Z)n×n has this

property:

Pr
(
A ∈ (Z/pe

′
)n×n satisfies (peZ/pe

′
)n 6⊆ im(A)

)
≤ pn

2−ne
n∏
s=1

(1−p−s).

Altogether, we have for all e′ > e ≥ 0:

Pr(A ∈ (Zp)
n×n has full rank) ≥ Pr

(
A ∈ (Z/pe

′
)n×n satis-

fies (peZ/pe′)n ⊆ im(A)

)
≥ 1− pn2−ne

n∏
s=1

(1− p−s)

e→∞−→ 1.

(ii) We show that for r := rk(G) ≤ n,

Pr(coker(A) ∼= G) =
1

#Aut(G)

(
n∏
i=1

(1− p−i)

)(
n∏

i=n−r+1

(1− p−i)

)
.(2.2)

The theorem will then follow from theorem 2.1.2 by taking n→∞.

Let Γ be a submodule of Znp such that Znp/Γ ∼= G. We compute the
probability for the event im(A) = Γ.

Let A0 be a matrix with im(A0) = Γ. Then we have the identification
{A | im(A) = Γ} = A0 · GLn(Zp). By the properties of the Haar
measure (cf. [KS99]),

Pr(im(A) = Γ) = | det(A0)|−n · Pr(A ∈ GLn(Zp))

=
Pr(A is invertible)

(ord(G))n
.



30 2.3. COMPUTING SPECIAL VALUES

Since a matrix is invertible if and only if its reduction mod p is invert-
ible, we have

Pr(A is invertible) =
#GLn(Z/pZ)

#(Z/pZ)n×n

1.2.12
=

pn
2 ∏n

i=1(1− p−i)
pn2

=
n∏
i=1

(1− p−i).

In particular, this probability is independent of Γ. Therefore,

Pr(coker(A) ∼= G) = #{Γ ⊆ Zn | Zp/Γ = G} · Pr(im(A) = Γ)

1.2.14
=

(ord(G))n

#Aut(G)

(
n∏

i=n−r+1

(1− p−i)

) ∏n
i=1(1− p−i)
(ord(G))n

=
1

#Aut(G)

(
n∏
i=1

(1− p−i)

)(
n∏

i=n−r+1

(1− p−i)

)
.

2.3 Computing special values

The explicit formulas (theorems 1.2.10 and 2.1.2) enable us to compute some
values rather easily. For example, given a group G ∈ Gp, we are given an
explicit formula for P (G). As a special case, let me give the probability that
a p-group is the trivial group 0. Since w(0) = 1, we obtain

P (0) =
∞∏
i=1

(1− p−i).

Using q-series identities, we may compute some other probabilities. For ex-
ample, the probability that a random group is cyclic (i.e., has rank ≤ 1), is
(with q = 1

p
, as usual)
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P (G cyclic) =
1

w(Gp)
∑

G cyclic

w(G)

=

(
∞∏
i=1

(1− qi)

)
∞∑
e=0

qe

1− q

=

(
∞∏
i=1

(1− qi)

)
1

(1− q)2

=
1

1− q

∞∏
i=2

(1− qi)

=
p

p− 1

∞∏
i=2

(1− p−i).

The calculation was pleasantly simple. Now let us compare this to what
happens if we try to treat the slightly more complicated question of how
likely it is for a random group to have rank 2. Within the computation we
distinguish two different cases, corresponding to the possible group structures
G = (Z/pe)2, and G = Z/pe1 × Z/pe2 , e1 > e2:

P (rk(G) = 2) =
1

w(Gp)
∑

rk(G)=2

w(G)

=

(
∞∏
i=1

(1− qi)

)(
∞∑
e=1

q4e

(1− q)(1− q2)
+
∞∑
e2=1

∞∑
e1=e2+1

qe1+3e2

(1− q)2

)

=

(
∞∏
i=1

(1− qi)

)(
q4

(1− q)(1− q2)(1− q4)
+

+
1

(1− q)2

∞∑
e2=1

q3e2qe2+1 1

(1− q)

)

=

(
∞∏
i=1

(1− qi)

)(
q4

(1− q)(1− q2)(1− q4)
+

q5

(1− q)3(1− q4)

)

=

(
∞∏
i=1

(1− qi)

)
q4 − q5 + q5 + q6

(1− q)2(1− q2)(1− q4)

=

(
∞∏
i=1

(1− qi)

)
q4

(1− q)2(1− q2)2
.
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Recalling that this was still one of the “easier” cases, we see that this approach
soon becomes quite cumbersome. It is possible to get general results about
order and rank of a random group in this way (Bernd Mehnert will present
some of these calculations in his PhD-thesis [Meh ]), but this requires a highly
skillful handling of q-series identities, which we do not want to expect from
the user. Furthermore, while the formulas for rank and orders still behave
rather “tame”, the exponent gives even nastier expressions, and I know of no
direct calculation with q-series which gives general results for the exponent
of a group in more than the simplest case exp(G) ≤ 1. (We will obtain such
results by other techniques, cf. sections 3.4 and 4.6.4.)
So we need other tools to enhance our ability to compute interesting values.
The next two chapters will provide such tools.



Chapter 3

The Cohen-Lenstra Heuristic and
Partitions

This chapter presents a deep connection between the Cohen-Lenstra measure
and partitions. The basic relationship (equation (3.1) on page 38) was already
discovered by Cohen and Lenstra, but they didn’t further investigate it. It
was studied in more detail in 2006 by Prof. Ernst-Ulrich Gekeler, Bernd
Mehnert, and myself, culminating in the notion of a CL-map (def. 3.2.1).
The existence of such a map is trivial, at least with the knowledge from
[CL84]. However, in our research seminar we conjectured that there should
be some “natural” such map, which should give us additional insight into the
Cohen-Lensta probability. In definition 3.2.7, I will replace the vague term
of a “natural” CL-map by the precise notion of an order-preserving CL-map.
Then I show the existence and explicit construction of such a map (sect. 3.3),
demonstrate its usage by drawing some conclusions about the exponent of
a random group (sect. 3.4), and finally I discuss its uniqueness (sect. 3.5),
although this last point still contains open questions.

Throughout the chapter, p denotes a fixed prime and we use the identification
Gp ∼= GP , so groups are given by certain tuples of integers (def. 1.2.8). Since
there is no need to distinguish between the two sets in this chapter, I will
write (under slight abuse of notation) G ∈ GP for finite abelian p-groups G.
For this chapter, I expect that the reader is familiar with the basic properties
of partitions, as presented in section 1.3. In particular, recall that P denotes
the set of all partitions.
It turns out that for this chapter it is convenient to complement the notion of
a partition by the equivalent notion of a derivation (which is a non-standard
notion). This concept is not used until section 3.3.2, but it is so extensively
used in this and the subsequent sections that it is worth a definition at a
prominent place.

33
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3.1 Derivations
3.1.1 Definition. Let n = (n1, n2, . . . , nk) ∈ P. Its derivation is the tuple
n = (n0, n1, . . . , nk) defined as follows:

ni :=


n1 − n2 , for i = 0,

ni − ni+2 , for 1 ≤ i ≤ k − 2,

ni , for i = k − 1, k.

We define D to be the set of all derivations, so

D = {n | ∃n ∈ P s.t. n is the derivation of n}.

Note that the derivation of a partition is indeed similar to a discrete gradient
vector, for step size 2. That is why I have chosen the word “derivation” for
these objects. Only the n0-entry deviates a bit, but we could either neglect
this entry (cf. lemma below), or we extend the partition by setting n0 := n1.
Furthermore, if we fill up n with 0’s on the right (i.e., ni := 0 for i > k),
then we may define its derivation by the single formula ni := ni − ni+2.

The next lemma shows that partitions and derivation are in one-to-one-
correspondence.

3.1.2 Lemma. Let n = (n1, n2, . . . , nk) ∈ P and let n = (n0, n1, . . . , nk) ∈ D
be its derivation.
Then it is possible to recover n from n by the following formula:

ni =
∑
i≤j≤k

i≡j mod 2

nj, 1 ≤ i ≤ k.

Proof. For i = k and i = k− 1 the formula is obvious. For i ≤ k− 2 we have

∑
i≤j≤k

i≡j mod 2

nj =

 ∑
i≤j≤k−2

i≡j mod 2

nj − nj+2

+

{
nk , if i ≡ k mod 2

nk−1 , otherwise
= ni.

Note that we did not need n0 to recover n.

3.1.3 Example. The tuple

n = (2, 2, 0, 1, 4, 5, 2, 0, 1, 1, 1, 1)

is a derivation, and its associated partition is

n = (10, 8, 8, 8, 7, 4, 2, 2, 2, 1, 1).



CHAPTER 3. THE COHEN-LENSTRA HEURISTIC AND PARTITIONS 35

In order to work with them, we need to classify all derivations. This is done
by the following lemma:

3.1.4 Lemma. A sequence n = (n0, n1, . . . , nk) is a derivation if and only if
the following holds:

(i) nk−1 ≥ nk > 0,

(ii) ni ≥ 0 for all i ≥ 1,

(iii)
∑i2

j=i1
(−1)j−i1nj ≥ 0 for all 1 ≤ i1 < i2 ≤ k, i1 ≡ i2 mod 2. If i2 = k,

we drop the condition i1 ≡ i2 mod 2.

(iv)
∑k

j=0(−1)jnj = 0.

Proof. Let n be the derivation of some n ∈ P . (i) and (ii) are obvious.
Furthermore, we have by lemma 3.1.2

n0 = n1 − n2 =

 ∑
1≤j≤k

i≡1 mod 2

nj

−
 ∑

2≤j≤k
i≡0 mod 2

nj

 ,

which implies (iv).
For (iii), let us for simplicity assume that i2 < k. The case i2 = k is analogous.
In the following calculation, if a term nj does not exist because j > k, then
it is to be replaced by 0:

i2∑
j=i1

(−1)j−i1nj =

 ∑
i1≤j≤i2

j≡i1 mod 2

nj

−
 ∑

i1≤j≤i2
j 6≡i1 mod 2

nj


= ni1 − ni2+2 − (ni1+1 − ni2+1)

= ni1 − ni1+1︸ ︷︷ ︸
≥0

+ni2+1 − ni2+2︸ ︷︷ ︸
≥0

≥ 0.

Now we show that any tuple with properties (i)–(iv) is a derivation.
We define n as in lemma 3.1.2. Then we have

n0
(iv)
=

 ∑
1≤j≤k

j≡1 mod 2

nj

−
 ∑

2≤j≤k
j≡0 mod 2

nj

 = n1 − n2.
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Hence, if n is a partition, then it is clear by lemma 3.1.2 that n is its deriva-
tion.
By condition (i) and (ii), ni ≥ 0 for 1 ≤ i ≤ k. So we only need to show that
ni ≥ ni+1 for 1 ≤ i ≤ k − 1. For such i, we have

ni − ni+1 =

 ∑
i≤j≤k

j≡i mod 2

nj

−
 ∑

i+1≤j≤k
j 6≡i mod 2

nj


=

k∑
j=i

(−1)j+inj

(iii)

≥ 0.

3.1.5 Remark.

• The equivalence remains true if we restrict (iii) to the case i2 = k, i.e.,
if we replace (iii) by the condition

∑k
j=i(−1)j−inj ≥ 0 for all 1 ≤ i ≤ k.

• We will especially make use of (iii) with i2 = i1 + 2. In this case the
statement becomes

ni1 + ni1+2 ≥ ni1+1.

We have seen that the sets P and D are in bijection with each other, so I
will use partitions and derivations interchangeably. In particular, by abuse
of notation, I will apply functions that live on P to derivations and vice
versa. Also, the partial ordering on P transfers to D. To clarify things, I
will throughout this thesis denote partitions by a lower bar and derivations
by an upper bar (n and n), and the same for their entries (e.g. n1 and n1).
In this way, it will be easy to see with which object we are working at any
point.

3.2 Why partitions? — CL-maps
We have seen that the Cohen-Lenstra measure of a finite abelian p-group

G =
k∏
i=1

(Z/peiZ)ri , where e1 > e2 > . . . > ek > 0

is
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w(G) =
1

Aut(G)
=

(
k∏
i=1

(
ri∏
s=1

(1− p−s)−1

))( ∏
1≤i,j≤k

p−min(ei,ej)rirj

)
.

Now we change the perspective. We introduce a new variable q := 1
p
. Of

course, q is strictly speaking just a rational number, but from now on, I want
to treat q rather as a formal variable. Then the above formula becomes

w(G) =
1

Aut(G)
=

(
k∏
i=1

(
ri∏
s=1

(1− qs)−1

))( ∏
1≤i,j≤k

qmin(ei,ej)rirj

)
,

and this is a formal power series in q.
Let me first explain why we do not lose any information by restricting our-
selves to the formal variable q. Of course, we cannot create additional infor-
mation: Whenever we derive a formula for q, then we just plug in q = 1

p
and

obtain a formula for p. On the other hand, suppose we have a formula (for
example, formula (3.1) below) that is valid for all p. Then in terms of power
series, we have an equality at the values q = 1

p
for various p. Since all our

power series have a positive radius of convergence, they give rise to holomor-
phic functions. But the Identity Theorem for holomorphic functions tells us
that two holomorphic functions that coincide on the set {1

p
| p ∈ P} must

coincide everywhere, since the set has an accumulation point. Hence, the
representing power series are identical. Altogether, we have shown that any
identity valid for all p must necessarily also be valid for the formal variable
q.
Hopefully, I could convince the reader that we do not lose anything by switch-
ing from p to q. But what do we gain? Let us consider the weight formula
more closely. If we expand (1 − qs)−1 as

∑∞
i=0(qs)i, we see that the weight

is not only a power series in q, but it is a power series with non-negative
integers as coefficients. I will call such a power series a combinatorial power
series for the moment.
Keeping this in mind, we reinvestigate theorem 2.1.2, which states:

∑
G finite

abelian p-group

w(G) =
∞∏
i=1

(1− qi)−1.

As I argued above, this equality holds not only for the particular values q = 1
p
,

but is in fact an identity of power series. We continue:
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∑
G finite

abelian p-group

w(G) =
∞∏
i=1

(1− qi)−1
sect.
1.3.1=

∑
n∈N

∑
n is a par-
tition of n

qn. (3.1)

Now the equation gets a new flavour. On the right hand side we have a
sum over terms qn. (I will always use the word “term” for a single monomial
with coefficient 1 in this context.) On the left hand side, we have a sum of
combinatorial power series in q, i.e., also a sum over terms qn. The equality
tells us that for each n we have the same number of terms on both sides.
This observation suggests that there might be some deeper connection. In
fact, an identity of combinatorial power series often (but not always!) reflects
some underlying bijection of combinatorial objects: If there are as many
terms on the left hand side as there are on the right hand side, then one
might expect that there exists some underlying natural bijection between the
terms, whatever “natural” means in this context. This is the conjecture that
came up in the research seminar by Gekeler, Mehnert, and myself.
How can we model such a bijection? We fix an n. Of course, we do not want
to distinguish between the terms that belong to the same group G. After all,
the weight is given by a power series, where we have no more information
than how many terms qn belong to a group. However, on the partition side,
we do distinguish between different terms qn. So for each partition, there
should be a corresponding group on the left hand side. In other words, we
need a map from the set of all partitions into the set of all finite abelian
p-groups, telling us which power series the qn-term of this partition belongs
to. This leads to the following definition:

3.2.1 Definition. A map Λ : P → GP is a Cohen-Lenstra-map (CL-map)
if for any finite abelian p-group G,

w(G) =
∑
n≥0

aG(n)qn,

where
aG(n) = #

({
Λ−1(G)

}
∩ {n ∈ P| size(n) = n}

)
(3.2)

is the number of partitions of n that are mapped to G.

The existence of such a map is trivial. In fact, we know how many terms
we need for each G, so we can just arbitrarily grab as many partitions as we
need. Equation (3.1) guarantees that we have exactly as many partitions as
we require in total for the various groups. But this process is so arbitrary
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that we have little hope of finding a map that is natural enough to occur in
applications. We need a way of saying when a map is natural.
Recall that the set of all partitions comes together with a natural partial
ordering (def. 1.3.6). I will show that we also have a partial ordering on
the set of all terms (= monomials) that occur in w(G), for a fixed group G.
We will then replace the vague concept of being “natural” by the rigorous
requirement of being order-preserving.
To define the partial ordering on the set of all terms occurring in w(G), recall
that the weight of G =

∏k
i=1 (Z/peiZ)ri is

w(G) =

(
k∏
i=1

(
ri∏
s=1

(1− qs)−1

))( ∏
1≤i,j≤k

qmin(ei,ej)rirj

)

=

(
k∏
i=1

(
ri∏
s=1

∞∑
t=0

qts

))( ∏
1≤i,j≤k

qmin(ei,ej)rirj

)
.

If we multiply out, we get one monomial for each tuple (ti,s)1≤i≤k,1≤s≤ri , where
each entry is ≥ 0. So instead of listing all monomials, we can as well list all
such tuples. We call the set of all such tuples IG:

3.2.2 Definition. Let G =
∏k

i=1 (Z/peiZ)ri be a finite abelian p-group. We
define the index set IG of G as

IG := {(ti,s)1≤i≤k,1≤s≤ri | ti,s ∈ N}.
For each vector t ∈ IG, we define the exponent

expon(t) :=
∑

1≤i,j≤k

min(ei, ej)rirj +

(
k∑
i=1

ri∑
s=1

sti,s

)
.

3.2.3 Remark. By construction of the index set and the exponent, we may
write the weight of G as

w(G) =
∑
t∈IG

qexpon(t).

3.2.4 Example.

• Let G = Z/peZ be a cyclic group. Then IG = {(t1,1)} ∼= N. The
exponent of t = (t1,1) ∈ IG is

expon(t) = e+ t1,1.
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• Let G = Z/pZ× (Z/p4Z)3. Then IG = {(t1,1, t2,1, t2,2, t2,3)} ∼= N4. The
exponent of an element t ∈ IG is

expon(t) = 43 + t1,1 + t2,1 + 2t2,2 + 3t2,3.

3.2.5 Definition.
The set IG comes with a natural partial ordering: (ti,s)1≤i≤k,1≤s≤ri ∈ IG is
smaller or equal than (t̃i,s)1≤i≤k,1≤s≤ri ∈ IG if for all 1 ≤ i ≤ k the sequence
(ti,ri , ti,ri−1, . . . , ti,1) is dominated by (t̃i,ri , t̃i,ri−1, . . . , t̃i,1). (Note the order of
the sequences!) We denote this partial ordering by ≤ (or <, if we do not
allow equality), and we also say that t̃ lies above t and t lies below t̃. If t < t̃
and there is no u ∈ IG such that t < u < t̃, then we say t̃ lies immediately
above t or t lies immediately below t̃.

3.2.6 Remark. Let t, t̃ ∈ IG such that t < t̃. Then expon(t) < expon(t̃).
The proof is easy and is left to the reader.

Now we are ready to sort out things. Consider the formal disjoint union
I :=

⋃̇
G∈GPIG. By definition of the sets IG, we may rephrase the CL-property

as follows: A map Λ : P → GP is a CL-map if and only if there exists a
bijective map µ : I → P such that size(µ(t)) = expon(t), and such that the
diagram

P

I

µ
∼=BBB

``BBB

GP
����@A

//

Λ

commutes, where the map I → GP is simply projection on the index, so
IG 3 t 7→ G ∈ G. This projection may be characterized to be the unique
map such that the extended diagrams

P

I oo ? _

µ
∼=AAAA

``AAAA

IG

GP
����

oo ? _
@A

//

Λ

{G}
����
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commute for all G. We see that maps IG → P are contained in this diagram,
and these are maps between partially ordered sets. Now it becomes clear how
the definition of order-preserving should look like:

3.2.7 Definition.
A CL-map Λ : P → GP is called order-preserving if there exists a bijective
map µ : I → P such that size(µ(t)) = expon(t), such that for each G ∈ GP
the diagram

P

I oo ? _

µ
∼=AAAA

``AAAA

IG

ED
µGoo

GP
����

oo ? _
@A

//

Λ

{G}
����

commutes, and such that µG is monotone for each G ∈ GP . In the diagram,
I :=

⋃̇
G∈GPIG.

Rephrasing the condition of being monotone for µG, we require that t < t′

implies µG(t) < µG(t′) for all groups G and all t, t′ ∈ IG.
Summarizing, the map

µ :
•⋃
G

IG → P

IG 3 t 7→ µG(t)

is a bijection which preserves order on each fiber.

3.2.8 Definition. For any order-preserving CL-map Λ, let ι : GP → P be
the section of Λ such that ι(G) is the (unique) smallest element in Λ−1(G).
We call ι the canonical section of Λ, and by Pbase := Pbase(Λ) := ι(GP), we
denote its image.

3.2.9 Remark.

• It is possible to define the canonical section also for CL-maps that
are not necessarily order-preserving: For all G, the smallest non-zero
coefficient in w(G) is 1. Hence, for any CL-map, there is a unique
element of minimal size in the fiber of G. (If Λ is order-preserving,
then this element is even minimal.) So we can define the canonical
section by assigning to each group the element in its fiber of minimal
size.
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• When we talk about CL-maps being natural, there is another condition
one could impose: We could require that the canonical section is order-
preserving as well, i.e., G1 ⊆ G2 implies ι(G1) ≤ ι(G2). Think of this
as a “horizontal” property (a property for a section through all fibers),
whereas definition 3.2.7 is a “vertical” property (we consider each fiber
individually).

I did not include this “horizontal” order-preserving property in my def-
initions for two reasons: Firstly, to keep things as simple as possible.
Secondly, it does not seem to make a big difference. In particular, the
CL-map Λ that we will define below (section 3.3.1 and 3.3.2) is order-
preserving in this stronger sense, and so are all the following exam-
ples, including the examples which show that Λ is not unique (example
3.5.4).

However, I do not want to claim that my definition is superior to the
other variant. Rather, from my knowledge I can not decide which of
the two possible definitions is the better one, and so I have picked one
due to my personal taste.

Let me give one warning: A natural idea would be to require some
“horizontal” property that takes not only the canonical section – the
“lowest level” – into account, but also partitions lying above that. How-
ever, there are two severe problems: Firstly, it is clearly true that, for
G1 ↪→ G2, Aut(G2) is larger than Aut(G1) because we have a canonical
injection and surjection Aut(G2) ←↩ {ϕ ∈ Aut(G2) | im(ϕ) ⊆ G1} �
Aut(G1), respectively. However, it is not true in general that in this
case w(G1) is bigger than w(G2) as power series (i.e., coefficient-wise).
It already fails for (Z/pZ)3 ↪→ (Z/p2Z) × (Z/pZ)2. So it is not clear
how the more general horizontal property should look like.

Secondly, does it make sense at all to talk about embeddings G1 ↪→ G2

when G1 and G2 are only defined up to isomorphism? For example,
there are essentially different embeddings Z/pZ ↪→ Z/pZ×Z/p2Z. Do
we want to distinguish those embeddings? Those are the problems one
would need to address.

A solution might be a combination of the notion of CL-maps with the
Markov chain approach in section 4.3, but at present it is not clear how
such a combination can be achieved.

The next question to address is whether natural CL-maps exist. In the next
section, we will explicitly construct an order-preserving CL-map Λ. This will
be done in two ways: via Young diagrams and numerically.
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3.3 The existence of an order-preserving CL-
map Λ

3.3.1 Definition of Λ (via Young diagrams)

As announced, this subsection contains the first of two possible definitions
of the order-preserving CL-map Λ. Basically, this method stays on partition
level, whereas the other definition works with derivations.
This Young diagram definition is probably harder to read than the one in
the next section. However, since the notion of derivations is a non-standard
invention, I find it convenient also to give a version working directly with
partitions. Moreover, it has one further advantage: As example 3.3.5 indi-
cates, the Young diagram algorithm is closely linked to the canonical section
Pbase of Λ.
First I introduce a new notation (which we use only for this algorithm).
Recall that a box in the Young diagram is described by a pair (i, j) ∈ N+ ×
N+.

3.3.1 Notation. Let (i, j) ∈ Z×Z, and let λ ∈ Z. The λ-successor sλ(i, j)
of (i, j) is the point (i + 2, j − λ) ∈ Z× Z. For any M ⊂ Z× Z, let sλ(M)
be the image of M under sλ.

Now Λ can be defined by the following algorithm:

3.3.2 Algorithm. Let n ∈ P .

1. Let M1 ⊂ N+ ×N+ be the Young diagram of n. Put k := 1.

2. Let Qk := {(i, j) ∈ Z× Z| j ≥ 1, i ≥ 2k − 1}.
Find λk ∈ Z minimal such that sλk(Mk) ∩Qk ⊂Mk.

3. Find the maximal ik ∈ Z such that there is a j ∈ Z with:

• (ik, j) ∈Mk and

• sλk−1(ik, j) ∈ Qk \Mk.

4. Let Ck := {(i, j) ∈ N+ ×N+| i ≤ ik} \Mk.
Put Mk+1 := (Mk \ sλk(Ck)) ∩Qk+1.
Increase k by 1.

5. Repeat step 2–4 until Mk ∩Qk is empty.

If the algorithm terminates after k loops, it returns integers λ1, . . . , λk.
Put Λ(n) := (λ1, λ2, . . . , λk) ∈ GP .
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3.3.3 Remark.

• The algorithm always terminates, so Λ is well-defined.

• The λi are sorted: λ1 ≥ . . . ≥ λk > 0. So the algorithm outputs a
partition.

If one wants to analyze the algorithm directly, the following facts are helpful.
Otherwise, these facts may be ignored. We do not use them, since we will
prove the correctness of the algorithm in an indirect way in section 3.3.2,
after having shown the equivalence of the Young diagram algorithm and the
numerical algorithm.

3.3.4 Remark. In the k-th loop, define

ak := #Mk −#Mk+1 −#{(i, j) ∈Mk | i = 2k + 1}
−#{(i, j) ∈Mk+1| i = 2k + 3}.

The ak quantify the difference between Mk and Mk+1, where the two latter
terms compensate (roughly speaking) for the two highest lines, which are cut
off from Mk+1.
Define further jk,max := max{j| ∃i s.t. (i, j) ∈ Mk}. Then in each step after
the first we have the invariant

n = |(Mk+1)|+ 2kjk,max +

(
k∑
i=1

λi(2i− 1)

)
+

k∑
i=1

ai.

This assertion can easily be proven by induction.
In particular, after termination the first two terms will vanish, so we get

n =

(
k∑
i=1

λi(2i− 1)

)
+

k∑
i=1

ai.

3.3.5 Example. Let us consider the partition

n = (11, 11, 9, 9, 9, 8, 8, 6, 4, 4, 4, 3, 2, 1, 1).

Its Young diagram is
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

In each round, I will give a partition nk that reflects Mk in the following
sense: If you draw the Young diagram of nk and intersect it with Qk (i.e.,
you forget the 2k−2 uppermost lines), then you get Mk. For the first round,
we simply have n1 = n.
Don’t be confused by the fact that k is used as an upper index. As nk is a
partition, we will need lower indices to address its entries.
At the beginning, Qk is the whole quadrant, so we consider the whole dia-
gram. We find that λ1 = 4 and i1 = 7, because the box (7, 8) is in M1, but
s4−1 = s3 maps (7, 8) to (9, 5) /∈M1:

1
2
3
4
5
6
7 ×
8
9
10
11
12
13
14
15

The boxes that are marked in the next diagram will be removed according



46 3.3. THE EXISTENCE OF AN ORDER-PRESERVING CL-MAP Λ

to step 4 of the algorithm. Note that also the two uppermost lines will be
removed, so it is not really necessary to mark any box in line 2. However,
in this way the number of marked boxes is exactly a1 (cf. remark 3.3.4). (In
general, in the i-th step the number of marked boxes will be ai.)
The reader who is not interested in the proof may ignore these data.

1
2 × × × ×
3 × ×
4 × ×
5 × × × ×
6 × × ×
7 × × ×
8 × ×
9
10
11
12
13
14
15

So we get the partition

n2 = (11, 7, 7, 7, 5, 5, 5, 4, 4, 4, 4, 3, 2, 1, 1).

Now we find that λ2 = 2 and i2 = 12, because the box (12, 3) is not mapped
into M2 by sλ2−1. Remember that, in order to find λ2 and i2, we must ignore
line 1 and 2, because they do not belong to Q2. In the following, I will mark
the lines not belonging to Qk with “–”.

Again, we label the boxes which are going to be removed. And again, the
reader who is not interested in the proof may ignore line 3 and 4:
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1 – – – – – – – – – – –
2 – – – – – – –
3
4 × ×
5
6
7 × ×
8 ×
9 ×
10 × ×
11 × ×
12 ×
13
14
15

We obtain

n3 = (11, 7, 7, 5, 5, 5, 3, 3, 3, 2, 2, 2, 2, 1, 1).

Now we look at M3 and find λ3 = 2 and i3 = 6:

1 – – – – – – – – – – –
2 – – – – – – –
3 – – – – – – –
4 – – – – –
5
6 × ×
7
8
9
10
11
12
13
14
15

n4 = (11, 7, 7, 5, 5, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1).

We get λ4 = 1, i4 = 15:
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1 – – – – – – – – – – –
2 – – – – – – –
3 – – – – – – –
4 – – – – –
5 – – – – –
6 – – –
7
8 ×
9 ×
10
11
12 ×
13 ×
14
15

n5 = (11, 7, 7, 5, 5, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1).

Next, λ5 = 1, i5 = 15:

1 – – – – – – – – – – –
2 – – – – – – –
3 – – – – – – –
4 – – – – –
5 – – – – –
6 – – –
7 – – –
8 – –
9
10 ×
11 ×
12
13
14 ×
15 ×

n6 = (11, 7, 7, 5, 5, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0).

Finally, λ6 = 1, i6 = 13:
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1 – – – – – – – – – – –
2 – – – – – – –
3 – – – – – – –
4 – – – – –
5 – – – – –
6 – – –
7 – – –
8 – –
9 – –
10 –
11
12 ×
13 ×
14
15

n7 = (11, 7, 7, 5, 5, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0).

M7 is empty, so the algorithm has terminated and yields:

Λ(n) = (λ1, λ2, λ3, λ4, λ5, λ6) = (4, 2, 2, 1, 1, 1) ∈ GP .

So the algorithm outputs the group

Z/p4Z× Z/p2Z× Z/p2Z× Z/pZ× Z/pZ× Z/pZ.

As mentioned above, I have given more information than is needed for run-
ning the algorithm. Apart from finding the quantities ai as the number of
crossed boxes in each step, there is another feature: Considering the final par-
tition n7, we find that it is in the set Pbase, (cf. defintion def:canonical-section
and the remark thereafter). More precisely, it equals ι((4, 2, 2, 1, 1, 1)), i.e.,
it is the smallest partition that is mapped to (4, 2, 2, 1, 1, 1) by Λ.
This is a general rule: By defining all entries of nk in an appropriate way (not
only those determined by the algorithm), we obtain in the end a partition
that satisfies nk = ι(Λ(n)). So we may view the algorithm as a way of
removing successively parts of the partition until we end up with an element
of Pbase.
What is the appropriate way to defining the missing entries of nki ? The
entries are determined by the algorithm for i ≥ 2k − 1. For i ≤ 2k − 3,
we don’t change anything: nki := nk−1

i . For i = 2k − 2, we set nk2k−2 :=
nk−1

2k−1 − λk−1 = nk2k−1. Since we will not make use of this idea, I will not
discuss the details any further.
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3.3.2 Definition of Λ (numerical)

Now to the numerical definition of Λ:

3.3.6 Algorithm (numerical). Let n = (n1, n2, . . . , nm) ∈ P . The algorithm
works as follows:

1. Let n1 := n be the derivation of n (cf. 3.1). Let k := 1.

2. Let λk := maxl {nkl }, and let ik := max{l| nkl = λk}.

3. Remove the entries with indices ik − 1, ik and ik + 1 from nk and replace
them by the single new entry nkik−1 + nkik+1 − nkik , thereby getting nk+1.
For convenience, shift indices such that the index i of nk runs from 2k− 2
to m.

Increase k by 1.

(We might need to use some nkl that is out of range at this point. In this
case, we may add a 0 on the right. The invariants given below guarantee
that this cannot happen on the left.)

4. Repeat steps 2 and 3 until nk consists only of zeros.

The output of the algorithm is (λ1, λ2, . . . , λk−1, λk) ∈ GP .

3.3.7 Remark.

• For each k, nk is a derivation (possibly up to some ending 0’s, which
may be ignored).

In particular, we have nki−1 + nki+1 ≥ nki for all i, k (see 3.1.5).

• In loop k, all values in nk are integers between 0 and λk−1. Thus the
λk are monotonically decreasing, so the algorithm indeed outputs a
partition.

These statements will be proven after the illustrating example.

• One could choose other index conventions. For the algorithm, it would
be no difference if in loop k, i runs e.g. from 0 to m−2k+ 2. However,
our convention has advantages that will become obvious in the proofs
of theorems 3.3.9 and 3.3.14.

• I have defined ik to be the maximal index of a maximal element. In
fact, one could allow to use any index of a maximal entry. The chosen
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convention has two advantages: Firstly, it makes the algorithm deter-
ministic, and secondly, in this way it coincides stepwise with the Young
diagram algorithm, as we will see later.

If you would change this algorithm (e.g., by picking the minimal index
of a maximal element), of course you could translate it into a Young
diagram algorithm. However, be warned: Small changes in the deriva-
tions tend to have big effects in the Young diagrams! In particular, in
the Young diagram algorithm it is not possible to simply pick another
than the maximal ik (cf. 3.3.2).

There is another reason why it is preferable to choose ik to be maximal.
As we will see later, this version is “more closely” related to the formula
of the size of the automorphism groups. I will explain more precisely
what I mean by this in remark 3.3.22.

• This form of the algorithm is much handier and should be used for
computations rather than the Young diagram version.

3.3.8 Example. Let n = (11, 11, 9, 9, 9, 8, 8, 6, 4, 4, 4, 3, 2, 1, 1). This is the
same partition as in example 3.3.5 for the Young diagram algorithm.
I mark the places where something will happen in the next step by bold type.
We compute

n1 = n = (0, 2, 2, 0, 1, 1,2,4,2, 0, 1, 2, 2, 1, 1, 1).

Obviously, λ1 = 4 and i1 = 7. (Recall that the first entry of n has index 0.)
We have to replace the part 2, 4, 2 by the single entry 2 + 2− 4 = 0, getting:

n2 = (0, 2, 2, 0, 1, 1, 0, 0, 1,2,2,1, 1, 1),

with indices running from 2 to 15.
We see that λ2 = 2 and i2 = 12. We replace 2, 2, 1 by 1:

n3 = (0,2,2,0, 1, 1, 0, 0, 1, 1, 1, 1),

with indices running from 4 to 15.
λ3 = 2, i3 = 6, so we must replace 2, 2, 0 by 0:

n4 = (0, 0, 1, 1, 0, 0, 1, 1,1,1),

with indices running from 6 to 15.
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Now λ4 = 1 and i4 = 15. We fill up one 0 at the right and replace 1, 1, 0 by
0:

n5 = (0, 0, 1, 1, 0, 0,1,1,0),

with indices running from 8 to 16.
λ5 = 1, i5 = 15 and we replace 1, 1, 0 by 0:

n6 = (0, 0,1,1,0, 0, 0),

with indices running from 10 to 16.
Finally, λ6 = 1, i6 = 13, and after replacing one last time, we get a sequence
of zeros:

n7 = (0, 0, 0, 0, 0),

so we are done.
The result is (λ1, λ2, λ3, λ4, λ5, λ6) = (4, 2, 2, 1, 1, 1) ∈ GP , which corresponds
to the group Z/p4Z× Z/p2Z× Z/p2Z× Z/pZ× Z/pZ× Z/pZ.

3.3.9 Theorem. The output of the above algorithm coincides with the output
of the Young diagram algorithm in section 3.3.1.

Proof. One could say that both algorithms perform the same computation,
only the Young diagram algorithm computes directly on the partition, where-
as the numerical algorithm computes on the derivations. More precisely, we
will prove:

For all k, nk is the derivation of (nk)≥2k−1. (3.3)

Here, nk is the intermediary result in loop k of the numerical algorithm,
and (nk)≥2k−1 is defined by the following property: If you draw the Young
diagram of nk and intersect it with Qk (i.e., you forget the 2k− 2 uppermost
lines), then you get Mk from the Young diagram algorithm (3.3.2). The
starting partition n1 is defined to be n. The lower index indicates that we
cut off the first entries from nk. I have included n in example 3.3.5.
The above properties define nki only for i ≥ 2k − 1. Also, nki is only defined
for i ≥ 2k − 2. In fact, this could be extended. In example 3.3.5, I have
explained how to define nki for all i, and in algorithm 3.3.18, we will find a
way to define nki for all i. With these definitions, property (3.3) holds in fact
for the whole vectors. However, the cut-off version given above is sufficient
for our purposes.
To prove (3.3), we use induction on k. The case k = 1 is clear from step 1
in the numerical algorithm. So let k > 1 and assume that nk is the gradient
vector of (nk)g≥2k−1.



CHAPTER 3. THE COHEN-LENSTRA HEURISTIC AND PARTITIONS 53

In the Young diagram algorithm, λk is chosen minimal with the property
sλk(Mk) ∩ Qk ⊂ Mk. By definition of sλk , this means that for every box
(i, j) in the Young diagram of nk, either j ≤ λk or the box (i + 2, j − λk)
also belongs to the same Young diagram. But since j may take any value
between 1 and nki , either j ≤ λk, or nki+2 ≤ nki − λk. We may rewrite the
second inequality as

λk ≤ nki − nki+2 = nki .

Therefore, λk coincides in both algorithms.
By the same argument, ik is also the same in both algorithms. (It is the
largest index for which the inequality is an equality.)
Now we turn to the definition of nk+1. Its Young diagram Mk+1 is a subset
of Qk+1 := {(i, j) ∈ Z × Z| j ≥ 1, i ≥ 2k + 1}, so the 2k top lines are cut
off, corresponding to the fact that the first 2k entries of nk+1 are irrelevant.
Apart from these top lines, Mk+1 = (Mk \ sλk(Ck)), where Ck := {(i, j)| i ≤
ik}\Mk. By definition of sλk , this will not affect any line with index i > ik+2.
By definition of ik, the line with index i = ik + 2 is also unchanged. What
happens to a line i ≤ ik + 1?
By definition of λk, we have sλk(Mk) ∩Qk ⊂Mk. For the complement Ck of
Mk this means that Mk+1 = Mk \ sλk(Ck) = Qk \ sλk(Ck), at least for the
rows with index i ≤ ik + 2 (since the complement is taken with respect to
the rows with index i ≤ ik, and sλk shifts this index by 2.)
Hence, Mk+1 can be expressed in terms of sλk(Qk \Mk) (for rows i ≤ ik + 2),
and so row i of Mk+1 does only depend on row i− 2 of Mk:

nk+1
i =

{
nki if i ≥ ik + 2

nki−2 − λk if i ≤ ik + 2

The two cases coincide for i = ik + 2.
Now let us compute the derivation of nk+1:

• For i ≥ ik + 2, we have

nk+1
i = nk+1

i − nk+1
i+2

= nki − nki+2

= nki
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• For 3 ≤ i ≤ ik, we have

nk+1
i = nk+1

i − nk+1
i+2

=
(
nki−2 − λk

)
−
(
nki − λk

)
= nki−2 − nki
= nki−2

• For i = ik + 1, we have

nk+1
i = nk+1

ik+1 − nk+1
ik+3

=
(
nkik−1 − λk

)
− nkik+3

= nkik−1 − nkik+3 − λk
=

(
nkik−1 − nkik+1

)
+
(
nkik+1 − nkik+3

)
− λk

= nkik−1 + nkik+1 − nkik .

All three results fit the definition in the numerical algorithm. (Note that in
the algorithm, three entries are replaced by a single new entry, and all entries
with index i ≤ ik − 1 are shifted by 2.)
This completes our induction. We have successfully proven that the invariant
(3.3) holds throughout the algorithm.
To conclude our proof, we only need to observe that the halting condition and
the output coincide. For the output this is clear. For the halting condition,
the two algorithms terminate when nk or nk become zero, respectively. But
we have seen that nk is the derivation of nk, and it is easily seen that a
partition is zero if and only if it has zero derivation.

We have seen that both algorithms coincide. However, we have not yet shown
that they terminate and that the output is a partition.
However, both facts are now rather easy to see from the numerical algorithm:
Termination is clear, since in each step, the vector loses two entries. (Even
in the special case where we add a “0” to the right, it is easy to see that
the number of 0’s increases by 2.) Hence, the algorithm runs at most bm+1

2
c

steps, where m is the length of the input partition.
In order for the output to be a partition, we must show that the λi are sorted
and positive: λ1 ≥ λ2 ≥ . . . ≥ λk > 0. Recall the definition λk := maxl {nkl }.
We must only show that the maximum entry is not increased when going
from nk to nk+1, and that all entries are non-negative. The only new entry
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in the latter vector is nk+1
ik−1 = nkik−1 + nkik+1 − nik , which is non-negative by

3.1.5. Since nik = λk by definition of ik, we obtain

nk+1
ik−1 = nkik−1 + nkik+1 − λk ≤ 2λk − λk = λk.

Since the new entry is not bigger than λk, the maximum is not increased,
and λk+1 ≤ λk.
So far we have seen two algorithms, terminating with a partition as output,
both of which coincide. In the next section we will show that the function
that is defined by these algorithms is a CL-map.

3.3.3 Proof of the CL-property

We will need one more definition before we tackle the proof: We will redefine
the canonical section Pbase ⊂ P of Λ, as it is defined in 3.2.8. We need to
redefine it because we do not yet know that Λ is a CL-map, so we cannot yet
apply definition 3.2.8. So we need to define Pbase directly, and we will do so
by directly constructing a section ι : GP → P , i.e., Λ ◦ ι = idGP . Then Pbase
will be the image under this map.

3.3.10 Definition. Let n = (n1, n2, . . . , nk) ∈ GP be a group, n1 ≥ n2 ≥
. . . ≥ nk > 0. Then we define ι(n) ∈ P to be the partition

ι(n) :=

(
k∑
i=1

ni,

k∑
i=2

ni,

k∑
i=2

ni,

k∑
i=3

ni,

k∑
i=3

ni, . . .

. . . ,

k∑
i=k−1

ni,

k∑
i=k−1

ni, nk, nk

)
,

where each term appears twice, except for the first one, which appears only
once.
Put Pbase := ι(GP). Similarly, let Dbase be the set of all derivations whose
partition is in Pbase.

Once we know that Λ is indeed an order-preserving CL-map, the definition
above coincides with the general definition 3.2.8.

3.3.11 Example. The group Z/p4Z×Z/p2Z×Z/p2Z×Z/pZ with partition
n = (4, 2, 2, 1) corresponds to ι(n) = (9, 5, 5, 3, 3, 1, 1).
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The correspondence can be visualized in the Young diagram:

9→
5→ ︸ ︷︷ ︸

4

5→
3→ ︸︷︷︸

2

3→
1→ ︸︷︷︸

2

1→︸︷︷︸
1

3.3.12 Lemma.

(i) A partition m = (m1,m2, . . . ,mk) belongs to Pbase if and only if it
satisfies the following conditions:

• k is odd.

• m1 > m2 = m3 > m4 = m5 > . . . > mk−1 = mk.

• m1 −m3 ≥ m3 −m5 ≥ m5 −m7 ≥ . . . ≥ mk−2 −mk ≥ mk.

(ii) A derivation m = (m0,m1, . . . ,mk) belongs to Dbase if and only if it
satisfies the following conditions:

• k is odd.

• m0 = m1 ≥ m2 = m3 ≥ m4 = . . . = mk−2 ≥ mk−1 = mk.

Proof.

(i) I leave it to the reader to show that every element of Pbase has the listed
properties.

On the other hand, if m ∈ P has these properties then it is the image
of (m1 − m3,m3 − m5, . . . ,mk−2 − mk,mk) ∈ GP . It is immediate to
check that the latter one is indeed in GP .

(ii) This is completely analogous to the partition case. If m ∈ D has the
listed properties then it is the derivation of ι((m1,m3,m5, . . . ,mk)).

Alternatively, it is possible to show that the characterization ofm trans-
lates into the characterization of m and vice versa.
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3.3.13 Corollary. The map ι is a section of Λ, i.e., Λ ◦ ι = idGP .

Proof. This is immediate if we use lemma 3.3.12 and apply the numerical
algorithm to m.

Now we can turn to the main theorem:

3.3.14 Theorem. The map Λ is a CL-map.

How can we prove such a statement? It is possible to prove it directly,
preferably with the Young diagram algorithm. A sketch of the proof can be
found in [Len08]. However, the proof is rather intransparent. Instead, we
will follow an indirect approach. We have seen in 3.2.7 (and the preceding
discussion) that Λ is a CL-map if and only if there exists a map µ with
certain properties. We will directly define such a map. This approach has
two advantages: Firstly, its structure is much clearer; secondly, we will get
as spin-off that Λ is order-preserving.
Recall that we need to define maps µG : IG → P such that for any t ∈ IG
we have expon(t) = size(µG(t)) and with some additional requirements (for
details see 3.2.7).

3.3.15 Algorithm. Let

G =
k∏
i=1

(Z/peiZ)ri , where e1 > e2 > . . . > ek > 0,

be a p-group in standard form.
Let t = (ti,s)1≤i≤k,1≤s≤ri ∈ IG (i.e., all ti,s ≥ 0).
We define µG(t) as the output of the following algorithm:

1. Start with the derivation n of ι(G).

2. FOR i := k DOWNTO 1 DO
FOR s := ri DOWNTO 1 DO
REPEAT ti,s times:
Let j be the maximal index such that nj−1 = ei and nj < ei.
Decrease nj−2s by 1.
Increase nj by 1.
END REPEAT
END FOR
END FOR

3. Let n be the partition with derivation n. Output n.
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If necessary, we may add an entry “0” at the right of n before choosing j.
Note that the order of the loops is crucial: It is not possible to change the
order of the inner nor of the outer loop.

3.3.16 Lemma. The above algorithm has the following invariants: In any
step, before decreasing and increasing entries,

(i) n is a derivation.

(ii) 1 ≤ nj−2s ≤ ei.

(iii) nj−2s+1 = nj−2s+2 = . . . = nj−1 = ei.

(iv) nl < ei for all l ≥ j.

(v) nj−2s + nj ≥ ei.

(vi) For all ĩ < i there is a j̃ < j − 2s such that nj̃ = eĩ.

In particular, in each step (= the three lines within the REPEAT loop) there
does exist a j as required.

Proof. We use induction on the number of steps. In the first step, i.e., before
the first “decrease” operation, n is a derivation in Dbase, and the statements
can be immediately verfied using lemma 3.3.12.
Now assume the invariants hold during all steps up to a certain step A of the
algorithm. We want to show that they persist in the next step B. Let n be
the state before step A, and let n′ be the state before step B. Let e′i, s′, j′ be
the data of step B. Then ei ≤ e′i.
Let us first turn to (i). Lemma 3.1.4 gives us a characterization of derivations.
Except for the third point, all the requirements there are trivial to see from
our induction hypothesis. So we only need to show

∑i2
l=i1

(−1)l−i1n′l ≥ 0
for all 1 ≤ i1 < i2 ≤ k, i1 ≡ i2 mod 2 (if i2 = k, without the condition
i1 ≡ i2 mod 2). By remark 3.1.5 we may restrict ourselves to the case i2 = k,
so we need to show that

k∑
l=i1

(−1)l−i1n′l ≥ 0 for all 1 ≤ i1 < k.

Of course, by induction hypothesis we know that the same formula is true for
n. Since j ≡ j − 2s mod 2, the only interesting case is when j − 2s < i1 ≤ j.
If i1 ≡ j mod 2, then

k∑
l=i1

(−1)l−i1n′l =
k∑

l=i1

(−1)l−i1nl + 1 ≥ 1 > 0.



CHAPTER 3. THE COHEN-LENSTRA HEURISTIC AND PARTITIONS 59

Otherwise,
k∑

l=i1

(−1)l−i1n′l
(iii)

≥
k∑

l=j−1

(−1)l−i1n′l

= n′j−1 − n′j︸ ︷︷ ︸
>e−e=0

+
k∑

l=j+1

(−1)l−i1 n′l︸︷︷︸
=nl

≥
k∑

l=j+1

(−1)l−i1nl

≥ 0 by induction hypothesis.

Now we come to (ii)–(vi). First assume ei = e′i. Then s ≥ s′. Since nj < ei we
know n′j ≤ ei. If n′j < ei then j = j′ and the invariants (iii)–(vi) are obvious
and (ii) follows from (v) and (vi) of the hypothesis. So assume n′j = ei. Then
j′ = j + 1 and (ii), (iii), (iv) and (vi) are obvious. (v) follows from the fact
nj′−2s′ = ei.
Now assume ei < e′i. Then the invariants ensure that no entry ≥ e′i has been
modified in any preceeding step. Now recall that the start sequence was in
Dbase, so when the algorithm started n was monotonously decreasing. Let
l0 be the index such that at the starting point of the algorithm nl ≥ e′i for
l ≤ l0 and nl < e′i for l > l0. Then before step B, n1, . . . , nl0 are unchanged.
Therefore, nl0−2s+1 = nl0−2s+2 = . . . = nl0 = e′i. On the other hand, for
l > l0, we still have nl < e′i, so in step B we have j = l+ 1, and all invariants
remain true.
3.3.17 Lemma. Let G ∈ GP be as in the algorithm above and let t ∈ IG.
Then expon(t) = size(µG(t)).
Proof. Recall that

expon(t) =
∑

1≤i,j≤k

min(ei, ej)rirj +

(
k∑
i=1

ri∑
s=1

sti,s

)
.

Let n be the generic variable of algorithm 3.3.15. We know that n ∈ D, so
let n be its partition. First we show that when the algorithm starts we have

size(n) =
∑

1≤i,j≤k

min(ei, ej)rirj. (3.4)

Recall now n = ι(G). Let G = (m1,m2, . . . ,mk′) ∈ GP . Recalling the
definition of ι (definition 3.3.10) we see that

size(n) =
k′∑
l=1

ml + 2
k′∑
j=2

k′∑
l=j

ml.
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We know that exactly ri of the mi are equal to ei, namely the entries
mr1+...+ri−1+1, . . . ,mr1+...+ri−1+ri

.
How often does the term ei occur in the sum? Counting yields

ri + 2

r1+r2+...+ri−1∑
j=2

ri +

r1+r2+...+ri−1+ri∑
j=r1+r2+...+ri−1+1

(r1 + . . .+ ri−1 + ri − j + 1)


= ri + 2

(
ri(r1 + r2 + . . .+ ri−1)− ri +

1

2
ri(ri + 1)

)
= r2

i + 2
i−1∑
j=1

rirj,

so the contribution of the ei-terms is eir2
i + 2

∑i−1
j=1 eirirj. Summing up over

all i yields equation (3.4).
Now we show that one step in the algorithm (decreasing nj−2s by 1 and
increasing nj by 1) increases size(n) by exactly s. Then the lemma follows
from trivial induction.
So what does it mean for n if nj−2s is decreased by 1 and nj is increased
by 1? It means that nj−2s, nj−2s+2, nj−2s+4, . . . , nj−2 are increased by 1. The
other entries of n remain unchanged. Hence, size(n) increases by s and we
are done.

Next we want to show that Λ ◦ µG is simply the projection onto the one-
element set {G}. Unfortunately, the algorithms for Λ and µG are not step-
by-step inverse. For this reason, I will define a variant of the Λ-algorithm
which is equivalent to the algorithm 3.3.6 and inverts µG step by step.

3.3.18 Algorithm (numerical). Let n = (n1, n2, . . . , nm) ∈ P .

1. Let n1 := n be the derivation of n. Let k := 1 and let s1 := 1.

2. Let jk := min{j | nkj < nkj+1}.
Let λk := max {nkl | jk ≤ l ≤ m}, and let ik := max{l| nkl = λk}.
If k > 1 and λk = λk−1 then put sk := sk−1 + 1; otherwise put sk := 1.

3. If nkik−2sk+1 < λk then replace nkik−2sk+1 by λk and replace nkik+1 by nkik+1 +
nkik−2sk+1 − λk. Otherwise, do nothing.

4. Shift the subsequence nkik−2sk+1, n
k
ik−2sk+2, . . . , n

k
ik

(all of which are equal
to λk) to the left until its left neighbor entry is ≥ λk, thereby getting
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nk+1. (Here, “shifting” means only a reordering of the entries – no entry
is destroyed. See also the example below.)

Increase k by 1.

5. Repeat step 2,3 and 4 until nk is monotonously decreasing.

The output of the algorithm is (n0, n2, n4, . . .) ∈ GP , where possible 0’s on
the right are left out.

Before listing the crucial properties of this algorithm, I give an example:

3.3.19 Example. Let n = (11, 11, 9, 9, 9, 8, 8, 6, 4, 4, 4, 3, 2, 1, 1). This is the
same partition as in examples 3.3.5 and 3.3.8.
I mark the area from ik − 2sk + 1 to ik by bold type.
k=1 : We compute

n1 = n = (0, 2, 2, 0, 1, 1,2,4, 2, 0, 1, 2, 2, 1, 1, 1).

We have s1 = 1, j1 = 0, λ1 = 4, i1 = 7. (Recall that the first entry of n has
index 0.)
Since n1

6 < λ1, we replace n1
6 by 4 and n1

8 by 2 + 2− 4=0. We get

(0, 2, 2, 0, 1, 1,4,4, 0, 0, 1, 2, 2, 1, 1, 1).

Now we shift the subsequence 4, 4 to the left. There is no other entry ≥ 4,
so we shift it all the way to the left:

n2 = (4, 4, 0, 2, 2, 0, 1, 1, 0, 0, 1,2,2, 1, 1, 1).

k=2 : We get j2 = 2, λ2 = 2 6= λ1, so s2 = 1, i2 = 12.
Since n2

11 = λ2, step 3 is void. We shift the sequence 2, 2 to the left until we
obtain n2

4 as left neighbor:

n3 = (4, 4, 0,2,2,2,2, 0, 1, 1, 0, 0, 1, 1, 1, 1).

k=3 : We get j3 = 2, λ3 = 2 = λ2, so s3 = 2, i3 = 6.
Since n3

3 = λ3, step 3 is void. We shift the sequence 2, 2, 2, 2 to the left until
we obtain n3

1 as left neighbor:

n4 = (4, 4, 2, 2, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1,1,1).

k=4 : We get j4 = 7, λ4 = 1 6= λ3, so s4 = 1, i4 = 15.
Since n4

14 = λ4, step 3 is void. Since the left neighbor of the marked 1, 1-
sequence is already ≥ 1, we do not need to shift:

n5 = (4, 4, 2, 2, 2, 2, 0, 0, 1, 1, 0, 0,1,1,1,1).
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k=5 : We get j5 = 7, λ5 = 1 = λ4, so s5 = 2, i5 = 15.
Since n5

12 = λ5, step 3 is void. We shift the sequence 1, 1, 1, 1 to the left until
we obtain n5

9 as left neighbor:

n6 = (4, 4, 2, 2, 2, 2, 0, 0,1,1,1,1,1,1, 0, 0).

k=6 : We get j6 = 7, λ6 = 1 = λ5, so s6 = 3, i6 = 13.
Since n6

8 = λ6, step 3 is void. We shift the sequence 1, 1, 1, 1, 1, 1 to the left
until we obtain n6

5 as left neighbor:

n7 = (4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0).

n7 is monotonously decreasing, so we are done.
The result is (n0, n2, n4, n6, n8, n10) = (4, 2, 2, 1, 1, 1) ∈ GP .

If we compare this example with example 3.3.8 we can already see that this
algorithm does essentially the same computation as the standard algorithm
3.3.6. Before we compare these two, I list some important invariances.

3.3.20 Lemma. In the algorithm above, we have for any k:

(i) nk is a derivation.

(ii) nkik−2s+1 = . . . = nkik = λk.

(iii) If λk 6= λk−1 then nk starts with the sequence

λ1, λ1, λ2, λ2, λ3, λ3, . . . , λk−1, λk−1.

In this case, this part of the sequence remains unchanged during the
rest of the algorithm.

(iv) When the algorithm terminates, nk ∈ Dbase.

Proof. The lemma is obtained by straightforward induction. The only non-
trivial point is (i). Inspecting the characterization of derivations in lemma
3.1.4, we see that shifting an even number of entries maintains the derivation
property, so step 4 of the algorithm is ok. Step 3 requires proof, but the
proof is almost identical to the proof of 3.3.16, so I omit it here.

3.3.21 Proposition. The two algorithms 3.3.6 and 3.3.18 coincide.

Proof. This is almost trivial by the invariants of the preceding lemma. Pre-
cisely speaking, we have the following: Let nk be the intermediate result of
our modified algorithm 3.3.18 and let n′k be the intermediate result after the
same number of step of the original algorithm 3.3.6. Then n′k is obtained
from nk by removing all entries nki with
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• 0 ≤ i ≤ 2(k − sk) (those are precisely the entries with nki > λk), or

• ik − 2sk + 2 ≤ i < ik.

This claim can be checked immediately by comparing the steps of the two
algorithms. It reflects the fact that the original algorithm removes twice the
entry λk whereas the modified version shifts them to the left.
In particular, whenever λk 6= λk−1 the second condition is empty and n′k is
obtained from nk by removing the first 2k − 2 entries.
Now we investigate the algorithms and see that they choose λk+1 as the
maximum from the same set of numbers. Therefore, the algorithms give the
same result.

3.3.22 Remark. The preceeding proposition and example indicate that the
modified version of the numerical algorithm differs only in details from the
original one. This is true — as long as you let them work on derivations.
However, you should keep in mind that small changes in derivations like
shifting a few entries does have a non-trivial effect on the corresponding
partitions. In particular, a shift in derivations will change the size of the
corresponding partitions! Therefore, the two algorithms do have considerable
differences when translated into algorithms that work on partitions.
The difference is exemplified in our proof that Λ is a CL-map. As we will
shortly see, the modified algorithm inverts the µ-algorithm step by step. The
original version does not so, and is not even close because it does not even
have the correct partition sizes in the intermediate steps. Of course, as we
have seen before, the two algorithms essentially coincide whenever λk−1 6= λk.
With respect to µ that means that the original Λ-algorithm inverts every
FOR-loop of the µ-algorithm as a whole, but not the single steps within a
FOR-loop (i.e., not the REPEAT-loops).
Finally, note that in the modified algorithm it is crucial that we choose ik to
be maximal – not for coinciding with the other algorithm (for that we could
have chosen any i with nki = λk) but for being inverse to the µ-algorithm.
Also, it is not clear how one could modify the µ-algorithm in such a way
that it would be inverse to a Λ-algorithm with non-maximal ik. That is one
reason why I chose ik to be maximal already in the original Λ-algorithm (cf.
3.3.7).

3.3.23 Proposition. Let G ∈ GP and let t ∈ IG.
Then (Λ ◦ µG)(t) = G.

Proof. We use the modified numeric algorithm for computing Λ (3.3.18).
When the µG-algorithm 3.3.15 runs on the input t, it modifies a derivation
n in each step, starting with nstart := ι(G) and terminating with the state
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nend := µG(t). Furthermore, it uses a counter s. After termination we let
the Λ-algorithm run on the input nend, producing states nk and parameters
sk in each step.
We use an inductive argument. Let n be the state of the µG-algorithm at
some point before going into a (non-trivial) REPEAT-loop, and let n′ be the
state after this loop. Let s and s′ be the value of the counter corresponding to
the two states, respectively. Comparing the invariants of the two algorithms
(lemmas 3.3.16 and 3.3.20) we find:

If there is a k with n′ = nk and s′ = sk then n = nk+1 and s = sk+1.

In other words, one step of the Λ-algorithm inverts the REPEAT-loop of
the µG-algorithm. This gives the induction step. For the base case of the
induction, just note that the µG-algorithm terminates with nend and s = 1
and the Λ-algorithm starts with n1 = nend and s1 = 1 = s.
Therefore, the Λ-algorithm terminates with nk = nstart := ι(G). Its output
is then G. This proves the proposition.

3.3.24 Corollary. For various G, the images of µG are mutually disjoint
and their union is all of P.

Proof. By proposition 3.3.23, we have Λ◦µG ≡ G 6= G′ ≡ Λ◦µG′ for G 6= G′,
so the images of the µG are mutually disjoint.
For the second statement, fix an n ∈ N and let Pn := {n | size(n) = n}.
Consider

M :=
⋃
G

(µG(IG) ∩ Pn).

Clearly, M ⊆ Pn. Consider the coefficient an of qn in the power series∑
Gw(G). We know already

w(G)
3.2.3
=
∑
t∈IG

qexpon(t) 3.3.17
=

∑
t∈IG

qsize(µG(t)).

Since the images of all µG are mutually disjoint, we conclude an = #M ,
where an is the coefficient of qn. On the other hand, by equation (3.1) on
page 38 we know an = #Pn. Therefore M cannot be a proper subset of Pn
and we have equality.

As we have seen earlier, the existence of such maps µG ensures that Λ is a
CL-map. Hence we have concluded our proof of the main theorem 3.3.14.

We conclude this section by showing that Λ is order-preserving (in the sense
of 3.2.7). Since we have already defined the maps µG, we only need to show
that µG is order-preserving for each G.
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3.3.25 Proposition. Let G ∈ GP . Then µG is order-preserving.

Proof. We need to show that for t, t′ ∈ IG, t < t′ we have µG(t) < µG(t′). The
first inequality means that t is dominated by t′, the second one means that
the Young diagram of µG(t) is contained in the Young diagram of µG(t′).
Let G =

∏k
i=1 (Z/peiZ)ri in standard form (with ei strictly decreasing). Then

IG = {(ti,s)1≤i≤k,1≤s≤ri | ti,s ≥ 0}. We may assume that there is no t′′ such
that t < t′′ < t′. This is the case only if

• t and t′ differ only for one i0, and

• Either A: ti0,1 = t′i0,1 − 1 and ti0,s = ti0,s for all s > 1.

Or B: There is an s0 > 1 such that ti0,s0 = t′i0,s0 +1, ti0,s0+1 = t′i0,s0+1−1
and ti0,s = ti0,s for all s 6= s0, s0 + 1.

I will argue for case B, which is a bit more complicated. Case A is completely
analogous. Let n, n′ be the generic variable in the µ-algorithm when applied
to t, t′, respectively. Obviously, n = n′ until we come to the REPEAT loop
indexed by i = i0 and s = s0 + 1. If we compare the t′ case with the t case,
in the former one the algorithm performs one decrease/increase action with
s0 + 1 instead of one with s0. Hence after this operation n′ differs from n
only in two entries nj, nj+2 of distance 2: nj = n′j − 1 and nj+2 = n′j+2 + 1.
(Exacly the same property is generated in case A). Inspecting the algorithm,
we see that this property is maintained throughout the rest of the algorithm.
Hence, after termination there is a j0 such that nj0 = n′j0−1, nj0+2 = n′j0+2+1
and nj = n′j for j 6= j0, j0 + 2. Therefore, returning to partitions we get
nj0+2 = n′j0+2 + 1 and nj = n′j for j 6= j0 + 2. Evidently, n is dominated by
n′ and we have proven our assertion.

3.3.26 Corollary. Λ is an order-preserving CL-map.

Proof. We know that Λ is a CL-map by 3.3.14. For being order-preserving,
by definition 3.2.7 it is sufficient to check that each µG is order-preserving,
which is true by corollary 3.3.25.

3.4 Some consequences

Theorem 3.3.14 enables us to compute the probability of a group to have a
certain exponent. Recall that I use the p-adic exponent, i.e., if a p-group has
exponent e I mean that it is annihilated by pe.
As always, q = 1

p
, but q may also be viewed as a formal variable.
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3.4.1 Theorem. Let e ≥ 0 be fixed. Then we have∑
Gis a p-group
of exponent ≤e

w(G) =
∏

j 6≡0,±(e+1)
mod 2e+3

(1− qj)−1.

(In the product, j runs through all positive integers staisfying the congruence
conditions, not only through all residue classes mod 2e+ 3.)

Proof. Recall that, since Λ is a CL-map,

w(G) =
∑
n≥0

aG(n)qn,

where

aG(n) =
∣∣Λ−1(G) ∩ {n ∈ P | n is a partition of n ∈ N}

∣∣ .
Hence, ∑

G is a p-group
of exponent ≤e

w(G) =
∑
n≥0

∣∣∣∣{n ∈ P ∣∣∣∣ n is a partition of n and
Λ(n) has exponent ≤ e

}∣∣∣∣ qn.
But if G is interpreted as a partition in GP , then the exponent is simply the
largest part. Given a partition n = (n1, . . . , nm) ∈ P , the largest part of
Λ(n) will be λ1, since the λi are sorted. On the other hand, it is easy to see
that λ1 = maxi (ni+2 − ni), where we put n0 := n−1 := 0. So we know that∑

G is a p-group
of exponent ≤e

w(G) =
∑
n≥0

∣∣∣∣{n ∈ P ∣∣∣∣ n is a partition of n and
ni+2 − ni ≤ e for all i

}∣∣∣∣ qn.
But the right hand side is a well-known generating function, and its value is∏

j 6≡0,±(e+1)
mod 2e+3

(1− qj)−1

(cf. [And76], Thm 7.5, k := i := e+ 1), which proves the theorem.

3.4.2 Corollary. The probability (in the Cohen-Lenstra heuristic) that a
p-group has exponent ≤ e is ∏

j≡0,±(e+1)
mod 2e+3

(1− p−j).

Here, the product runs over all positive integers j that satisfy one of the
congruences.
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Proof. The heuristic tells us that the volume of the one-element set {G} is
w(G)
w(Gp)

(here w(G) is interpreted as an evaluated, not a formal series), so the
probability of a p-group having exponent ≤ e is

1

w(Gp)

 ∑
G is a p-group
of exponent ≤e

w(G)

 =

(∏
j≥1

(1− p−j)

) ∏
j 6≡0,±(e+1)
mod 2e+3

(1− p−j)−1


=

∏
j≡0,±(e+1)
mod 2e+3

(1− p−j).

To give a feeling for those probabilities, here is a table that lists the proba-
bility for a finite abelian p-group to have p-exponent e.

e = 0 e = 1 e = 2 e = 3 e ≥ 4
p = 2 28.879% 33.965% 18.521% 9.361% 9.374%
p = 3 56.013% 29.178% 9.871% 3.292% 1.646%
p = 5 76.033% 19.167% 3.840% 0.768% 0.192%
p = 7 83.680% 13.988% 1.999% 0.286% 0.048%
p = 11 90.083% 9.015% 0.820% 0.075% 0.007%

3.4.3 Remark. This corollary is a generalization of [CL84, Example 5.3],
where the case e = 1 is treated. Also, similar formulas for the rank of a
p-group have long been known ([CL84, Thm. 6.1]). However, rank and ex-
ponent behave rather antipodal: It is pretty straightforward to derive results
about the rank from the original Cohen-Lenstra approach, but the exponent
gives very tough problems (except for e = 1).
On the other hand, with the given partition-theoretic interpretation (theorem
3.3.14), the exponent formula above is an almost trivial consequence, whereas
it is not clear at all what it means for a partition to be mapped under Λ to
a group of some given rank.
The same formula, although in a different context, was independently dis-
covered by Fulman [Ful97]. See section 4.6 for a discussion.

3.5 Uniqueness of Λ

We have seen that our definition of Λ indeed establishes a powerful connec-
tion between the Cohen-Lenstra distribution and partitions and improves
our understanding of the Cohen-Lenstra distribution. However, so far the
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definition of Λ seems to be somewhat arbitrary. Recall that the key equation

w(G) =
∑
n≥0

aG(n)qn

with
aG(n) =

∣∣Λ−1(G) ∩ {n ∈ P| n is a partition of n ∈ N}
∣∣ ,

is true for any order-preserving CL-map (cf. definition 3.2.7).
On the other hand, some corollaries (theorem 3.4.1 f.) rely heavily on the
specific definition of Λ. So a question naturally arises: Is there anything
special about our definition of Λ, or are there other order-preserving CL-
maps, which might reveal other facts about the Cohen-Lenstra heuristic?
This section will answer the above question partially. There are two ways
in which we can alter Λ: Firstly, we may concatenate Λ with any order-
preserving automorphism of the set of all partitions. Fortunately, there is
only one non-trivial such automorphism (see section 3.5.1 below).
Secondly, we may look for a completely different CL-map. This map then
induces a canonical section ι : GP

1:1→ Pbase, and this canonical section may
or may not coincide with the canonical section of Λ. Indeed, I will give an
example that shows that the canonical section need not coincide, not even
up to automorphism. However, we will show that if we require the canonical
section to coincide with the canonical section of Λ (as described in definition
3.3.10) then the CL-map already equals Λ. In other words, Λ is unique over
its canonical section. Note that this does not necessarily imply that for any
other choice of the canonical section there is at most one order-preserving
map over this section. Further work would be necessary to rule out this
possibility. However, since this part of the thesis serves only as a motivation,
I have excluded these further considerations.
For the same reason, I have not addressed the question which sections appear
as canonical sections of CL-maps. The forthcoming proof indicates that
such a section must satisfy very strict requirements, so I would be rather
surprised if their was an “essentially different” canonical section (and hence,
an “essentially different” order-preserving CL-map). But this is only a gut
feeling, and I may well be mistaken.
Another drawback of this section is that even the proof of the conditional
uniqueness is not yet fully satisfactory: It is messy and lengthy and does not
give a “high-level reason” for this uniqueness. A better understanding of the
proof would perhaps come along with a better understanding of Λ and hence
might give us deeper insight into the Cohen-Lenstra heuristic.
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3.5.1 Automorphisms of the set of partitions

3.5.1 Definition. A map ϕ : P → P is an automorphism of P if it is
bijective and both ϕ and ϕ−1 are compatible with the natural ordering on P.
In other words, we require the equivalence

n < m⇔ ϕ(n) < ϕ(m).

We have already encountered one non-trivial automorphism: The map which
assigns to each partition its conjugate partition (i.e., the map which reflects
the Young diagram of a partition along the diagonal of the quadrant) is
clearly bijective and order-preserving, hence an automorphism. It will turn
out that this is the only non-trivial automorphism of P :

3.5.2 Theorem. The set of automorphisms of P consists of only two ele-
ments: The identity map and the conjugation map.

We postpone the proof until we have established the following helpful lemma:

3.5.3 Lemma. The size of a partition is invariant under automorphisms of
P.

Proof. We note that the size n of a partition n can be described as the length
of the longest strictly increasing chain of partitions from 1 = (1) to n.
As a formula:

n = max{k | ∃ sequence (1) = n1 < n2 < n3 < . . . < nk = n}.

Why is that formula true? Since ni < ni+1, we also have size(ni) < size(ni+1),
therefore any sequence from 1 to n has length at most n. On the other hand,
it is trivial to see that a sequence of length n exists (just fill up the rows in
the Young diagram successively). Hence, we have equality.
Now notice that we have redefined the size in terms of the ordering only.
Since the ordering is invariant under automorphism, everything that can be
computed in terms of the ordering is invariant, too. In particular, the size is
invariant, as required.

Now we are ready to prove theorem 3.5.2:

Proof of Theorem 3.5.2. Let ϕ be an automorphism of P . Since ϕ preserves
the ordering, it must preserve the empty partition and the partition 1 = (1),
because they are the only partitions with size 0 and 1, respectively.
We have two partitions of size 2, namely (2) and (1, 1). Hence, the orbit of
(2) under the automorphism group consists of at most 2 elements. If we can



70 3.5. UNIQUENESS OF Λ

show that the stabilizer of (2) consists only of the identity, we may conclude
that the size of the automorphism group is at most 1 · 2 = 2. Since we have
already shown that the identity and the conjugation map are automorphisms,
this will finish our proof.
So let us turn to the stabilizer of (2), i.e., we assume ϕ((2)) = (2). We need
to show that ϕ is the identity map, i.e., it preserves every partition n. For
this, we use induction on the size n of n. Since we make extensive use of the
ordering, recall that we say n lies above m if n > m.

• n ≤ 2: We have already shown this case.

• n > 2: We assume that ϕ preserves every partition of size ≤ n− 1.

We consider two cases: First, let us assume that there are at least two
different partitions m1 and m2 of size n − 1 that lie under n. Then
the Young diagram of n contains both the Young diagrams of m1 and
m2, and hence also the union of their Young diagrams. Since m1 and
m2 are not equal (and not contained in each other due to their equal
size), the union of their Young diagrams has size ≥ n and is thus equal
to the Young diagram of n. So m1 and m2 already determine n, and
since they are invariant under ϕ by our induction hypothesis, n is also
invariant.

Now let us consider the second case: There is only one partition m
of size n − 1 under n. Call this property (*). Since automorphisms
are order-preserving, this property is also preserved by ϕ. A short
moment of thought shows that in this case all entries of n must be
equal: n = (i, i, . . . , i), and m = (i, i, . . . , i, i − 1). Now we must show
that n can be reconstructed uniquely from m. But this is trivial if m
has at least two entries, or if it has one entry ≥ 2. Together, if the size
of m is n− 1 ≥ 2, then there is only one n of size n with the property
(*). Hence, n is invariant under ϕ.

We have concluded our induction and proven the theorem.

3.5.2 Uniqueness modulo the canonical section

In the following example, I present an order-preserving CL-map the canonical
section of which differs from the one of Λ. Furthermore, it is non-trivial, i.e.,
it is not a mere concatenation of Λ with some order-preserving automorphism
of partitions.
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3.5.4 Example. By the properties of Λ, we may write

P =
⋃̇
G∈GP

Λ−1(G) ∼=
⋃̇
G∈GP

IG,

where IG is defined as in 3.2.2, and the union on the right hand side is a
formal disjoint union.
We define Λ′ : P → GP as follows

Λ′(n) :=



0 if n = (),

Z/pZ if n ∈ Λ−1(Z/pZ) (i.e. n = (1, . . . , 1)),
Z/p2Z if n = (i), i ≥ 2,

Z/piZ if n ∈ Λ−1(Z/pi−1Z) \ {(i− 1)}, i ≥ 3,

Λ(n) otherwise.

Before we investigate the example, let me for convenience list the values of
Λ in these cases:

Λ(n) =



0 if n = (),

Z/pZ if n ∈ Λ−1(Z/pZ) (i.e. n = (1, . . . , 1)),
Z/piZ if n = (i), i ≥ 2,

Z/pi−1Z if n ∈ Λ−1(Z/pi−1Z) \ {(i− 1)}, i ≥ 3,

Λ(n) else.

First, let us show that Λ′ is a CL-map:

• For non-cyclic groupsG, we have Λ′−1(G) = Λ−1(G), so there is nothing
to show.

• The same is true for G = {0} and G = Z/pZ.

• For G = Z/p2Z, we need exactly one partition of size k in the fiber
Λ′−1(G), for any k ≥ 2. By definition Λ′−1(G) = {(i) | i ≥ 2}, so for
each k ≥ 2, there is exactly one partition of k in Λ′−1(G), as required.

• For other cyclic groups G = Z/piZ, i ≥ 3, we again need exactly
one partition of size k in the fiber Λ′−1(G), for any k ≥ i. We have
Λ′−1(G) = Λ−1(Z/pi−1Z) \ {(i − 1)}. Hence, for any k ≥ i, there is
exactly one partition in the fiber, as required.

Now we show that Λ′ is order-preserving. We need to show that it preserves
order on each fiber:
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• For non-cyclic groups G, we have Λ′−1(G) = Λ−1(G). The same is true
for G = {0} or G = Z/pZ. In these cases, there is nothing to show.

• For G = Z/p2Z, we need that the partition ordering induces a total
ordering on Λ′−1(G), because we also have a total ordering on IG ∼= N

in this case. This requirement is met, since Λ′−1(G) = {(i) | i ≥ 2}.

• For other cyclic groups G = Z/piZ, i ≥ 3, we again need a total
ordering on Λ′−1(G) = Λ−1(Z/pi−1Z) \ {(i − 1)}. Since the fiber
Λ−1(Z/pi−1Z) is totally ordered, so is Λ′−1(G).

Note that Λ′ is order-preserving even in a stronger sense: For groupsG1 ⊂ G2,
we have ι′(G1) ≤ ι′(G2), where ι′ denotes the canonical section of Λ′ (cf.
definition 3.2.8 and remark 3.2.9).

So we have seen that Λ is not unique. But at least we will prove the following
theorem:

3.5.5 Theorem. Let Λ be the map defined in sections 3.3.1 and 3.3.2, and
let ι : GP → Pbase be its canonical section. Then there is no other order-
preserving CL-map with canonical section ι.

3.5.6 Remark. Note that we do not only require Pbase to be fixed, but also
the section ι. A slight modification of example 3.5.4 produces a different
order-preserving CL-map Λ′ with identical base-set Pbase, but with different
section ι : GP → Pbase.

We split the proof of the theorem into several steps. Before we turn to the
main arguments, let us first show the following lemmas:

3.5.7 Lemma. Let G =
∏k

i=1 (Z/peiZ)ri be a p-group in standard form, and
let t = (ti,s)1≤i≤k,1≤s≤ri ∈ IG, such that ti,s > 0 for (at least) two different
index pairs (i1, s1) and (i2, s2).
Then there exist two different tuples u and v in the fiber IG that lie immedi-
ately below t. (I.e., u < t, and any tuple between u and t equals either u or
t; same for v.)

Proof. Define u as follows:

ui,s =


ti,s if i 6= i1,

ti,s if i = i1 and s 6= s1, s 6= s1 − 1,

ti,s − 1 if i = i1 and s = s1,

ti,s + 1 if i = i1 and s = s1 − 1.
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The last case is empty if s1 = 1.
Then (ui1,s)1≤s≤ri1 is dominated by (ti1,s)1≤s≤ri1 . Since all other entries co-
incide, u < t. Furthermore, expon(t) = expon(u) + 1 by a straightforward
calculation. Since the exponent is integral and compatible with the ordering
(remark 3.2.6), u lies immediately below t.
We define v analogously:

vi,s =


ti,s if i 6= i2,

ti,s if i = i2 and s 6= s2, s 6= s2 − 1,

ti,s − 1 if i = i2 and s = s2,

ti,s + 1 if i = i2 and s = s2 − 1.

By the same argument, v also lies immediately below t.
It only remains to show that u 6= v. If i1 6= i2, this is clear. It is also clear if
i1 = i2 and s1, s2 differ by at least 2. Finally, if i1 = i2 and s1 = s2 + 1, then
we note that ui1,s1 = ti1,s1 − 1 6= ti1,s1 = vi1,s1 . Hence, in all cases u 6= v.

The most difficult part of the proof is concerned with tuples t ∈ IG which are
not of the form given above. We need a characterization of the images of all
such t under µG for various G. The next lemma gives a necessary criterion
for a partition to be such an image. In fact, the criterion is also sufficient,
but since we do not need sufficiency, we will not prove it.

3.5.8 Lemma. Let G =
∏k

i=1 (Z/peiZ)ri be a p-group in standard form, and
let t = (ti,s)1≤i≤k,1≤s≤ri ∈ IG such that there is an index (i0, s0) with ti0,s0 > 0
and ti,s = 0 for all (i, s) 6= (i0, s0).
Let n := µG(t) and let n = (n0, . . . , nm) be its derivation. Then there exists
j0 ∈ {0, . . . ,m − 2} and an even k0 > 0 (k0 = 2s0) such that j0 + k0 ≤ m,
the last index m is even if j0 + k0 < m, and one of the following two cases
holds:

A) • j0 is even.
• n0 = n1 ≥ n2 = . . . ≥ nj0−2 = nj0−1 (alternating “≥” and “=”).
• nj0 < nj0+1 = . . . = nj0+k0−1 ≥ nj0+k0 (all “=”).
• nj0 + nj0+k0 − nj0+1 = nj0+k0+1 (:= 0 if j0 + k0 + 1 > m).
• nj0+k0 > nj0+k0+1.
• nj0+k0+1 ≥ nj0+k0+2 = nj0+k0+3 ≥ nj0+k0+4 = . . . ≥ nm−1 = nm.
• nj0−1 ≥ nj0+k0+1.

(No comparison between nj0−1 and nj0!)
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B) • j0 is odd.

• n0 = n1 ≥ n2 = n3 ≥ . . . ≥ nj0−1 (alternating “≥” and “=”).

• nj0−1 ≤ nj0.

• nj0 < nj0+1 = . . . = nj0+k0−1 ≥ nj0+k0 (all “=”).

• nj0 + nj0+k0 − nj0+1 = nj0−1.

• nj0+k0 > nj0+k0+1.

• nj0+k0+1 = nj0+k0+2 ≥ nj0+k0+3 = . . . ≥ nm−1 = nm.

• nj0−1 ≥ nj0+k0+1.

Furthermore, in both cases, there lies exactly one partition immediately below
n in Λ−1(G), and it has derivation

(n1, n2, . . . , nj0−1, nj0 + 1, nj0+1, nj0+2 − 1, nj0+3, nj0+4, . . . , nm).

In case A, the multiset {ni | i odd} is up to zeroes equal to the multiset {ei}.
(But the ni are in a different order than the ei!)
In case B, the multiset {ni | i even} is up to zeroes equal to the multiset {ei}.
(But the ni are in a different order than the ei!)
In both cases, nj0+1 = ei0.
No derivation n of a partition is of type A and B at the same time. (I.e.,
there are no j0, j′0 such that n is of type A with respect to j0 and of type B
with respect to j′0.)

Proof. The key idea is to look at

(e1, . . . , e1︸ ︷︷ ︸
2r1 times

, e2, . . . , e2︸ ︷︷ ︸
2r2 times

, . . . , ek, . . . ek︸ ︷︷ ︸
2rk times

),

which is the derivation of ι(G) (and therefore, which corresponds to the tuple
t = (0, . . . , 0) ∈ IG), and successively increase ti0,s0 .
Assume we have a derivation n, belonging to some t ∈ IG, for which all
coefficients except possibly ti0,s0 are 0. Then increasing ti0,s0 by 1 can be
done by the following simple procedure:

(i) Let j0 be the largest index with the properties

• nj0 > 0.

• nj < ei0 for all j ≥ j0 + 2s0.

(ii) Decrease nj0 by 1.
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(iii) Increase nj0+2s0 by 1.

From this algorithm, it is pretty easy to obtain the A-/B-assertions in the
lemma. Simply define j0 as the index that has been increased in the last step,
and define k0 := 2s0. Since I fear that some readers might already be getting
lost in too much notation, I will omit the formal proof and give instead a
(hopefully) illuminating example:
Assume G = Z/p6Z× Z/p5Z× Z/p5Z× Z/p5Z× Z/p4Z× Z/p1Z.
Then the derivation of ι(G) is simply n := (6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 1, 1). This
corresponds to t = (0, . . . , 0).
What happens if we increase an entry of t? Assume the non-trivial entry is
t2,2, corresponding to the e2 = 5-part. Then we obtain the sequence

(6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 1, 1)

→ (6, 6, 5, 5, 4, 5, 5, 5, 5, 4, 1, 1)

→ (6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 1, 1)

→ (6, 6, 5, 5, 4, 4, 4, 5, 5, 5, 2, 1)

→ (6, 6, 5, 5, 4, 4, 3, 5, 5, 5, 3, 1)

→ (6, 6, 5, 5, 4, 4, 2, 5, 5, 5, 4, 1)

→ (6, 6, 5, 5, 4, 4, 1, 5, 5, 5, 5, 1)

→ (6, 6, 5, 5, 4, 4, 1, 4, 5, 5, 5, 2)

→ (6, 6, 5, 5, 4, 4, 1, 3, 5, 5, 5, 3)

→ · · ·

Note how the sequence of 5’s moves through the derivation. If you want
to prove the lemma, it is helpful to note the following: If you remove the
wandering 5’s in the manner of the numerical algorithm (replace a 5 and
its two neighbors by their sum minus 10), then you always end up with the
derivation (6, 6, 5, 5, 4, 4, 1, 1), which is the original derivation with k0 times
the entry 5 = ei0 removed. This is true in general and already implies most
of the statements.
Let us turn to the statements listed below the case distinction. In IG, it is
clear that there is exactly one tuple that lies immediately below the tuple
t = (0, . . . , 0, ti0,s0 , 0 . . . , 0). Namely, it is (0, . . . , 0, 1︸︷︷︸

i0,s0−1

, ti0,s0 − 1, 0 . . . , 0) if

s0 > 0 and (0, . . . , 0, ti0,s0− 1, 0 . . . , 0) otherwise. Hence, there is also exactly
one partition in Λ−1(G) immediately below n, and since we know its t-tuple,
we can compute it. (It is feasible to apply the above algorithm ti0,s0−1 times
with s0 and afterwards(!) once with s0 − 1.)
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The two statements concerning the multisets {ni} are clear by what we have
seen so far.
It only remains to show that no derivation is of type A and B at the same
time. So let n be of type A with respect to j0 and k0. We need to show that
there do not exist j′0 and k′0 such that n is of type B with respect to j′0 and
k′0. Assume they exist. Then j′0 is odd and nj′0 < nj′0+1. By A, this implies
j′0 = j0 − 1. Now B implies that nj0 = nj0+1 (if k0 > 2) or nj0 ≥ nj0+1 (if
k0 = 2). In any case, this is a contradiction to A, which states nj0 < nj0+1.

Proof of Theorem 3.5.5 (Uniqueness modulo canonical section).
Let Λ′ be an order-preserving CL-map with canonical section ι. We prove
that for any n ∈ P , Λ′(n) = Λ(n), and both maps are induced by the same
map µ :

⋃·
G IG → P (cf. definition 3.2.7). We do this by induction on the

size n of n.
For n = 0, the statement is clear because () is the only partition of size 0
and is therefore mapped to the trivial group by both maps.
Let n > 0 and let n be a partition of n. Let Λ(n) =: G =

∏k
i=1 (Z/peiZ)ri

in standard form. Then n corresponds to its preimage µ−1(n) =: t =
(ti,s)1≤i≤k,1≤s≤ri ∈ IG (all ti,s ≥ 0). We distinguish several cases:

(i) ti,s = 0 for all i and s, or equivalently n ∈ Pbase. Then

Λ′(n)
ι section

= Λ(ι(Λ′(n)))
n∈Pbase

= Λ(n).

(ii) ti,s > 0 for (at least) two different index pairs (i1, s1) and (i2, s2).
Then by lemma 3.5.7, there exist two different tuples u, v ∈ IG that lie
immediately below t. Let m1 = µ(u) and m2 = µ(v). Then m1 and m2

lie immediately below n. Therefore, in the fiber Λ′−1(G) there exists a
partition that lies immediately above m1 and m2.

But n is the only such partition. (Its Young diagram is the union of
the Young diagrams of m1 and m2.) Therefore, n ∈ Λ′−1(G), or in
other words, Λ′(n) = G. Note that we have also proven that µ−1(n) is
uniquely determined.

(iii) There exists an index (i0, s0) such that ti0,s0 > 0 and ti,s = 0 for all
(i, s) 6= (i0, s0).

Lemma 3.5.8 tells us that the derivation n of n is either of type A or
of type B. Abusing terminology, I will say in this case that n is of type
A or B, respectively.
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Let n = (n0, . . . , nm) denote the derivation of n. Let j0 and k0 be as in
lemma 3.5.8. Then the lemma tells us that the partition m with deriva-
tion m = (n0, n1, . . . , nj0−1, nj0 +1, nj0+1, nj0+2−1, nj0+3, nj0+4, . . . , nm)
is in Λ−1(G) and lies immediately below n.

Since the size of m is smaller than the size of n, we know by induction
hypothesis that m ∈ Λ′−1(G). Thus there must be a partition imme-
diately above m in Λ′−1(G). Now the proof runs as follows: We split
up the set of all partitions of type A and B into several cases and go
through these cases one by one. Then we would like to show that n is
the only partition immediately above m that has not yet been covered
by prior cases. Since all the other partitions immediately above m are
ruled out, we then conclude that n ∈ Λ′−1(G), as required.

Unfortunately, it is not true in general that n is the only partition
which is immediately above m and is not covered by former cases. We
must relax the notion a bit: We show that the number of partitions
immediately above m and not covered by prior cases equals the size of
the set {n′ ∈ Λ′−1(G) | n′ lies immediately above m}. Then we may
again conclude that n ∈ Λ′−1(G).

Before we turn to this part of the proof, let me finish the overall argu-
ment. So assume we have shown that for any partition m of size n− 1
we have{
n ∈ Λ′−1(G)

∣∣∣∣n lies immedia-
tely above m

}
=

{
n ∈ Λ−1(G)

∣∣∣∣n lies immedia-
tely above m

}
.

On the first glance, it seems that we are already done. But in the
inductive step, we have not only used that m lies in the fiber Λ′−1(G)
and Λ−1(G) of the same group G, but also that m corresponds under
µ and µ′ to the same tuple (ti,s)1≤i≤k,1≤s≤ri ∈ IG. Formally speaking,
this is not true!

However, it is rather easy to show that there is not much variation pos-
sible in µ′. More precisely, if ri1 = ri2 for some indices 1 ≤ i1, i2 ≤ k,
then we may switch (ti1,s)1≤s≤ri1 and (ti2,s)1≤s≤ri2 , and µ′ can be ob-
tained from µ by a sequence of such operations. This can be verified
inductively, in parallel with the induction we are yet to complete. Al-
though the proof of this is simple, I omit the details. The missing parts
of the induction are complicated, so I want to keep them as “clean” as
possible from other reasoning. However, once the reader has worked
through the proof, it will be easy to recapitulate it and add the missing
details about µ′.
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If you believe me in the differences between µ and µ′, please note that
µ and µ′ induce the same ordering on P — more precisely, for any
partition m, we have

#

{
n ∈ Λ′−1(G)

∣∣∣∣n lies immedia-
tely above m

}
= #

{
n ∈ Λ−1(G)

∣∣∣∣n lies immedia-
tely above m

}
.

This is the reason why our inductive argument works.

So let us return to the missing part of the proof: Recall that n is of
type A or B, and m lies immediately below n. We have described m
explicitly in lemma 3.5.8. Let n′ be any partition that is of type A or
B lying immediately above m, and let n′ be its derivation. Then we
can construct n′ from m by picking some index j1 6= j0, decreasing mj1

by 1 and increasing mj1+2 by 1. (This is evidently true for any two
derivations where one lies immediately above the other.)

Then extensive case distinction shows that either n = n′, or n and n′
belong to one of the cases 1–17 listed below. Let me first describe how
to read the case distinction:

In each case, the first sequence of inequalities refers to n and is the pre-
requisites (including those conditions that are given by underbrackets).
There is one further prerequisite that I do not write down explicitly,
namely that

nj0 + nj0+k0 − nj0+1 =

{
nj0+k0+1 for type A,
nj0−1 for type B.

If a derivation n meets the prerequisites, then it is of type A or B
and there exists a feasible derivation n′ as described in the second
sequence that lies immediately above m. This statement is true if you
continue the sequence at the left and right in the obvious way, i.e., with
alternating “=”- and “≥”-symbols. If a derivation lacks entries (e.g., if
in case 1 we have j0 = 1, so nj0−2 and nj0−3 do not exist), we may fill
up the derivation on the left with “∞” ’s and on the right with 0’s and
then check the inequalities. (Note that it is allowed to add something
to an entry “0” and get a feasible derivation.)

The description of n′ is straightforward: I have given a subsequence
of n′ with the entries separated (for convenience only) by relations
(<,=, . . .) or by “,” if two entries are not comparable. In the cases 8
and 15, n′ is not of type A or B, but is in Pbase. Strictly speaking, it is
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not necessary to include those cases, but I felt the case distinction to
be more complete in this way.

The cases 16 and 17 include an index j1, which is to be read as follows:
If there exist indices j0 and j1 such that both the sequences with j0

and j1 occur in n, then there exists an n′ as specified. It does not
matter which of the two sequences comes first. Note further that j1 is
automatically even. The reason why those two cases are qualitatively
different is that m ∈ Pbase in these cases. And for such an m there may
be lots of derivations that lie immediately above m. In fact, the case
16 describes only derivations that are regularly (i.e., with respect to Λ)
above m.

1.

n: Type B, k0 = 2

. . . ≥ nj0−3 = nj0−2 ≥ nj0−1︸ ︷︷ ︸
>nj0+3

≤ nj0

< nj0+1 ≥ nj0+2 >nj0+3 = nj0+4 ≥ . . .

n′: Type B, k′0 = 2, j′0 = j0

. . . ≥ nj0−3 = nj0−2 > nj0−1 − 1 < nj0 + 1

< nj0+1 + 1 > nj0+2 − 1 >nj0+3 = nj0+4 ≥ . . .

2.

n: Type B, k0 = 2

. . . ≥ nj0−3 = nj0−2 = nj0−1 = nj0︸︷︷︸
=nj0+1−1

< nj0+1 = nj0+2 >nj0+3︸ ︷︷ ︸
<nj0

= nj0+4 ≥ . . .

n′: Type B, k′0 = 4, j′0 = j0 − 2

. . . > nj0−3 − 1 < nj0−2 < nj0−1 + 1 = nj0 + 1

= nj0+1 > nj0+2 − 1 >nj0+3 = nj0+4 ≥ . . .
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3.
n: Type B, k0 = 2

. . . ≥ nj0−3 = nj0−2︸ ︷︷ ︸
=nj0−1+1

> nj0−1 = nj0︸︷︷︸
=nj0+1−1

< nj0+1 = nj0+2 > nj0+3︸ ︷︷ ︸
<nj0−2

= nj0+4 ≥ . . .

n′: Type A, k′0 = 4, j′0 = j0 − 3

. . . > nj0−3 − 1 < nj0−2 = nj0−1 + 1 = nj0 + 1

= nj0+1 > nj0+2 − 1 ≥nj0+3 = nj0+4 ≥ . . .

4.
n: Type B, k0 = 2

. . . ≥ nj0−3 = nj0−2 ≥ nj0−1 = nj0︸︷︷︸
=nj0+1−2

< nj0+1 = nj0+2 >nj0+3︸ ︷︷ ︸
≤nj0

= nj0+4 ≥ . . .

n′: Type A, k′0 = 4, j′0 = j0 − 1

. . . ≥ nj0−3 = nj0−2 ≥ nj0−1 < nj0 + 1

= nj0+1 − 1 = nj0+2 − 1 ≥nj0+3 + 1 > nj0+4 ≥ . . .

5.
n: Type A, k0 ≥ 6

. . . ≥ nj0−2 = nj0−1 > nj0︸︷︷︸
=nj0+1−1

< nj0+1 = nj0+2 = nj0+3 = . . .

. . . = nj0+k0−2 = nj0+k0−1 > nj0+k0︸ ︷︷ ︸
=nj0+k0+1+1

> nj0+k0+1

≥ nj0+k0+2 = nj0+k0+3 ≥ . . .

n′: Type A, k′0 = k0 − 4, j′0 = j0 − 2

. . . ≥ nj0−2 = nj0−1 ≥ nj0 + 1 = nj0+1 > nj0+2 − 1 < nj0+3 = . . .

. . . = nj0+k0−2 > nj0+k0−1 − 1 ≥ nj0+k0 = nj0+k0+1 + 1

> nj0+k0+2 = nj0+k0+3 ≥ . . .



CHAPTER 3. THE COHEN-LENSTRA HEURISTIC AND PARTITIONS 81

6.

n: Type A, k0 = 4

. . . ≥ nj0−2 = nj0−1 > nj0︸︷︷︸
=nj0+1−1

< nj0+1 = nj0+2

= nj0+3 > nj0+4 > nj0+5︸ ︷︷ ︸
=nj0+4−1

≥ nj0+6 = nj0+7 ≥ . . .

n′: Type A, k′0 = 2, j′0 = j0 + 2

. . . ≥ nj0−2 = nj0−1 ≥ nj0 + 1 = nj0+1 > nj0+2 − 2

< nj0+3 ≥ nj0+4 + 1 > nj0+5 ≥ nj0+6 = nj0+7 ≥ . . .

7.

n: Type A, k0 = 4

. . . ≥ nj0−2 = nj0−1 > nj0︸︷︷︸
=nj0+1−1

< nj0+1 = nj0+2

= nj0+3 = nj0+4 > nj0+5︸ ︷︷ ︸
=nj0+4−1

≥ nj0+6 = nj0+7 ≥ . . .

n′: Type B, k′0 = 2, j′0 = j0 + 3

. . . ≥ nj0−2 = nj0−1 ≥ nj0 + 1 = nj0+1 > nj0+2 − 2

< nj0+3 < nj0+4 + 1 > nj0+5 ≥ nj0+6 = nj0+7 ≥ . . .

8.

n: Type A, k0 = 4

. . . ≥ nj0−2 = nj0−1 > nj0︸︷︷︸
=nj0+1−1

< nj0+1 = nj0+2

= nj0+3 > nj0+4 > nj0+5︸ ︷︷ ︸
=nj0+4−1

≥ nj0+6 = nj0+7 ≥ . . .

n′ ∈ Pbase

. . . ≥ nj0−2 = nj0−1 ≥ nj0 + 1 = nj0+1 > nj0+2 − 1

= nj0+3 − 1 ≥ nj0+4 = nj0+5 + 1 > nj0+6 = nj0+7 ≥ . . .
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9.

n: Type A, k0 = 4

. . . ≥ nj0−2 = nj0−1 = nj0︸︷︷︸
=nj0+1−1

< nj0+1 = nj0+2

= nj0+3 > nj0+4 > nj0+5︸ ︷︷ ︸
=nj0+4−1

≥ nj0+6 = nj0+7 ≥ . . .

n′: Type B, k′0 = 2, j′0 = j0 − 1

. . . ≥ nj0−2 = nj0−1 < nj0 + 1 = nj0+1 > nj0+2 − 1

= nj0+3 − 1 ≥ nj0+4 = nj0+5 + 1 > nj0+6 = nj0+7 ≥ . . .

10.

n: Type A, k0 = 4

. . . ≥ nj0−2 = nj0−1 > nj0︸︷︷︸
=nj0+1−1

< nj0+1 = nj0+2

= nj0+3 > nj0+4 > nj0+5︸ ︷︷ ︸
=nj0+4−1

≥ nj0+6 = nj0+7 ≥ . . .

n′: Type B, k′0 = 2, j′0 = j0 + 3

. . . ≥ nj0−2 = nj0−1 ≥ nj0 + 1 = nj0+1 > nj0+2 − 1

= nj0+3 − 1 < nj0+4 = nj0+5 + 1 > nj0+6 = nj0+7 ≥ . . .

11.

n: Type A, k0 = 2

. . . ≥ nj0−2 = nj0−1︸ ︷︷ ︸
=nj0+1

> nj0︸︷︷︸
=nj0+1−2

< nj0+1

≥ nj0+2 > nj0+3︸ ︷︷ ︸
=nj0+2−2

≥nj0+4 = nj0+5 ≥ . . .

n′: Type A, k′0 = 4, j′0 = j0 − 2

. . . ≥ nj0−2 − 1 < nj0−1 = nj0 + 2 = nj0+1

> nj0+2 − 1 > nj0+3 ≥nj0+4 = nj0+5 ≥ . . .
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12.

n: Type A, k0 = 2

. . . ≥ nj0−2 = nj0−1︸ ︷︷ ︸
≥nj0+3+1

, nj0︸︷︷︸
<nj0+1−2

< nj0+1

≥ nj0+2 > nj0+3︸ ︷︷ ︸
<nj0+2−2

≥nj0+4 = nj0+5 ≥ . . .

n′: Type A, k′0 = 2, j′0 = j0

. . . ≥ nj0−2 = nj0−1 , nj0 + 1 < nj0+1 − 1

≥ nj0+2 − 1 > nj0+3 + 1 >nj0+4 = nj0+5 ≥ . . .

13.

n: Type A, k0 = 2

. . . ≥ nj0−2 = nj0−1 = nj0︸︷︷︸
=nj0+1−2

< nj0+1

= nj0+2 > nj0+3︸ ︷︷ ︸
=nj0+2−2

≥nj0+4 = nj0+5 ≥ . . .

n′: Type B, k′0 = 4, j′0 = j0 − 1

. . . ≥ nj0−2 = nj0−1 < nj0 + 1 = nj0+1 − 1

= nj0+2 − 1 = nj0+3 + 1 >nj0+4 = nj0+5 ≥ . . .

14.

n: Type A, k0 = 2

. . . ≥ nj0−2 = nj0−1 ≤ nj0︸︷︷︸
=nj0+1−2

< nj0+1

> nj0+2 > nj0+3︸ ︷︷ ︸
=nj0+2−2

≥nj0+4 = nj0+5 ≥ . . .

n′: Type B, k′0 = 2, j′0 = j0 − 1

. . . ≥ nj0−2 = nj0−1 < nj0 + 1 = nj0+1 − 1

> nj0+2 − 1 = nj0+3 + 1 >nj0+4 = nj0+5 ≥ . . .
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15.

n: Type A, k0 = 2

. . . ≥ nj0−2 = nj0−1 > nj0︸︷︷︸
=nj0+1−2

< nj0+1

≥ nj0+2 > nj0+3︸ ︷︷ ︸
=nj0+2−2

≥nj0+4 = nj0+5 ≥ . . .

n′ ∈ Pbase

. . . ≥ nj0−2 = nj0−1 ≥ nj0 + 1 = nj0+1 − 1

≥ nj0+2 − 1 = nj0+3 + 1 >nj0+4 = nj0+5 ≥ . . .

16.

n: Type A, k0 = 2

. . . ≥ nj0−2 = nj0−1 > nj0︸︷︷︸
=nj0+1−1

< nj0+1

≥ nj0+2 > nj0+3︸ ︷︷ ︸
=nj0+2−1

≥ nj0+4 = nj0+5 ≥ . . .

. . . = nj1−1 ≥ nj1 = nj1+1 > nj1+2 = nj1+3 ≥ . . .

n′: Type A, k′0 = 2, j′0 = j1

. . . ≥ nj0−2 = nj0−1 ≥ nj0 + 1 = nj0+1

> nj0+2 − 1 = nj0+3 ≥ nj0+4 = nj0+5 ≥ . . .
. . . = nj1−1 > nj1 − 1 < nj1+1 ≥ nj1+2 + 1 > nj1+3 ≥ . . .

17.

n: Type A, k0 = 2

. . . ≥ nj0−2 = nj0−1 > nj0︸︷︷︸
=nj0+1−1

< nj0+1

≥ nj0+2 > nj0+3︸ ︷︷ ︸
=nj0+2−1

≥ nj0+4 = nj0+5 ≥ . . .

. . . ≥ nj1 = nj1+1 = nj1+2 = nj1+3 >nj1+4 = nj1+5 ≥ . . .
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n′: Type B, k′0 = 2, j′0 = j1 + 1

. . . ≥ nj0−2 = nj0−1 ≥ nj0 + 1 = nj0+1

> nj0+2 − 1 = nj0+3 ≥ nj0+4 = nj0+5 ≥ . . .
. . . > nj1 − 1 < nj1+1 < nj1+2 + 1 > nj1+3 >nj1+4 = nj1+5 ≥ . . .

Be aware that the case distinction is not exclusive: It might be that
n belongs to several cases. This is unavoidable, because it reflects the
fact that several different derivations may lie immediately above m.

I will not prove that the case distinction is exhaustive. The proof is
straightforward, but rather lengthy. If you want to check it, then it
is very helpful to use the following observations: The entries of any
derivation of type A or B increase at most twice, and at succeeding
positions: from j0−1 to j0 and from j0 to j0+1. Furthermore, any even
j such that nj 6= nj+1 satisfies j0−1 ≤ j ≤ j0 or j0+k0−1 ≤ j ≤ j0+k0.
In particular, there are at most two even indices j such that nj 6= nj+1.
Since both n and n′ are of type A or B, these two properties will
rule out most possibilities. For a complete check, just start with any
derivation n of type A or B and go through all possible values of k0

(k0 = 2, k0 = 4, k0 = 6, . . .). Now pass from n to n′ as described on
page 78 – on partition level this means removing one block from the
Young diagram and adding one other block – and check whether the
resulting n′ is of type A or B. You will not encounter any difficulties
except for possibly losing your patience.

So let us proceed by working through all the cases. Since the case
distinction is exhaustive, we know that for any derivation n of type
A or B which does not belong to one of the cases 1–17, n is the only
partition of type A or B immediately above m. Since there must exist a
partition immediately above m in Λ′−1(G) of type A or B, we conclude
n ∈ Λ′−1(G), or Λ′(n) = G = Λ(n), as required.

So we only need to consider the cases 1–17. Let the notation be as in
the case distinction, so n and n′ lie immediately above m. We need to
show that in all the cases Λ′(n′) 6= Λ(n), unless Λ(n′) = Λ(n). In most
cases, we will use the argument that n′ was already treated in a prior
case, and therefore Λ′(n′) = Λ(n′) 6= Λ(n), which proves the assertion.

Let me rephrase this argument in all detail, because it is at the heart
of our proof: We want to show that Λ′ and Λ coincide, specifically we
want to show Λ′(n) = Λ(n). Our case distinction tells us that Λ′(n)
could take not only the value Λ(n), but also possibly the value Λ(n′). If
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both values are equal, i.e., Λ(n′) = Λ(n), then we are done. If they are
not equal we need to rule out the second possibility, so we need to show
Λ′(n) 6= Λ(n′). Typically we will find that we have already treated n′
in prior cases, so we already know Λ′(n′) = Λ(n′). But Λ and Λ′ map
equally many partitions to Λ(n′). (Strictly speaking, in order to apply
induction hypothesis we count not the total number of partitions, but
only the number of partitions lying immediately above m – but this
is also the same for Λ and Λ′). This contradicts the possibility that
Λ′(n) = Λ(n′), because then Λ′ would map more partitions to Λ(n′)
than Λ(n), namely n, n′ and all others that are mapped to Λ(n′) by Λ.
Therefore, the possibility Λ′(n) = Λ(n′) is ruled out. When we have
treated all cases in which n occurs (which may be more than one),
then we have ruled out all other possibilities – the only remaining one
is Λ′(n) = Λ(n), which we wanted to show.

We will treat the cases in the order 2, 1, 8, 7, 10, 3, 9, 13, 15, 4, 6, 11,
14, 17, 16, 12, 5.

Case 2 : n′ is of type B with k′0 = 4. This already implies that n′
does not belong to case 1–17, so it was covered by prior cases. (I.e.,
either there exist several partitions in Λ−1(n′) immediately below n′ or
there is no non-trivial n′′ such that Λ′(n′) = Λ(n′′) is possible. In both
cases, we may conclude Λ′(n′) = Λ(n′).) Hence, our standard argument
works, and we conclude Λ′(n′) 6= Λ(n).

Case 1 : n′ is of type B. Therefore, it could only occur in the cases 1–4.
Case 2 is already ruled out, and looking at n′ we notice that n′j′0+1 is
strictly larger than its two neighbors, which rules out cases 3 and 4.
Hence n′ could only again be in case 1.

Now we do a kind of induction within case 1. Recall that the set GP of
groups is partially ordered by domination (definition 1.2.8). Therefore,
Λ induces a partial ordering on the set

S := {n ∈ P | n has size n and belongs to case 1}

as follows: For n1, n2 ∈ S, we say n1 strictly dominates n2 if and only if
Λ(n1) strictly dominates Λ(n2). (Note that the word “strictly” is crucial
in order to obtain a partial ordering.) We may apply induction with
respect to this ordering because S is finite. Our induction hypothesis
will be that Λ′(n1) = Λ(n1) for all n1 ∈ S strictly dominating n.

Now we only have to look at n′. Its image Λ(n′) is almost identical with
Λ(n), only the two entries nj0+2 and nj0 are replaced by nj0+2 + 1 and
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nj0 − 1. (Recall that you can read off the image under Λ by taking the
entries of the derivation with odd or even indices if n is of type A or
B, respectively.) Since nj0+2 > nj0 , n′ strictly dominates n. So we can
apply the induction hypothesis and get Λ′(n′) = Λ(n′) 6= Λ(n). Hence,
by our standard argument Λ′(n) = Λ(n).

Case 8 : This case is trivial because n′ ∈ Pbase, and therefore Λ′(n′) =
Λ(ι(Λ′(n′))) = Λ(n′).

Case 7+10 : If n belongs to one of those cases, then it is of type A with
k0 = 4 and has 4 equal coefficients nj0+1 = . . . = nj0+4. Therefore it
is not compatible with any other case. Let us first investigate case 7:
n′ is of type B, so it could only belong to case 1–4. Cases 1 and 2 are
already treated, and looking closer at n′, we see that n′j′0+1 is strictly
larger than its two neighbors, which contradicts cases 3 and 4.

In case 10, we have Λ(n) = Λ(n′): The values nj0 , nj0+2, nj0+4 are
replaced by nj0+1, nj0+3−1, nj0+5+1, which are the same three integers.
Together we see that any derivation in cases 7 and 10 must satisfy
Λ′(n) = Λ(n).

Case 3 : n′ is of type A with k′0 = 4. Furthermore, it has four equal
values n′j′0+1 = . . . = n′j′0+4. Therefore, it could only belong to Case 7
or 10, which are already done.

Case 9 : n′ is of type B. Since 1,2,3 are done, this leaves only possibly
case 4. But n′j′0+1 = n′j′0

+ 1, which is a contradiction to the condition
nj0+1 = nj0 + 2 of case 4.

Case 13 : n′ is of type B with k′0 = 4. No case fits into this pattern.

Case 15 : This case is trivial, since n′ ∈ Pbase.

Case 4,6,11,14 : This is the hardest part. First look at case 4. Then
n′ is of type A with k0 = 4. There is only one case left which fits into
that pattern, namely case 6. I claim that Λ(n′) is strictly dominated
by Λ(n) (in the same sense as in case 1.) In fact, it emerges from the
latter one by replacing nj0−1, nj0+1 and nj0+3 by nj0 + 1, nj0+2− 1 and
nj0+4. Since we have the equalities nj0−1 = nj0 = nj0+1− 2 = nj0+2− 2
and nj0+3 = nj0+4, the claim becomes obvious.

Now inspect case 6. Obviously, Λ(n′) = Λ(n) because the odd entries
remain unchanged. Further, n′ is of type A with k0 = 2 and with
n′j′0

= n′j′0+1 − 2. Therefore, n′ could fit the conditions of cases 11, 13,
14 and 15, of which 13 and 15 are already ruled out. So the cases 11
and 14 are left.
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Next we turn to case 11. Again the odd enries are unchanged so we
have Λ(n′) = Λ(n). Further, n′ is of type A with k0 = 4. The only
remaining case with these parameters is case 6.

Finally we look at case 14. Here, n′ has type B and could therefore
be contained in case 4. We see that Λ(n′) is obtained from Λ(n) by
replacing nj0+1 and nj0+3 by nj0 + 1 and nj0+2 − 1, or in other terms
by nj0+1 − 1 and nj0+3 + 1. Since nj0+1 > nj0+3 + 2, this implies that
Λ(n) strictly dominates Λ(n′).

Now we have all the ingredients together to start an induction with
respect to domination. We define the set

S4 := {n ∈ P | n has size n and belongs to case 4.}

and in the same manner sets S6, S11 and S14. Let n be in any of these
four sets. Our induction hypothesis is that for any derivation n1 in
one of the four sets such that n dominates n1, we already know that
Λ(n1) = Λ′(n1).

Assume that n ∈ S4. Then we know that n′ ∈ S6 is dominated
by n, so we may apply the induction hypothesis to n′, and therefore
Λ′(n′) = Λ(n) 6= Λ′(n). Thus we conclude by our standard argument
that Λ′(n) = Λ(n).

For n ∈ S14 the reasoning is completely analogous. So let us assume
n′ ∈ S6 or n′ ∈ S11. Let T1 := (S6 ∪ S11 ∪ S14) ∩ Λ−1(G), and let
T2 := (S6∪S11∪S14)∩Λ′−1(G). Then T2 ⊆ T1 by our above reasoning.
On the other hand, by the properties of Λ′ we know that T1 and T2 have
equally many elements. Hence T1 = T2. In particular, n′ ∈ T1 = T2,
which implies Λ′(n′) = G = Λ(n′).

Case 17 : n′ is of type B and there are no cases left with n of type B.

Case 16 : n′ is of type A and k′0 = 2. The only fitting case that remains
is again 16. But a brief look shows that the entries with odd index are
unchanged, so Λ(n′) = Λ(n). Furthermore, n is not compatible with
any other open case. Thus Λ′(n′) = Λ(n′).

Case 5 : n′ is of type A and k′0 = k0 − 4. Since no other cases are left,
we may use a trivial induction by k0.

This completes the case distinction and the proof.



Chapter 4

Computing Interesting Values

In this chapter, I will present other methods for computing concrete values
concerning the Cohen-Lenstra probability measure, such as expected values
and higher moments. These fall into two categories: Firstly, the theory
of zeta functions invented by Cohen and Lenstra, and secondly, methods
invented for studying conjugacy classes of the general linear group GL(n, p).
This distinction is purely historical. We will see that the theory of conjugacy
classes provides us with a plentitude of tools.

Although this theory is fully developed (e.g., cf. [Ger61], [Kun81], [RS88],
[Sto93], [Ful97], [Ful99], [Ful00b]), the connection to the Cohen-Lenstra
heuristic seems to have slipped general attention in both direction: Neither
were the group theorists aware of the Cohen-Lenstra heuristic [Ful08], nor did
the number theorists recognize the full connection to conjugacy classes (al-
though Washington was aware of corollary 4.6.4 about fixed spaces [Was86],
which is a special case of the general relationship).

These circumstances give me the golden opportunity to reap the fruits of
other people’s hard work. I want to emphasize that all the results in this
chapter are not my own work. My humble contribution is only to re-interpret
established results in the notion of the Cohen-Lenstra heuristic. However,
since this connection was generally unnoticed until now I gather the most
important results from conjugacy class theory that transfer to statements
about the Cohen-Lenstra heuristic. Particularly of interest is the work of
Jason Fulman [Ful97], [Ful99], [Ful00b] who examined precisely the conjugacy
theory analogue of the Cohen-Lenstra probability.

But first I review Cohen and Lenstra’s zeta function approach.

89
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4.1 Zeta functions

Cohen and Lenstra embed what I call the Cohen-Lenstra weight w into a
larger family of measures wk as follows. For a finite abelian p-group G, let
sk(G) be the number of surjective homomorphisms Zk → G (or, equivalently,
Zkp → G). Then they define

wk(G) :=
sk(G)

|G|k
w(G).

Note that the denominator equals the number of all (not necessarily surjec-
tive) homomorphisms Zk → G.
Then we may compute wk(G) as

wk(G) =


w(G)

k∏
i=k−r+1

(1− qi) if k ≥ r,

0 otherwise.

(4.1)

This follows from our proof of theorem 2.2.1.
In particular, we may recover w(G) as

w(G) = lim
k→∞

wk(G).

Now we define the k-ζ-function over Gp as

ζ
(p)
k (s) :=

∑
G∈Gp

wk(G)

|G|s
.

Then ζ(p)
k converges for <(s) > −1 and may be computed explicitly by

ζ
(p)
k (s) =

k∏
i=1

1

(1− p−s−i)

([CL84, Cor. 3.7]).
In particular, this implies the formula ζ(p)

k1+k2
(s) = ζ

(p)
k1

(s+ k2)ζ
(p)
k2

(s).
We need one last definition: Let f : Gp → C be a integrable function. We
define

ζ
(p)
k (f ; s) :=

∑
G∈Gp

wk(G)f(G)

|G|s
.

Then the expected value E(f) of f may be computed as
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E(f) = lim
k→∞

ζ
(p)
k (f ; 0)

ζ
(p)
k (0)

.

(This is an analogue of [CL84, Cor. 5.5], only for local groups.)

Often, it is easier to compute the ζ-function of f than to compute the ex-
pected value of f directly. In this way, Cohen and Lenstra compute explicit
formulas for the rank and the order of groups, and for some other functions
(cf. the discussion in 4.6).
Their approach has two more advantages. Firstly, we get almost for free a
treatment of the twisted probability measure Pu discussed in section 4.6.5,
which is of special interest for number field extensions that are not imaginary
quadratic (see 6.1.2 for details).
More precisely, we may compute the expected value Eu(f) of f with respect
to the twisted probability measure Pu as

Eu(f) = lim
k→∞

ζ
(p)
k (f ;u)

ζ
(p)
k (u)

([CL84, Cor. 5.5]).
The second advantage is that the approach gives a way to obtain some state-
ments about the global setting. We may analogously define a ζ-function over
the global set G, it only has a smaller domain of convergence. More precisely,
it converges for <(s) > 0 and has a simple pole in 0. Therefore, under some
technical conditions the expected value of certain global functions f : G → C

may be computed as

E(f) = lim
s→0

lim
k→∞

ζk(f ; s)

ζk(s)

([CL84, Thm. 5.5]), and we only need to compute the residues of the global
ζ-functions. However, note that we cannot use this approach to define a
probability measure on G. Taking the sets for which the above limit exists
only yields a content (definition 5.1.1), and does not avoid the problems we
address in chapter 5.

4.2 The Cohen-Lenstra heuristic: Interpreta-
tion via conjugacy classes

For the rest of the chapter, we fix a prime p. All following definitions impli-
citly depend on p.
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CLASSES

Consider the general linear group GL(n, p) of invertible n× n-matrices over
Fp. Then each conjugacy class can be represented by a matrix in Jordan-
Chevalley normal form.
Before I describe this form, let me define the companion matrix C(ϕ) of a
normalized polynomial ϕ = Xm + am−1X

m−1 + . . .+ a1X + a0. We set C(ϕ)
to be the m×m-matrix

C(ϕ) :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −am−1

 .

Now back to the normal form. It looks as follows: For every monic irreducible
polynomial φ of degree m over Fp and every positive integer s we may have
an arbitrary number (possibly 0) of (φ, s)-Jordan blocks. Each Jordan block
is a square of size sm and is the companion matrix of the polynomial φs.
The normal form then has the form

J1 0 0 . . . 0
0 J2 0 . . . 0
0 0 J3 . . . 0
...

...
... . . . ...

0 0 0 . . . Jr

 ,

where Jk runs through all the Jordan blocks. We only require that the sizes
of the Jordan blocks add up to n.
The normal form works over every field. In section 4.5, we will also work over
the field Fpi , but for the basic theorems it suffices to consider Fp. Note that
over an algebraically closed field (such as C) all irreducible polynomials are
linear and the Jordan-Chevalley normal form reduces to a slight variation of
the ordinary Jordan normal form.
In order to specify a normal form we must specify for every monic irreducible
polynomial φ and any s > 0 how many (φ, s)-Jordan blocks occur. In other
words, for each φ we must specify a partition. We call this partition λφ.
For example, if we have 2 blocks of size 3m and 3 blocks of size m then
this corresponds to the partition (3, 3, 1, 1, 1). In order for the matrix to be
invertible we must require that λX = ().
On the other hand, every collection of partitions (λφ)φ with the properties

• λX = 0 and
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•
∑

φ,s(deg φ)λφ,s = n

defines a (unique) conjugacy class in GL(n, p).

From now on, we fix a monic polynomial φ 6= X over Fp of degree 1.
Let λ be a partition. Pick a random matrix in GL(n, p) uniformly at random.
Then we get a certain probability for the event λφ = λ.
Fulman proved the following theorem.

4.2.1 Theorem. Let φ be any monic polynomial over Fp of degree 1 and let
λ be a partition. As n→∞, the probability (in the sense above) that λφ = λ
for a random matrix in GL(n, p) (chosen uniformly at random) converges to
the CL-probability P (λ).

Proof. [Ful97, Sect. 3.3, Cor. 5 and Sect. 2.7, Lemma 6 and Thm. 5 with
u = 1 and N →∞].

4.2.2 Remark.

• Fulman uses in his thesis a slightly different way of taking the n→∞
limit. Rather, he chooses a parameter 0 < u < 1, then picks the
integer n with probability (1−u)un and chooses a random matrix from
GL(n, p) (cf. [Ful99, p.557f.]). Then he proceeds as above. However,
it is easy to see that letting u→ 1 in this setting yields the same limit
as letting n → ∞ in the theorem above. We only need to interchange
two limits, but this is no problem since all statements concern formal
power series identities with positive convergence radius.

The reason why Fulman chose the parameter u instead of n will become
clear in section 4.5 about the cycle index.

• Fulman studies also the probability distribution for monic polynomials
φ of higher degree. This yields similar distributions with similar formu-
las, only it does not give exactly the Cohen-Lenstra probability. We will
encounter these other distributions in the context of the Kung-Stong
cycle index in section 4.5.

The theorem allows us to transfer a multitude of methods and results from a
whole community of researchers to the Cohen-Lenstra heuristic. I start with
reviewing a very interesting interpretation of the Cohen-Lenstra heuristic in
terms of Markov chains due to Fulman.
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4.3 Interpretation via Markov chains
In his PhD thesis, Fulman gave two interpretations of the Cohen-Lenstra
probability. One as the outcome of a probabilistic algorithm, one as the
weight in the Young lattice with certain transition probabilities. I review
both interpretations in the setting that is relevant to us.
First I present what Fulman calls the “Young Tableau Algorithm” ([Ful99]).
Recall that p is a fixed prime.

4.3.1 Algorithm.

0. Start with λ the empty partition. Also start with N = 1 and with a
collection of coins indexed by the natural numbers, such that coin i has
probability 1

pi
of heads and 1− 1

pi
of tails.

1. Flip coin N . If the outcome is tails then set N := N + 1 and redo step
1, otherwise go to step 2.

2. Choose an integer S > 0 according to the following rule. Set S := 1

with probability pN−λ1−1
pN−1

. For s > 1, set S := s with probability
pN−λs−pN−λs−1

pN−1
. Then increase λS by 1 and go to step 1.

In step 2, we use the convention that all undefined entries of λ are 0. In
particular, if we increase some λs that is not defined then after increasing
the entry is 1.
The algorithm does not halt, but λ converges against some limit partition
λ∞ (cf. theorem 4.3.4 below). The ouput of the algorithm is the conjugate
partition λ′∞ of λ∞.

4.3.2 Example. Assume that we are at step 1 with λ = (3, 2, 1, 1), so the
Young diagram of λ is

Assume further that N = 4 and that coin 4 comes up heads, so we go to step
2. We add to λ1 with probability p−1

p4−1
, to λ2 with probability p2−p

p4−1
, to λ3

with probability p3−p2
p4−1

, to λ4 with probability 0, and to λ5 with probability
p4−p3
p4−1

.
Assume that we choose S = 1 and increase λ1, thus getting λ = (4, 2, 1, 1)
with Young diagram
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We return to step 1 and still have N = 4. Assume that again coin 4 comes
up heads and we go to step 2. Now we add to λ1 with probability 0, to λ2

with probability p2−1
p4−1

, to λ3 with probability p3−p2
p4−1

, to λ4 with probability 0,
and to λ5 with probability p4−p3

p4−1
. Then we return to step 1.

4.3.3 Remark. The name “Young Tableau Algorithm” refers to the concepts
of Young tableaux. A Young tableau is a Young diagram where the boxes are
labelled with 1, . . . , n (n the size of the Young diagram). The labels must be
given in a way that for any 1 ≤ i ≤ n the boxes 1, . . . , i form again a Young
diagram. You may think of a Young tableau as a Young diagram together
with an ordering which tells you how to build up the diagram from scratch.
Since the algorithm does exactly this (building up Young diagrams block by
block), the name is appropriate.

4.3.4 Theorem. With probability 1, the algorithm outputs a finite partition.
For any given partition λ, the probability that the algorithm outputs λ equals
the Cohen-Lenstra probability P (λ).

Since the concept of such an algorithm may be unfamiliar to the reader, let
me rephrase the finiteness statement of the theorem. Let us say the algorithm
has been running for some (finite) time and is in some state λ. Then there
is a positive probability that the algorithm will not add any more blocks
to λ in all the (infinitely many) forthcoming steps of the algorithm. Thus,
there is a positive probability that the algorithm outputs λ. On the other
hand, the probability that the algorithm adds infinitely many blocks to λ
in the (infinite) sequel of the algorithm is 0. Hence, with probability 1 the
algorithm outputs a finite partition.

Proof of theorem 4.3.4.
[Ful99, Thm. 1] with u = 1 and q = p. The author states termination of
the algorithm only for the case u < 1, but his proof implies termination for
u = 1 as well.
It may be of interest to state one intermediate result in Fulman’s proof.
Namely, the probability PN

alg(λ) that the generic partition of the algorithm
equals λ at the time when coin N comes up tails is
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PN
alg(λ) =


 N∏
i=N−λ′1+1

(1− p−i)

( N∏
i=1

(1− p−i)

)
w(λ′) if λ′1 ≤ N,

0 if λ′1 > N,

(4.2)

where w(λ′) is the Cohen-Lenstra weight of the conjugate λ′ of λ.
Evidently, this converges to P (λ′) as N →∞. Since the algorithm conjugates
the output at the end, it will eventually output λ′.

4.3.5 Remark. Formula (4.2) is of particular interest because it is identical
with formula (2.2) in the proof of theorem 2.2.1.(ii) (up to conjugation of λ).
This means that the probability that λ is the intermediary result in Fulman’s
algorithm when coin N comes up tails equals the probability that a random
matrix A ∈ Zn×np has cokernel λ′ ∈ GP = Gp.
So the algorithm is compatible with the graded (by n) structure of the process
of choosing generators and relations described in section 2.2.3.

4.4 Interpretation in the Young lattice

Fulman’s second interpretation is perhaps even more interesting from our
point of view, since it connects more directly to the CL-weight rather than
to the CL-probability.
This approach makes use of the Young lattice. The Young lattice is a directed
graph with vertex set GP (= Gp, but independent of p!). There is a directed
edge from λ to µ if and only if the Young diagram of λ is contained in the
Young diagram of µ and size(λ) = size(µ)− 1.
For the algorithm we will index the vertices by the conjugate λ′ of λ. This
does not affect the edge set. Note that there is a directed edge from λ to µ
if and only if there is an index i0 such that µ′

i0
= λ′i0 + 1 and µ′

i
= λ′i for all

i 6= i0.

4.4.1 Theorem. Put weights mλ′,µ′ on the edges in the Young lattice as
follows:

(i)

mλ′,µ′ =
1

pλ
′
1(pλ

′
1+1 − 1)

if µ′
1

= λ′1 + 1.
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(ii)

mλ′,µ′ =
p−λ

′
s − p−λ′s−1

pλ
′
1 − 1

if µ′
s

= λ′s + 1 for s > 1.

Then the following formula holds for the Cohen-Lenstra weight w and for any
λ ∈ GP of size λ:

w(λ) =
∑
γ′

λ−1∏
i=0

mγ′i,γ
′
i+1
,

where γ′ = (γ′1, . . . , γ
′
λ) runs over all directed paths from the empty partition

to λ′ in the Young lattice.

Proof. [Ful99, Thm. 2]

4.4.2 Remark. A brief calculation shows that for any partition λ ∈ P the
sum of the weights of edges out of λ 6= () is p

pλ
′
1+1−1

< 1. (For λ = (), it

is 1
p−1

< 1.) Therefore, the edge weights can also be viewed as transition
probabilities, provided that we allow for halting.

4.5 The Kung-Stong cycle index

This is a powerful tool for investigating conjugacy classes of groups, deve-
loped by Kung, Stong and Fulman. The techniques apply also to more general
algebraic groups, but for us only the group GL(n, p) is of interest. Recall
(section 4.2) that a conjugacy class of a matrix M ∈ GL(n, p) is described
by assigning a partition λφ(M) to each monic irreducible polynomial φ 6= X
such that

∑
φ,s(deg φ)λφ,s(M) = n.

4.5.1 Definition. For all φ 6= X and all partitions λ, let xφ,λ be a variable.
Then the cycle index ZGL(n,p) is defined as follows:

ZGL(n,p) :=
1

|GL(n, p)|
∑

M∈GL(n,p)

∏
φ 6=X

xφ,λφ(M).

This cycle index is connected with the Cohen-Lenstra probability. In order
to formulate the connection, we embed the CL-probability in a larger class of
probability measures on Gp. For any power pi of p and real number 0 < u < 1,
we define a probability distribution Pu,pi on Gp as follows. Fix a monic
polynomial φ 6= X over Fpi of degree 1. Choose an integer n randomly
according to the probability distribution k 7→ (1− u)uk. Now pick a matrix
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M ∈ GL(n, pi) uniformly at random. Then the pair (M,φ) defines a partition
λφ(M). We define Pu,pi(λ) to be the probability that λφ(M) = λ. (This is
easily seen to be independent of the choice of φ.)
Recall that the CL-probability is obtained from Pu,pi by setting i := 1 and
letting u→ 1.
Explicit formulas for Pu,pi are given in [Ful99, sect. 2]. (The author writes
M(u,q) instead of Pu,pi .)
Now we can state the following theorem due to Kung [Kun81] and Stong
[Sto88]:

4.5.2 Theorem.

(1− u)

(
1 +

∞∑
n=1

ZGL(n,p)u
n

)
=
∏
φ 6=X

∑
λ

xφ,λPu,pdeg(φ)(λ).

Proof. [Ful97, Thm. 10]

We will not go into too detail about the techniques that extract interesting
consequences from this formula, but the essential point is – possibly after
some formula manipulation – comparing the coefficients of un on both sides.
I refer to [Ful97], [Ful99] and [Ful00b] for tons of examples.

4.6 A collection of results
In this section I cite results that were obtained by the number theory com-
munity and the group theoretic community. Some of them were found by
both communities, some not.
Recall that (as everywhere else in this thesis except for chapter 5) a “randomly
chosen group” really means a randomly chosen finite abelian p-group with
respect to the Cohen-Lenstra probability with q = 1

p
regarded as a formal

variable. It was explained in section 3.2 why we may consider q as a formal
variable.

4.6.1 Order

4.6.1 Theorem. The probability that a randomly chosen group has order pn
is

P (ord(G) = pn) = qn
∞∏

i=n+1

(1− qi).

Proof. [CL84, Cor. 3.8]
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Higher moments of the order

Recall that the k-th moment of a random variable X is the expected value
of Xk.
The higher moments of the order of a random group do not exist if k ≥ 1.
(I.e., their values are ∞.) However, for the p-logarithm of the order (which
we will define as local order ordp(G) in definition 5.2.1) we obtain something
meaningful. In his PhD thesis [Meh ], yet to appear, Bernd Mehnert gives a
stunning description in terms of Eisenstein series:
For k ≥ 1 let

Ek(q) :=
∞∑
n=1

σk−1(n)qn

be the k-th Eisenstein series deprived of its constant term, where σi(n) =∑
1≤d|n d

i is the i-th divisor sum. Note that we have defined the Eisenstein
series both for odd and even k.
For a group G =

∏l
i=1(Z/pei)ri in standard form (in particular, all ei are

mutually distinct) of order pk, let

fG(X1, . . . , Xk) := k!
l∏

i=1

Xri
ei

ri!(ei!)ri

and

fk(X1, . . . , Xk) :=
∑

G group of order pk

fG(X1, . . . , Xk).

4.6.2 Theorem. With the above notation, the k-th moment Mk of the local
order of a random p-group is∑

n≥0

nk · Pr(ordp(G) = n) = fk(E1, E2, . . . , Ek).

Proof. [Meh ].

For example, M1 = E1, M2 = E2
1 + E2, M3 = E3

1 + 3E1E2 + E3, M4 =
E4

1 +6E2
1E2 +3E2

2 +4E1E3 +E4, and so on. Remarkably, we see that the local
order of a random group has expected value E1 and variance M2−M2

1 = E2.
Since this is the first time the result is published, let me list some computa-
tions. As formal power series, we get expected value

M1 = E1 = q + 2q2 + 2q3 + 3q4 + 2q5 + 4q6 + . . . ,
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variance

V = E2 = q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + . . . ,

and higher moments

M2 = q + 4q2 + 8q3 + 15q4 + 20q5 + 32q6 + . . .

M3 = q + 8q2 + 26q3 + 63q4 + 116q5 + 208q6 + . . . ,

M4 = q + 16q2 + 80q3 + 255q4 + 608q5 + 1280q6 + . . . ,

and so on.
Finally, I give a table giving (approximatively) expected value M1, variance
V , and higher moments M2, M3 and M4 of the local order for various primes
p. Recall that all values are simply obtained from the power series by plugging
in q = 1

p
:

p = 2 p = 3 p = 5 p = 7 p = 11 p = 13 p = 17
M1 1.6067 0.6822 0.3017 0.1909 0.1091 0.0898 0.0662
V 2.7440 0.9494 0.3660 0.2191 0.1192 0.0968 0.0701
M2 5.3255 1.4148 0.4571 0.2556 0.1311 0.1048 0.0745
M3 24.4734 3.9984 0.8848 0.4173 0.1817 0.1387 0.0926
M4 145.5087 14.7677 2.2088 0.8596 0.3053 0.2189 0.1340

Recall that the local order is the p-logarithm of the usual order, so the trivial
group has local order 0. This is why moments of less than 1 are possible.

4.6.2 Rank

4.6.3 Theorem. The probability that a randomly chosen group has rank r
is

P (rk(G) = r) =

(
∞∏
i=1

(1− qi)

)
qr

2

(
∏r

i=1(1− qi))2 .

This formula was already contained in Cohen and Lenstra’s original paper
[CL84, Thm. 6.3], but was independently proven by Rudvalis and Shinoda
[RS88]. Later on, a new proof by means of the cycle index was given by
Fulman [Ful97, Thm. 15].
In fact, the theorems of Rudvalis and Shinoda look very different from the
version given above. They make statements about the probability that a
random matrix from GL(n, p) has a fixed space of dimension r. But it is
easy to see (cf. [Ful97, Lemma 11]) that the dimension of the fixed space
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of a matrix M ∈ GL(n, p) equals the rank of λ′X−1, i.e., the number of
parts of the partition corresponding to the polynomial X − 1 in the Jordan-
Chevalley normal form. Since for n→∞ the distribution of this partition is
given by the Cohen-Lenstra probability, the above theorem is equivalent to
the following corollary, and this is the form in which Rudvalis/Shinoda and
Fulton have given their theorems:

4.6.4 Corollary. The probability that a randomly chosen matrix in GL(n, p)
has a fixed space of dimension r approaches, as n→∞,(

∞∏
i=1

(1− p−i)

)
p−r

2

(
∏r

i=1(1− p−i))2 .

Washington, who is clearly in the number theory fraction, published this
as a remarkable observation [Was86], but he did not deduce the general
theorem 4.2.1. Also, no immediate reason for this coincidence is known (or
for the general agreement between the Cohen-Lenstra probability and the
probability of partitions appearing in the Jordan-Chevalley normal form),
although this might be simply due to lack of research.

Higher moments of the rank

A closed formula for the higher moments of the rank of a random group is
not known. However, if we consider the quantity prk(G) instead of rk(G), then
more can be said. Cohen and Martinet [CM87, (1.1)(d)] give the following
formula for its higher moments:

4.6.5 Theorem. The k-th moment of prk(G) is (with q = 1
p
)

∑
r≥0

pkr · P (rk(G) = r) =
k∑
i=0

q−i(k−i) ∏k
j=1(1− qj)(∏i

j=1(1− qj)
)(∏k−i

j=1(1− qj)
)
 .

The same formula was independently proven by Fulman [Ful97, Thm. 18,19].
He also pointed out that the summands may be interpreted as the q-analogue
Sq(k, i) of the Stirling numbers of second kind (cf. [BDS94]).

4.6.3 Rank and order combined

4.6.6 Theorem. The probability that a finite abelian p-group has order pn
and rank r is
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P

(
ord(G) = n,

rk(G) = r

)
=

(
∞∏
i=1

(1− qi)

) qn−r
n−1∏
i=1

(1− qi)

|GL(r, p)|

(
r−1∏
i=1

(1− qi)

)(
n−r∏
i=1

(1− qi)

) .

This theorem seems to be missing in the number theory community. It was
proven by Fulman [Ful97, Thm. 16] using the cycle index.

4.6.4 Exponent

4.6.7 Theorem. The probability that a random group has (p-adic) exponent
at most e is

P (expG ≤ e) =
∞∏
i=1

i≡0,±(e+1) mod (2e+3)

(1− qi),

where the index runs through all positive integers that satisfy one of the
congruences.
This theorem was first proven by Cohen [Coh85] and was independently
rediscovered by Fulman [Ful97, Thm. 21] via his Young Tableau Algorithm.
A different and very simple proof is given in [Len08] by means of CL-maps
(cf. corollary 3.4.2 in this thesis).
All proof methods involve the generalized Ramanujan-Rogers identities [And76,
Thm. 7.5]. The case e = 1 occurred already in [CL84] and involves the orig-
inal Ramanujan-Rogers identity.

4.6.5 u-probabilities

4.6.8 Definition. Let u be a positive integer and G a finite abelian p-group.
The u-probability ofG, denoted by Pu(G), is the probability that G is obtained
by the following random process:

(i) Choose randomly a p-group H with respect to the Cohen-Lenstra prob-
ability.

(ii) Choose u elements g1, . . . , gu uniformly at random.

(iii) Output H/〈g1, . . . , gu〉.
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Here, 〈g1, . . . , gu〉 denotes the subgroup generated by g1, . . . , gu.

The u-probabilities are important for studying class groups of number fields
(cf. section 6.1.2). They have extensively been studied by Cohen and Lenstra
[CL84] and others. By means of ζ-functions, Cohen and Lenstra derived the
following explicit formula:

4.6.9 Theorem. Let u > 0 be an integer, and let G be a finite abelian
p-group of order n. Then

Pu(G) =
1

nu
∏u

i=1(1− p−i)
P (G)

= n−u
1

#Aut(G)

∞∏
i=u+1

(1− p−i).

Proof. [CL84, Example 5.9]

In the same paper, you can find explicit formulas for the u-probability that
a p-group is of a certain order or certain rank, is cyclic, is elementary, and
formulas for the expected values of the size of a group and the number of
elements with given annihilator [CL84, examples 5.8–5.13, theorem 6.3].



Chapter 5

Global Theory

We have seen how the Cohen-Lenstra principle leads to a probability distri-
bution on the set of (isomorphism classes of) all finite abelian p-groups, for
arbitrary p ∈ P. However, being a p-group is a restriction we would like to
remove. Often we deal with non-primary groups, e.g., the class group of a
number field (section 6.1) or the Jacobian of a hyperelliptic curve (section
6.3).
But when we try to transfer the techniques for p-groups to non-primary
groups, we face a severe problem. Recall that we introduced the Cohen-
Lenstra distribution by defining the weight of an atomic event {G} to be
proportional to |Aut(G)|−1. For this approach it is crucial that the measure
is finite:

∑
G |Aut(G)|−1 < ∞. We have seen in theorem 2.1.2 that this is

the case if G runs over all p-groups for some p ∈ P. Now what happens if
G runs over all finite abelian groups? This clearly includes all groups of the
form Z/pZ, where p runs over all primes. Hence,∑

G∈G

1

|Aut(G)|
≥
∑
p∈P

1

|Aut(Z/pZ)|
=
∑
p∈P

1

p− 1
=∞.

So we see that we cannot transfer the approach for p-groups to arbitrary
finite abelian groups. On the other hand, by product formulas (multiplying
up all local probabilities) it is pretty clear what “measure” many sets should
have. But this will not lead to a probability measure.
In this chapter we will discuss two different ways – their benefits and draw-
backs – still to assign probabilities to certain events.
The first one invents a notion of restricted countable additivity, where we
require that all the sets involved are measurable. However, we will see that
this approach must necessarily fail to measure the most important global
quantities. Still it is better than the approach that is undertaken in most
current research papers (cf. section 5.1.1).

104
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The second approach imitates the definition of the Lebesgue measure on Rn.
In real analysis, constructions like the Banach-Tarski-paradox (originally in
[BT24]; for a more recent treatment see [Wag93]) show that there is no
equivariant measure on the power set of Rn. The solution is to designate
only some σ-algebra of sets as measurable and to define the measure only on
those. We copy this approach by defining uniform properties and designating
these as a basis for the σ-algebra. In my eyes, this is a quite satisfactory
solution.
Both approaches may be combined.
Actually, there is a third way, using densities. This is perhaps the most
pragmatical way, and it is almost the unique way found in current research
papers. However, this approach has severe theoretical and practical draw-
backs, which will be discussed in section 5.1.1.

Let me finish the introduction with some remarks about terminology: Cohen
and Lenstra speak of probabilities, although they are only talking about
contents (cf. def. 5.1.1 below), and they are well aware of this terminological
slackness. I will not use the term “probability” in a context where we do not
have a probability measure – therefore, my terminology is different from the
one of Cohen and Lenstra. When I talk about their concept, I use the words
“content” or “density”. Further, I use the word “heuristic” to refer to any one
of the above concepts, so a “heuristic” is not a precise mathematical concept.
It would be very convenient to write down a definition of “the” Cohen-Lenstra
content. Unfortunately, such a definition does not exist. (This is one of the
circumstances that necessitate this chapter!) Rather, the precise definitions
in the literature (which still include unprecise terms like “reasonable func-
tions”) work with the concept of densities (section 5.1.1) and always depend
on the specific application. For different applications, one gets different den-
sities: they differ in the set of “measurable” sets, but even if one set is assigned
a content in several settings, these contents need not agree. These problems
are discussed in more detail in section 5.1.1. I will define a global content
in definition 5.1.3 as my personal proposal of a theoretic sound content, but
you should be aware that in the literature there is no agreement on what a
“Cohen-Lenstra content” should be (at least if you want it to be independent
of the specific application).
Opposed to that, when I talk about “the global Cohen-Lenstra measure” or
about “the global Cohen-Lenstra probability”, I mean the probability measure
that I define in 5.2.5. Its existence is the central insight of this chapter, and
section 5.3 is devoted to studying this measure.
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5.1 Global contents
Before we start, let me repeat some basic notions from measure theory which
we will use throughout the chapter.

5.1.1 Definition. An algebra of sets over some set X is a set A of subsets
of X that is closed under complements, finite unions and finite intersections,
and with ∅ ∈ A.
A σ-algebra is an algebra that is also closed under countable unions and
intersections. We usually denote σ-algebras by Σ.
A content on an algebra A is a map µ : A → R ∪ {∞} such that

• µ(∅) = 0.

• µ(A) ≥ 0 for all A ∈ A.

• µ(A1 ∪ A2) = µ(A1) + µ(A2) for all disjoint A1, A2 ∈ A.

We will usually further assume that µ(X) = 1.
A content that is defined on a σ-algebra is called a measure if it is furthermore
countably additive. If µ(X) = 1, it is called a probability measure.

5.1.2 Remark. In the literature, contents are more often referred to as finite
additive measures. I have not adopted this notion because it suggests that
finite additive measure are measures, which is not true in general.

Before coming to the different methods of defining contents, let me first
illustrate the problems we face when we try to define a global probability
measure. So assume we are more ambitious and want to construct a measure
instead of a content.
What properties should a global probability measure have? Note that for
any p, there is a natural projection G πp→ Gp. We would like our probability
to be compatible with these maps, i.e., for anyM ⊆ Gp we would like to have
P (π−1

p (M)) = Pp(M). (Pp is the local Cohen-Lenstra probability on Gp.)
Moreover, the p-parts of each group should be independent (as the auto-
morphism group of a group decomposes into a direct product of the au-
tomorphism groups of its p-parts, see section 3.5.1), i.e., for finitely many
mutually distinct primes p1, . . . , pk and sets Mi ⊆ Gpi , 1 ≤ i ≤ k we require⋂
i P (π−1

pi
(Mi) =

∏
i P (Mi).

So the first attempt would be to define Σ as the coarsest σ-algebra that con-
tains all π−1

p (M) for all primes p and M ⊆ Gp, and to define the probabilities
via the product formula.
Unfortunately, this does not lead to a measure: Obviously we can describe
every group G ∈ G be specifying each of its p-parts. Since a measure is
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defined on a σ-algebra, the set {G} would be measurable as a countable
intersection of measurable sets, and by an easy calculation it would have
measure 0. But since G is countable, we would get the contradiction

1 = P (G) = P

(⋃
G∈G

{G}

)
=
∑
G∈G

P ({G}) = 0.

Note that this argument shows that Σ is the whole power set of G.
We see that it is difficult to find a measure which is compatible with the
local Cohen-Lenstra measures, although we will finally succeed in section
5.3. Before I come to this measure, let us discuss the alternatives. In the
following sections, I illustrate several ways of defining contents instead of
measures. However, we will also find that all these methods have severe
drawbacks.

5.1.1 Densities

Cohen and Lenstra tried to avoid the problems illustrated above in the follow-
ing way: They were interested in a very concrete sequence of finite abelian
groups (the sequence of odd parts of class groups of imaginary quadratic
number fields, see section 6.1.1). For us, the concrete sequence is of no im-
portance, so let (Gn) be a sequence of finite abelian groups. Let D be the
set of all subsets S ⊆ G which have a density in (Gn), i.e., all S for which
the limit

lim
n→∞

#{k ≤ n | Gk ∈ S}
n

exists. Then D is an algebra of sets, and the limits define a content on D.
This approach is copied by almost all currently active researchers. It has
the philosophical drawback that we cannot speak of probabilities, and the
practical drawback that we usually do not know D. Furthermore, it is at
least annoying that we do not have countable additivity. But there are also
much more severe obstacles.
Of course, we want to decide whether a sequence is compatible with the
(local) Cohen-Lenstra distributions. But how do we decide this? In principle
we would like D to be “reasonably” rich, and that the densities of sets S ∈ D
are compatible with the Cohen-Lenstra heuristic.
But what does “compatible” really mean? Often, researchers are only con-
cerned with very special sets S, in particular sets that are direct products∏

p∈P Sp, for sets Sp ∈ Gp. Then they declare the Cohen-Lenstra probability
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to be
∏

p∈P Pp(Sp). This sounds quite reasonable, but in this way there is no
hope whatsoever to gain countable additivity, as is proven in section 5.1.3.
If we are given such a direct product set S, are there other ways to define a
“Cohen-Lenstra probability” for S? The answer is yes! We have two different
limit processes going on: One in the definition of the local Cohen-Lenstra
probability, where we average over all p-groups. And another one when we
multiply the probabilities for various primes. Assigning the probabilities∏

p∈P Pp(Sp) to a set S as above imposes an order on the limit process.
Moreover, by what we have already shown, the limits do not commute! So
we might with equal legitimation compute the double limit in a different way,
and obtain a different “Cohen-Lenstra probability” for the same set S. This
is highly unsatisfactory.
Another point is that for every sequence (Gn) we get a different content. Even
if we would accept the order of the limit process for special sets S =

∏
p∈P Sp,

then it is not clear at all how to extend this to the whole power set of G. For
a set S which does not happen to be a direct product, there are many ways
that lead to different contents for S, and we do not have a canonical way of
choosing the “right” one. Thus for each sequence of groups, we would have
to figure out the sets with densities and make up a new content on these
sets. For different sequences of groups, the contents would in general not be
compatible.
A related approach, which appears to be a bit less critical, is to define a
content P (S) for any set S ⊆ G for which the following limit exists:

P (S) := lim
x→∞

∑
G∈S,|G|<xw(G)∑
|G|<xw(G)

.

This yields a content. Basically, the approach imposes an ordering onto
G, namely by their size, and then sums up over all groups up to a certain
threshold. This sounds very natural, but still it is a specific ordering. It
corresponds to taking the density with respect to the sequence where the
group of order 1 appears an appropriate number of times, then the group of
order 2 appears, and so on. This analogy is not perfect, because it is only
possible to construct the sequence for every finite start sequence {G ∈ G |
ord(G) ≤ x} of the ordering. (For extending the sequence, we need to adjust
the number of order-1-groups, order-2-groups, . . . in order to get an integral
number of appearances.) Nevertheless, in my eyes the analogy catches the
essential point: There is no real reason to impose this specific ordering on G,
and it is not clear why a truly random sequence should respect this specific
ordering.
Furthermore, is the ordering above really the most natural ordering? Or
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would it perhaps be more natural to order the groups by their weight? This
would give a different content, and so it would be a matter of taste which
content one prefers. We see that this situation is quite unsatisfactory.
Finally, by this approach, we do not have any hope to get a measure. Clearly,
every one-element set S = {G} is measurable with measure 0, which already
rules out countable additivity. We cannot even hope for restricted countable
additivity (cf. section 5.1.2 below), since we still have the same problem
G = ∪̇G∈G{G}, but P (G) 6=

∑
G∈G P ({G}).

Summarizing, the illustrated approaches only postpone the problems – the
reason why they have worked so far is that only a very limited type of sets S
has been investigated, and that often the researcher concentrates on only one
specific sequence of groups and does not care about other sequences. Cohen
and Lenstra were well aware of the problem (that is why they did not specify
what a “reasonable function” [CL84, 8.1] should be), but apparently they saw
no way to avoid it.

5.1.2 Restricted countability

We have seen that we need a general notion for sequences of groups to be
“compatible” with the Cohen-Lenstra heuristic. Let us first try to define
a content that does not depend on the specific approach. In order to be
compatible with the local Cohen-Lenstra measures, we want the algebra of
sets to contain all sets of the form π−1

p (M), where p ∈ P and M ⊆ Gp. This
leads to the following definition:

5.1.3 Definition. Let A be the algebra of all subsets S of G for which there
exists a finite index set I ⊂ P and a set SI ⊆

∏
p∈I Gp such that

S = SI ×
⊕
p∈P\I

Gp. (5.1)

Informally speaking, S is only specified at finitely many local places.
We define the (global) Cohen-Lenstra content P on A via

P (SI ×
⊕
p∈P\I

Gp) :=
∑
G∈SI

∏
p∈I

Pp(Gp),

where Gp denotes the p-part of G.
I usually omit the attribute “global” if no confusion is possible and talk only
of the Cohen-Lenstra content on G.

5.1.4 Remark. In the definition above, the symbol “
⊕

” denotes the outer
direct sum, by which I simply mean for any index set I ⊆ P:
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⊕
p∈I

Gp := {(Gp)p∈I ∈
∏
p∈I

Gp | almost all Gp are 0}.

So in particular, ⊕
p∈P

Gp
∼=−→ G.

5.1.5 Theorem. The global Cohen-Lenstra content is a well-defined content.

Proof. It is clear that A is an algebra of sets.
By measure theory we know that for any finite I we can endow

∏
p∈I Gp with

a probability measure by defining P ({G}) :=
∏

p∈I Pp(Gp). (Note that this
does not work for infinite I because G is not the product space but rather
the direct sum of the Gp – only for finite I do

∏
p∈I Gp and

⊕
p∈I Gp agree.)

Since any complement and any finite union or finite intersection of sets in A
is only specified on a finite set S, we can restrict ourselves to a probability
space of this kind. So we may restrict ourselves to the power set of

∏
i∈F Gp,

where F is some finite set of primes. But the finite product of probability
spaces is again a probability space, so all formulas then become evident.

The algebra A has a remarkable property: Whenever a countable disjoint
union of sets Ai ∈ A is again an element of A, then everything takes place
only on finitely many primes, and therefore we have countable additivity:

P

(⋃̇
i
Ai

)
=
∑
i

P (Ai).

So in other words, we have countable additivity provided that the union is
measurable. A similar statement holds for intersection. We will say that such
a content has restricted countable additivity . This is not quite a probability
measure, but it might be satisfactory. However, the algebra A is still too
coarse to measure interesting quantities. So one approach would be to refine
A and still keep the restricted countable additivity. Unfortunately, we will
see in the next section that this approach is necessarily of limited success.

5.1.3 Global quantities

What kind of statements would we like to make about groups? We have
already seen that we cannot measure all sets of groups. But there are some
minimal requirements – at least to my feeling we should be able to measure
the three most important quantities of a finite abelian group: its order, rank
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and exponent. So we definitely want the following sets to be measurable for
any n:

• {G ∈ G | ord(G) = n}.

• {G ∈ G | rk(G) = n}.

• {G ∈ G | exp(G) = n}.

Unfortunately, this is impossible. We will prove:

5.1.6 Theorem. There is no algebra A on G with a content P with restricted
countable additivity (i.e., countable additivity on measurable sets) that is com-
patible with the Cohen-Lenstra heuristic induced by the projections G → Gp
such that order or exponent are measurable.

Note that we implicitly assume that distinct primes are independent of each
other. This is an assumption which is usually made whenever people work
with the Cohen-Lenstra philosophy.

Proof. We will only show the statement for the measurability of the order.
The statement for the exponent can be proven analogously.
Assume such an algebra and content exist. Then for all n ∈ N, we can
measure the set Sn := {G ∈ G | ord(G) = n}. We fix an n and define
In := {p ∈ P | p - n} and Tp := {G ∈ G | πp(G) = 0} for all p ∈ In. Then
Tp is measurable with measure P (Tp) = Pp({0}) =

∏∞
i=1(1 − p−i) ≤ 1 − 1

p
.

Since Sn ⊆ Tp for all p ∈ In, we have for any finite subset F of In

Sn ⊆
⋂
p∈F

Tp.

Since F is finite, both sides are measurable and by independence of distinct
primes we obtain

P (Sn) ≤
∏
p∈F

P (Tp).

The above inequality is true for any finite set F ⊂ In, so we may replace the
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right hand side by the infimum over all such F :

P (Sn) ≤ inf
F⊂In finite

∏
p∈F

P (Tp)

=
∏
p∈In

P (Tp)

≤
∏
p∈In

(1− 1

p
)

≤ exp

(∑
p∈In

(−1

p
)

)
︸ ︷︷ ︸

=−∞

= 0.

Therefore, P (Sn) = 0 for all n ∈ N. But G =
⋃
n∈N Sn, which would imply

P (G) = 0, a contradiction.

You may wonder why the theorem above only refers to the order and the
exponent, but not to the rank. Surprisingly, it turns out that it is even
possible to endow G with a probability measure compatible with the rank.
The reason why the rank behaves differently is that it is a uniform quantity
in the following sense: If you require the rank of a group G ∈ G to be k,
then the information that you can extract about the local ranks rp of Gp is
independent of p. This seems to be a rather complicated way of saying that
essentially the only thing we know for a fixed p is rp ≤ r. However, going
through the proof of the theorem, this was the crucial point that forbade
countable additivity for the order (and the exponent): If we know the order
of a group, then we can compute the order of Gp for any p ∈ P, so we get
individual information about local quantities.
This leads us to the definition of the uniform order and the uniform exponent,
which turn out to be better suited for the situation. Afterwards, we will define
the notion of uniform properties in general.

5.2 Uniform properties

Since we have noticed that the rank behaves better than order and exponent,
we want to catch the local behaviour of the rank and transfer it to order and
exponent as follows:
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5.2.1 Definition. For a prime p, we define the local order on Gp as

ordp(G) := logp(ord(G)).

We have already defined the local exponent on Gp as

expp(G) := exp(G) = logp(min{n ∈ N+ | n annihilates G}).

Now we define the uniform order orduni on G and the uniform exponent
expuni on G as

orduni(G) := max
p∈P

ordp(Gp)

expuni(G) := max
p∈P

expp(Gp)

Note that this definition is completely analogous to the formula

rk(G) = max
p∈P

rk(Gp)

for the rank. Therefore the “uniform rank” coincides with the ordinary rank.
As we will show later, it turns out that there is a probability measure on G
which allows to measure the uniform order, rank and exponent. So at least
we can obtain the minimal program formulated in section 5.1.3, if we work
with uniform quantities. But in fact, we can show much more. For this we
need a general notion of uniform quantities. For the moment, we restrict
ourselves to properties, i.e., to functions G → {0, 1}, telling whether a group
has a certain property or not.

5.2.2 Definition. A property (on G) is a function E : G → {0, 1}. For
properties E1, E2 we define E1 ∨ E2 and E1 ∧ E2 by

(E1 ∨ E2)(G) =

{
1 if E1(G) = 1 or E2(G) = 1,

0 otherwise,
,

(E1 ∧ E2)(G) =

{
1 if E1(G) = 1 and E2(G) = 1,

0 otherwise,

respectively.
A property E is called uniform if there is a function, which by abuse of
notation we also call E, from GP to {0, 1} such that for all G ∈ G

E(G) = 1 if and only if E(np) = 1 for all p ∈ P,
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where np ∈ GP is the partition that corresponds to the p-part Gp of G via the
identification Gp

∼=←→ GP .
If we want to distinguish explicitly between the two functions E, then we write
EG and EGP , respectively.
Finally, for a uniform property E we define O(E) := E−1

G ({1}).

5.2.3 Remark.

• Note that for every p we have used the correspondence Gp
∼=←→ GP .

This is our way to “compare” the groups Gp for various p, which is
necessary for defining uniform properties.

I feel quite confident that uniform properties are the “right” concept,
for the following reason: It has proven very convenient not to work
with the number p−1 but rather with the formal variable q. But this
replacement is reflected by the identification between Gp and GP and
indicates that we should rather work with the latter object. If the
identification is appropriate in this case then it makes sense to identify
the copies of GP that correspond to various p.

Recall that this correspondence is almost canonical: The only non-
trivial, order-preserving automorphism of GP is conjugation (theorem
3.5.2). Although this gives us – in principle – two ways of identifying
Gp with GP , the identification Gp1 ∼= Gp2 for p1, p2 ∈ P is canonical, due
to the fact that the non-trivial automorphism of P is not compatible
with the weight w.

• The question whether a group has rank r is a uniform property. Indeed
a group has rank r if each p-part has rank ≤ r and if it is not true
that each p-part has rank ≤ r− 1. Analogously, the uniform order and
uniform exponent are uniform properties.

5.2.4 Remark.

• For all uniform properties E1 and E2, we have

O(E1 ∧ E2) = O(E1) ∩O(E2).

• In general, it is not true that O(E1 ∨ E2) = O(E1) ∪ O(E2) for local
properties E1, E2.

5.2.5 Definition. Let ΣG be the coarsest σ-algebra on G that contains the
fibers O(E) of all uniform properties E of G. We define the Cohen-Lenstra
probability measure PG on ΣG via:
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PG(E) := PG(E = 1) := PG(O(E)) :=
∏
p∈P

Pp(E
−1
GP ({1})), (5.2)

where Pp is the Cohen-Lenstra probability on GP
∼=←→ Gp. Be aware that for

each p we have a different probability measure on GP = Gp. If no confusion
with the local Cohen-Lenstra probability measures is possible then we omit the
index and write P instead of PG.

The main result in this chapter is that PG is indeed a probability measure on
G that makes all uniform properties measurable. This justifies many calcu-
lations that researchers have carried out without specifying the probability
space in which their calculations are supposed to happen. (Of course, the
computations were usually carried out in terms of formal series, and the
results are definitely true as identities of formal series. But in order to trans-
late the results into probability statements, one needs to specify a probability
space.) There are very few statements in the literature which are not uniform
statements. There are only two wide-spread non-uniform examples I know
of, both of them due to Cohen and Lenstra:
Firstly, they state that the “probability” of a one-element set {G0} is 0 for
every G0 ∈ G [CL84, §9,II]. However, it is obvious that this statement is
not compatible with a probability measure, since that would mean that we
have a countable probability space with probability 0 for each atomic event,
which is impossible. (Cohen and Lenstra were well aware of the fact that
this gives only a content instead of a measure.) Secondly, they state that the
“probability” that a finite abelian group has p-part G0, for a fixed p-group
G0, is Pp(G0). This is highly problematic. As we have seen before, there is
no probability measure on G which is compatible with this statement, so we
should at least avoid talking about probabilities in this context.
Now let us come to the main theorem:

5.2.6 Theorem. The Cohen-Lenstra probability measure PG is indeed a prob-
ability measure, and it makes all uniform properties measurable.

The proof is complicated and the whole next section is devoted to it.
Before we come to the proof, let me first summarize our discussion about
measurable functions: The theorem asserts that the rank, the uniform order,
the uniform exponent and all other uniform properties are measurable, and
so are all functions defined in these terms, for example, the expected value
or higher moments of these functions.
Not measurable are the classical order and exponent, and the property that
the p-part of a group is isomorphic to some fixed p-group G0. But for any
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single one of these properties we have shown (cf. theorem 5.1.6 and page
106, respectively) that there is no probability measure which would make
these functions measurable, so we could not expect to be able to measure
these functions. More generally, essentially no function is measurable that is
defined via the p-part of the group, for some fixed p.

5.3 The existence of a global measure
In this section, we prove theorem 5.2.6. We proceed as follows: First, we
construct an outer measure on the power set of G that coincides on certain
key sets with our desired probability measure PG. Then we use the theorem
of Carathéodory to deduce the existence of a σ-algebra of measurable sets
such that the outer measure is a measure on these sets. Finally we show that
uniform properties are measurable with respect to this σ-algebra.
Let me start with some general remarks. First of all, note that the product
that defines PG consists only of factors ≤ 1. Therefore, we either have abso-
lute convergence or we have definite divergence to 0. In both cases, we may
arbitrarily reorder the factors, and we may apply the formula

∏
i

ai = exp

(∑
i

log(ai)

)
.

Since this is a major tool for us, we will be concerned about estimating
log(ai). We will use the formula

−2h ≤ log(1− h) ≤ −h,

which is true for any 0 ≤ h ≤ 1
2
(by Jensen’s inequality) and in particular

for h = 1
p
, for any prime p.

5.3.1 First properties of the global measure

This section contains essentially some technical lemmas about P = PG. How-
ever, lemma 5.3.3 is of intrinsic interest, independent of its use in the con-
struction of the probability space.

So let us check a couple of properties of P . First of all, in definition 5.2.5
we have not excluded the case that E(0) = 0, where 0 stands for the trivial
partition. But in this case O(E) is empty, since any group has trivial p-parts
for almost all p ∈ P. In other words, we have non-trivial ways to describe the
empty set, so the formula in 5.2.5 had then better give P (E) = P (∅) = 0, if
it is supposed to make sense. Indeed this is the case:
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5.3.1 Lemma. If E is a uniform property with E(0) = 0, then P (E) = 0.

Proof. We have E−1
GP ({1}) ⊆ GP \ {0}, so we have

Pp(E
−1
GP ({1})) ≤ Pp(Gp \ {0})

= 1− Pp({0})

= 1−
∞∏
i=1

(1− p−i)

≤ 1−

(
1− 2

∞∑
i=1

p−i

)

= 2
∞∑
i=1

p−i

=
2

p− 1
.

Therefore,

P (E = 1) =
∏
p∈P

Pp(E
−1
GP ({1}))

≤
∏
p∈P

1

p− 1

= 0.

So from now on we may assume that E(0) = 1.
We continue with a lemma, which is of interest in its own right:

5.3.2 Lemma. Let E be a uniform property with E(1) = 0, where 1 is the
unique partition of 1. Then P (E) = 0.

Proof. We have E−1
GP ({1}) ⊆ GP \ {1}, so we get
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Pp(E
−1
GP ({1})) ≤ Pp(GP \ {1})

= 1− Pp({1})

= 1− 1

p− 1

∞∏
i=1

(1− p−i)

= 1− p−1

∞∏
i=2

(1− p−i)

≤ 1− p−1

(
1− 2

∞∑
i=2

p−i

)

= 1− p−1 +
2p−2

p− 1
for p>2

≤ 1− 1

2
p−1.

Therefore,

P (E = 1) =
∏
p∈P

Pp(E
−1
GP ({1}))

≤
∏

p∈P\{2}

(
1− 1

2
p−1

)

= exp

 ∑
p∈P\{2}

log

(
1− 1

2
p−1

)
≤ exp

 ∑
p∈P\{2}

(
−1

2
p−1

)
︸ ︷︷ ︸

=−∞

= 0.

In fact, we even have equivalence:

5.3.3 Lemma. Let E be a uniform property. Then P (E) > 0 if and only if
E(0) = E(1) = 1.



CHAPTER 5. GLOBAL THEORY 119

Proof. We have already shown one direction, so now assume that the latter
statement is true. Then we have E−1({1}) ⊇ {0, 1}, so we get

Pp(E
−1({1})) ≥ Pp({0, 1})

=

(
∞∑
i=0

p−i

)
∞∏
i=1

(1− p−i)

=
1

1− p−1

∞∏
i=1

(1− p−i)

=
∞∏
i=2

(1− p−i).

Therefore,

P (E) =
∏
p∈P

Pp(E
−1({1}))

≥
∏
p∈P

∞∏
i=2

(1− p−i)

=
∞∏
i=2

∏
p∈P

(1− p−i)

=
∞∏
i=2

ζ−1(i),

where ζ denotes the Riemann ζ-function.
The latter product is well-known and converges against a positive constant
≈ 0.435757... (see e.g. [CL84, §7]).

5.3.2 The global outer measure

In order to define an outer measure, we first need to specify a family D of
subsets with non-negative values (“Method I” in [Mun53]).

5.3.4 Definition. Let E1, . . . , Er be uniform properties. In accordance with
the former definition of O(E) we define

O(E1, . . . , Er) :=
r⋃
i=1

E−1
i (1),
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and we set

O := {O(E1, . . . , Er) | r ≥ 0, E1, . . . , Er uniform properties}.

Let E1, . . . , Er, F1, . . . , Fs be uniform properties. Then we define

D(E1, . . . , Er;F1, . . . , Fs) := O(E1, . . . , Er) \O(F1, . . . , Fs),

and we set

D := {D(E1, . . . , Er;F1, . . . , Fs) | r, s ≥ 0,

E1, . . . , Er, F1, . . . , Fs uniform properties}.

By slight abuse of notation, I will sometimes write O(E) and D(E ;F) instead
of O(E1, . . . , Er) and D(E1, . . . , Er;F1, . . . , Fs), respectively, where E and F
are the families {E1, . . . , Er} and {F1, . . . , Fs}.
By even stronger abuse of notation, I will occasionally write O(Ei) and
D(Ei;Fj) in these cases.

5.3.5 Remark.

• The notion D conflicts with our notion for derivations in chapter 3.
Since no derivations are used in this section, no confusion can arise.

• O is embedded into D by setting s := 0.

• For all uniform properties E1, . . . , Er and E ′1, . . . , E ′s:

O(E1, . . . , Er) ∩O(E ′1, . . . , E
′
s) = O(E1 ∧ E ′1, E1 ∧ E ′2, . . . , Er ∧ E ′s).

O(E1, . . . , Er) ∪O(E ′1, . . . , E
′
s) = O(E1, . . . , Er, E

′
1, . . . , E

′
s).

• For all uniform properties E1, . . . , Er, F1, . . . , Fs and E ′1, . . . , E ′t:

D(E1, . . . , Er;F1, . . . , Fs) ∩O(E ′1, . . . , E
′
t)

= D(E1 ∧ E ′1, . . ., Er ∧ E ′t;F1, . . . , Fs).

Caution: No similar formula for the union exists.

• D is closed under intersection. More precisely, we have

D(E1, . . . , Er1 ;F1, . . . , Fs1) ∩D(Ẽ1, . . . , Ẽr2 ; F̃1, . . . , F̃s2)

= D(E1 ∧ Ẽ1, E1 ∧ Ẽ2, . . . , Er1 ∧ Ẽr2 ;F1, . . . , Fs1 , F̃1, . . . , F̃s2)

• D is not closed under union!

• D is not closed under set difference!
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We would like to exend the definition of the function P from single uniform
properties to the whole set D. In order to do so, we need one more remark:

5.3.6 Remark.

• We may always assume that the defining uniform properties E1, . . . , Er,
F1, . . . , Fs of a set D(Ei, Fj) ∈ D satisfy the condition

O(F1, . . . , Fs) ⊆ O(E1, . . . , Er).

In fact, if Ei and Fj are uniform properties which do not satisfy this
condition, then we may use the identity

D(E1, . . . , Er;F1, . . . , Fs) = D(E1, . . . , Er;F1∧E1, F1∧E2, . . . , Fs∧Er)

to enforce the condition.

• It is easy to see that O(F1, . . . , Fs) ⊆ O(E1, . . . , Er) if and only if for
any i ∈ {1, . . . , s} there is a j ∈ {1, . . . , r} such that O(Fi) ⊆ O(Ej).

5.3.7 Definition/Proposition. We extend P to D as follows: We have
already defined P (O(E)) for a single uniform property E in definition 5.2.5.
Because of the formula O(E1) ∩ O(E2) = O(E1 ∧ E2) the function P is also
defined on intersections of sets in O. Hence we may extend P to sets of the
form O(E1, E2) (= O(E1) ∪O(E2)) via

P (O(E1, E2)) := P (O(E1)) + P (O(E1))− P (O(E1 ∧ E2)).

Continuing inductively, we extend P on the set O. Finally, for uniform
properties E1, . . . , Er, F1, . . . , Fs with O(F1, . . . , Fs) ⊆ O(E1, . . . , Er) we set

P (D(E1, . . . , Er;F1, . . . , Fs)) := P (O(E1, . . . , Er))− P (O(F1, . . . , Fs)).

This yields a well-defined map P : D → [0, 1].

Proof. The procedure for computing P (O(E1, . . . , Er)) yields the Inclusion-
Exclusion formula, which is independent of the order of the Ei. So we only
need to show that whenever

D(E1, . . . , Er1 ;F1, . . . , Fs1) = D(E ′1, . . . , E
′
r2

;F ′1, . . . , F
′
s2

) (5.3)

then the value of P coincides for both sets.
Let us first consider the case that O(E1, . . . , Er1) = O(E ′1, . . . , E

′
r2

). If for
some i, j we have O(Ei) ⊆ O(Ej), then the result of the Inclusion-Exclusion
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formula does not change if we omit Ei. So we may assume that all Ei are
maximal in the sense that O(Ei) is not a proper subset of O(Ej), for all j 6= i.
We assume the same for the E ′i. Then I claim that E1 occurs also on the
right hand side. By symmetry, this will imply the statement for O.
Because of the maximality of E1, it suffices to show that O(E1) ⊆ O(E ′i) for
some i. (Then by symmetry, O(E ′i) ⊆ O(Ej) for some j, and by maximality
of E1 we conclude j = 1 and O(E1) = O(E ′i)). Assume not. Then for all
1 ≤ i ≤ r2 there is a partition ni such that E1(ni) = 1 and E ′i(ni) = 0. Now
take r2 distinct primes p1, . . . , pr2 and consider a group with pi-part equal to
ni, for i = 1, . . . , r2. Then this group is contained in O(E1) but in none of
the O(E ′i), contradicting O(E1, . . . , Er1) = O(E ′1, . . . , E

′
r2

).
This finishes our proof for O. For D, first notice that by the preceding
remark, P is indeed defined on the whole set D. To show that it is well-
defined we use essentially the same argument as for O. But beforehand, we
replace each property Fi by properties Fi,1 := Fi ∩ E1, . . . , Fi,r1 := Fi ∩ Er1 .
Since this does not change O(F...), it does not affect P . Now we may further
assume that no Ei equals an Fj. Otherwise, we replace the tuple

(E1, . . . , Er1 ;F1,1, . . . , Fs1,r1)

by
(E1, . . . , Êi, . . . , Er1 ;F1,1, . . . , F̂i,1, .̂ . ., F̂i,r1 , . . . , Fs1,r1),

where a hat indicates that the entry is removed. (The change of the F is
necessary to ensure that each O(F ) is still contained in some O(E)). You
can easily check that this procedure does not change the value of P .
Furthermore, we may assume that all Ei, E ′i are maximal and all Fi, F ′i
are maximal (in the sets {Fj}, {F ′j}, respectively). If not, then remove the
superfluous sets.
Now we proceed as in the proof for O. First we show that the Ei and the E ′i
coincide. Assume E1 does not appear in the right hand side. Choose mutually
distinct primes pi, pi,j for each E ′i and each Fi,j, respectively. Then construct
a group such that its pi-part corresponds to a partition in E−1

1 (1)\E ′−1
i (1) and

its pi,j-part corresponds to a partition in E−1
1 (1) \ F−1

i,j (1). The assumptions
above ensure that the latter sets are all non-empty. Then the group is in E1,
but it is neither in any E ′i nor in any Fi,j. Therefore, it is contained in the
left hand side, but not in the right hand side of (5.3). Contradiction! So the
assumption was wrong, and the Ei and the E ′j coincide.
Now turn to the Fi,j and F ′i,j. Since O(Ei) = O(E ′i), O(Fi,j) ⊆ O(Ei),
O(F ′i,j) ⊆ O(E ′i), and O(Ei) \ O(Fi,j) = O(E ′i) \ O(F ′i,j), we can deduce
O(Fi,j) = O(F ′i,j). Now we may apply the first part of the proof (for O) to
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conclude that P (O(Fi,j)) = P (O(F ′i,j)). Putting things together, we see that

P (D(E1, . . . , Er1 ;F1, . . . , Fs1)) = P (D(E ′1, . . . , E
′
r2

;F ′1, . . . , F
′
s2

)),

as required.

5.3.8 Remark.
In the following proofs (as well as in the proof above), be aware that the
formula

P (D(E1, . . . , Er;F1, . . . , Fs)) = P (O(E1, . . . , Er))− P (O(F1, . . . , Fs))

is not true if we omit the condition

O(F1, . . . , Fs) ⊆ O(E1, . . . , Er).

We will use the function P to define an outer measure. But before that, we
prove a technical lemma about P :

5.3.9 Lemma.

(i) Let D1, . . . , Dn ∈ D be mutually disjoint, and let D0 ∈ D be such that
n⋃
i=1

Di ⊆ D0.

Then

n∑
i=1

P (Di) ≤ P (D0).

In particular, this implies that P is monotone, i.e., for D1 ⊆ D0 we
have P (D1) ≤ P (D0).

(ii) Let D0, D1, . . . , Dn ∈ D be such that

D0 ⊆
n⋃
i=1

Di.

Then

P (D0) ≤
n∑
i=1

P (Di).
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Proof. We only prove the first statement, which is slightly more complicated.
The proof of the second case is completely analogous, except that we do not
have to worry about the Di being disjoint.

Let Di = D(Ei,Fi) for all i = 0, . . . , n, where Ei,Fi are collections of uni-
form properties. We may assume O(Fi) ⊆ O(Ei) for all i. Then P (Di) =
P (O(Ei))− P (O(Fi)) for all i = 0, . . . , n.
Therefore, we need to show that

n∑
i=1

P (O(Ei))−
n∑
i=1

P (O(Fi)) ≤ P (O(E0))− P (O(F0)), (5.4)

or equivalently by expanding the P (O(Ei)):

n∑
i=1

∑
S⊆Ei

(−1)#SP
( ∧
E∈S

E
)
−

n∑
i=1

∑
S⊆Fi

(−1)#SP
( ∧
F∈S

F
)

≤
∑
S⊆E0

(−1)#SP
( ∧
E∈S

E
)
−
∑
S⊆F0

(−1)#SP
( ∧
F∈S

F
)
.

(5.5)

Let us first examine the prerequisites of the statement. We may assume that
no E ∈ Ei is contained in any F ∈ Fi, for i = 0, . . . , n. Then it is easy to see
that the prerequisites are satisfied if and only if the following conditions are
satisfied:

1. O(Ei) ⊆ O(E0) for i = 1, . . . , n.

2. O(Ei) ∩O(Ej) ⊆ O(Fi) ∪O(Fj) for all 1 ≤ i < j ≤ n.

3. O(F0) ⊆ O(Fi) for i = 1, . . . , n.

Now let P≤x := {p ∈ P | p ≤ x} and let

G≤x :=
∏

p∈P≤x

Gp.

Then G≤x is the direct product of probability spaces and carries a unique
product probability measure. The set G≤x embeds naturally into G. So
for each uniform property E, we may define O≤x(E) := O(E) ∩ G≤x. By
definition of the product probability, we have for these sets the probabilities

P≤x(E) := PG≤x(O≤x(E)) =
∏

p∈P≤x

Pp(E).
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Then it is evident that for any uniform property E,

P (E) = lim
x→∞

P≤x(E).

Conditions 1.–3. are still satisfied if we intersect both sides with G≤x, so we
also have

1’. O≤x(Ei) ⊆ O≤x(E0) for i = 1, . . . , n.

2’. O≤x(Ei) ∩O≤x(Ej) ⊆ O≤x(Fi) ∪O≤x(Fj) for all 1 ≤ i < j ≤ n.

3’. O≤x(F0) ⊆ O≤x(Fi) for i = 1, . . . , n.

Now for sufficiently large x (we need more primes than uniform properties
involved), the conditions 1.’–3.’ are equivalent to the statement

D1 ∩ G≤x, . . . , Dn ∩ G≤x are mutually disjoint, and
n⋃
i=1

Di ∩ G≤x ⊆ D0 ∩ G≤x.

Since G≤x is a probability space, we deduce

n∑
i=1

P (Di ∩ G≤x) ≤ P (D0 ∩ G≤x),

or equivalently

n∑
i=1

∑
S⊆Ei

(−1)#SP≤x
( ∧
E∈S

E
)
−

n∑
i=1

∑
S⊆Fi

(−1)#SP≤x
( ∧
F∈S

F
)

≤
∑
S⊆E0

(−1)#SP≤x
( ∧
E∈S

E
)
−
∑
S⊆F0

(−1)#SP≤x
( ∧
F∈S

F
)
.

Since we have finite sums and differences on both sides, we obtain equation
(5.5) by taking the limit x→∞. This proves the claim.

Now we come to the definition of the outer measure:

5.3.10 Definition. For any A ⊂ G, we define the outer measure ν as

ν(A) := inf

{
∞∑
i=1

P (Ai)

∣∣∣∣∣Ai ∈ D and A ⊂
∞⋃
i=1

Ai

}
.
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5.3.11 Remark. The definition above always yields an outer measure, for
any map P : S → [0,∞], where S is any subset of the power set of G
containing ∅ and P (∅) = 0 [Mun53].
Recall that an outer measure is almost a measure, only we replace the Σ-
additivity by Σ-subadditivity. More precisely, an outer measure on a space
X is a function ν from the power set of X into the interval [0,∞] satisfying
the three conditions:

• ν(∅) = 0.

• Monotonicity : ν(A) ≤ ν(B) for all A ⊆ B ⊆ X.

• Σ-subadditivity :

ν
( ∞⋃
i=1

Ai
)
≤

∞∑
i=1

ν(Ai)

for all Ai ⊆ X.

5.3.3 The global measure

Next we check that ν and P coincide on D. We divide up the proof into
several steps. First, we prove a helpful lemma:

5.3.12 Lemma. Let D = D(E1, . . . , Er;F1, . . . , Fs) ∈ D such that for all
1 ≤ i ≤ r we have finite fibers E−1

i (1), and assume without loss of generality
that O(Ei) 6⊆ O(Fi′) for all i, i′. Let D̃j = D(Ẽj,k; F̃j,k′) be an arbitrary family
in D such that

D ⊆
⋃
j

D̃j.

Then for each i there exists a j such that O(Ei) ⊆ O(Ẽj,1, Ẽj,2, . . .) and such
that O(Ei) 6⊆ O(F̃j,1, F̃j,2, . . .).

Proof. We use a similar argument as in the proof of 5.3.7. Assume that the
assertion is wrong for some i. Then for all j there exists an n ∈ E−1

i (1) such
that n /∈ D̃j, and in particular n /∈ O(Ẽj,1, Ẽj,2, . . .).
Now choose mutually distinct primes pn for each n ∈ E−1

i (1). Consider a
group G with pn-part n for all n ∈ E−1

i (1). Then G ∈ O(Ei), but G /∈ O(Fi′)
for all i′, since otherwise O(Ei) ⊆ O(Fi′).
Furthermore, G /∈ D(Ẽj,1, Ẽj,2, . . . ; F̃j,1, F̃j,2, . . .) for all j, contradicting the
prerequisite D ⊂

⋃
j D̃j. This proves the lemma.

Next we prove that P and ν coincide on a certain subset of D.
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5.3.13 Lemma. Let D be the finite disjoint union of sets

D(k) = D(E
(k)
1 , . . . , E(k)

rk
;F

(k)
1 , . . . , F (k)

sk
) ∈ D

such that the fibers (E
(k)
i )−1(1) are finite for all i and k. Then we have

ν(D) =
∑
k

P (D(k)).

Proof. We set D(E1, . . . , Er;F1, . . . , Fs) < D(E ′1, . . . , E
′
r;F

′
1, . . . , F

′
s) if and

only if O(E1, . . . , Er) ( O(E ′1, . . . , E
′
r); in this way, we impose a partial

ordering on D. It is a well-ordering on sets in D with finite fibers E−1
i (1),

and the lexicographic ordering extends this to the set of all finite tuples (D(k))
of elements of D with finite fibers E−1

i (1). The lexicographic ordering is still
a well-ordering so we may use induction with respect to this ordering.
For the sake of clarity, I will restrict the proof to the case where we have only
one set D(k) and simplify the notation to D = D(E1, . . . , Er;F1, . . . , Fs). The
extension to a disjoint union is straightforward: Just apply the descending
step to the largest (possibly several) D(k)’s with respect to the ordering.
As usual we assume that the sets O(Ei) are mutually not contained in each
other.
If D is minimal then D = ∅ and we have P (D) = 0 = ν(D).
So assume D 6= ∅. Since D ∈ D we have ν(D) ≤ P (D). So we only need
to show that for any countable familiy Aj in D with D ⊂

⋃∞
j=1Aj we have

P (D) ≤
∑∞

j=1 P (Aj).
Let Aj be such a family. Consider E1. If E1 is contained in any of the sets
F1, . . . , Fs, then we simply omit it and we are done by induction hypothe-
sis. So assume otherwise. Then by lemma 5.3.12 there exists an index j0,
Aj0 = D(Ẽk; F̃k) =: D(Ẽ ; F̃), such that

O(E1) ⊆ O(Ẽ), and
O(E1) 6⊆ O(F̃).

Now consider the set D0 := D\Aj0 . We will see that we need to compute the
measure of this set. Unfortunately, D0 is not in D in general, but it is the
disjoint union of two elements in D. Basically we will use the decomposition

D0 = D \ Aj0 = D \ (O(Ẽ) \O(F̃)) = (D \O(Ẽ)︸ ︷︷ ︸
=:D1

)∪̇(D ∩O(F̃)︸ ︷︷ ︸
=:D2

).

We need to show that D1, D2 ∈ D: We write D1 = D(E1;F1), where

E1 := {E2, . . . , Er} ∪ {E1 ∧ F̃1, E1 ∧ F̃2, . . .}, and
F1 := {F1, . . . , Fs} ∪ {Ẽ1, Ẽ2, . . .},
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and D2 = D(E2;F2), where

E2 := {Ei ∧ F̃i′ | i, i′ = 1, 2, . . .}, and
F2 := {F1, . . . , Fs}.

Then D1 and D2 are disjoint with union D \Aj0 , they have finite fibers and
are strictly smaller (in the inductive sense) than D, so we may apply the
induction hypothesis and conclude ν(D1 ∪D2) = P (D1) + P (D2).
Since D1 ∪D2 = D \ Aj0 , we have

D1 ∪D2 ⊂
∞⋃
j=1
j 6=j0

Aj,

and consequently

ν(D1 ∪D2) ≤
∞∑
j=1
j 6=j0

P (Aj).

Now we can put everything together: Reusing the formula D ⊆ D1∪D2∪Aj0 ,
we see that P (D) ≤ P (D1) +P (D2) +P (Aj0) by lemma 5.3.9, and therefore

P (D) ≤ P (D1) + P (D2) + P (Aj0)

= ν(D1 ∪D2) + P (Aj0)

≤

 ∞∑
j=1
j 6=j0

P (Aj)

+ P (Aj0)

=
∞∑
j=1

P (Aj).

This proves P (D) ≤ ν(D), as required.

Now we are ready to tackle the general case:

5.3.14 Proposition. For any D ∈ D, we have ν(D) = P (D).

Proof. Let D = D(E1, . . . , Er;F1, . . . , Fs). Let E be the r-tuple (E1, . . . , Er)
and let F be the s-tuple (F1, . . . , Fs). In the following, E ′ will always denote
an r-tuple of uniform properties that is finite in the sense that the fibers
E ′−1(1) are finite for all properties E ′ in E ′. We shall write E ′ ≤ E if for all
1 ≤ i ≤ r we have O(E ′i) ⊆ O(Ei).
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The crucial step in this proof is to show

P (D) = sup
E ′≤E finite

P (D(E ′,F)). (5.6)

The inequality “≥” is trivial. For the other direction, note that for any finite
E ′ ≤ E , we have

P (D(E ,F))− P (D(E ′,F)) ≤ P (O(E))− P (O(E ′)).

Therefore, it suffices to show that P (O(E)) = supE ′ P (O(E ′)).
Furthermore, it suffices to consider the case r = 1 (i.e., E consists of only one
uniform property), because by the Inclusion-Exclusion formula P (O(E)) can
be computed as a finite sum (with signs) from values P (O(E)), where E is
a single uniform property.

Altogether, we need to show that for each uniform property E, we have

P (O(E)) = sup
E′≤E finite

P (O(E ′)),

where “E ′ ≤ E finite” means that E ′−1(1) ⊆ E−1(1) and E ′−1(1) is finite.

We may assume that P (O(E)) > 0, otherwise the statement is trivial.

Let us look at the local situation: Let p ∈ P and let n0 ∈ N. For any n ∈ N+,
it is possible to choose E ′ ≤ E finite such that wp(E) ≤ wp(E

′) +
∑∞

i=n aiq
i

(ai = number of partitions of i) as power series, i.e., coefficient-wise.

By lemma 1.3.7 we know that ai ∈ O(φi), where φ = 1.618 . . . is the golden
ratio. There exists a constant d < 1 (e.g., d := 0.7) such that 2d > φ and
such that 24−d > 23 + 1. Then it is easy to see that for all primes p we have
p4−d > p3 + 1. By choosing n large enough, we may further assume that
ai ≤ 2di−n0−3 for all i ≥ n. Then in particular ai ≤ pdi−n0−3 for all primes p.
Also by lemma 5.3.3, we may assume that P (O(E ′)) ≥ c for some c > 0, and
therefore also Pp(E ′) ≥ P (O(E ′)) ≥ c for all p ∈ P.
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Then we have

wp(E) ≤ wp(E
′) +

∞∑
i=n

aiq
i

≤ wp(E
′) +

∞∑
i=n

pdi−n0−3p−i

= wp(E
′) + p−n0−3

∞∑
i=n

p(d−1)i

= wp(E
′) + p−n0p−3 pn(d−1)

1− pd−1

= wp(E
′) + p−n0

p(n−1)(d−1)

p4−d − p3

≤ wp(E
′) + p−n0 ,

where in the last inequality we use that the fraction has numerator ≤ 1 and
denominator ≥ 1.
For the probability, we must multiply with

∏∞
i=0(1− p−i):

Pp(E) ≤ Pp(E
′) + p−n0

∞∏
i=0

(1− p−i) ≤ Pp(E
′) + p−n0

Since our choice of E ′ and of n was independent of p, the analysis works for
all p. Putting this together, we get

P (E) =
∏
p∈P

Pp(E)

≤
∏
p∈P

(
Pp(E

′) + p−n0
)

=

(∏
p∈P

Pp(E
′)

)∏
p∈P

(
1 +

p−n0

Pp(E ′)

)

≤

(∏
p∈P

Pp(E
′)

)∏
p∈P

(
1 +

1

c
p−n0

)

≤

(∏
p∈P

Pp(E
′)

)(
1 +

∑
p∈P

(
1

c
p−n0

))
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= P (E ′)

1 +
1

c

∑
p∈P

p−n0

︸ ︷︷ ︸
→0 for n0→∞


n0→∞→ P (E ′).

This proves equation (5.6).

Now let Aj ∈ D be a countable family with D ⊆
⋃∞
j=1 Aj. We need to show

that P (D) ≤
∑∞

j=1 P (Aj).
Recall that D = D(E ,F). Let E ′ ≤ E be finite. Then D(E ′,F) ⊆ D ⊆⋃∞
j=1 Aj, so by lemma 5.3.13, we have

P (D(E ′,F)) ≤
∞∑
j=1

P (Aj).

Therefore,

P (D)
5.6
= sup
E ′≤E finite

P (D(E ′,F)) ≤
∞∑
j=1

P (Aj),

which finishes the proof.

For the last step, we use

5.3.15 Theorem (Carathéodory). Let X be some space with outer measure
ν. We call a set A ⊆ X measurable, if for all B ⊆ X we have

ν(B) = ν(B \ A) + ν(B ∩ A).

Then the set of all measurable sets is a σ-algebra, and ν is a measure when
restricted to measurable sets.

Proof. [Hal50]

So we only need to show that all uniform properties are measurable (in the
sense of Carathéodory):

5.3.16 Proposition. Let E be a uniform property. Then O(E) is measur-
able.
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Proof. Let A ⊆ G. We need to show that ν(A) = ν(A\O(E))+ν(A∩O(E)).
Since ν is subadditive (as outer measure), we only need to show the direction

ν(A) ≥ ν(A \O(E)) + ν(A ∩O(E)).

Let Ai ∈ D be a family such that A ⊆
⋃∞
i=1Ai. By definition of ν, it suffices

to show that for any such family

∞∑
i=1

P (Ai) ≥ ν(A \O(E)︸ ︷︷ ︸
=:B

) + ν(A ∩O(E)︸ ︷︷ ︸
=:C

).

Since Ai ∈ D, we also have Bi := Ai \ O(E) ∈ D and Ci := Ai ∩ O(E) ∈ D.
Therefore, by proposition 5.3.14, we have ν(Bi) = P (Bi), ν(Ci) = P (Ci),
and P (Ai) = P (Bi) + P (Ci).
Clearly the Bi cover B, and the Ci cover C, so by definition of ν

ν(B) ≤
∞∑
i=1

P (Bi), and

ν(C) ≤
∞∑
i=1

P (Ci).

Putting things together, we obtain

∞∑
i=1

P (Ai) =
∞∑
i=1

(P (Bi) + P (Ci))

=
∞∑
i=1

P (Bi) +
∞∑
i=1

P (Ci)

≥ ν(B) + ν(C),

as required.

So we have successfully concluded the proof and shown that the Cohen-
Lenstra probability measure (def. 5.2.5) is indeed a probability measure.

5.4 Modifications of the global measure
As we will see in chapter 6, there are some important cases where we need to
exclude certain primes. E.g., for quadratic number fields we need to exclude
p = 2. In this case, we proceed as follows: We consider the set G 6=2 of all
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finite abelian groups with trivial 2-part and modify our definition of uniform
properties to these groups. It is clear that all our proofs work also for G 6=2

instead of G, so we get a probability measure on G 6=2 that makes all (modified)
uniform properties measurable.
Then either we stop at this point and do not make any statements about
groups with non-trivial 2-part. In this case we often replace a random G by
G/G2, where G2 is the 2-part of G. Or, if we are given a probability measure
on the set G2 of all finite abelian 2-groups, then we take the product space of
G 6=2 and G2 and obtain automatically a probability measure on the product
space. Candidates for such probability measures for “bad” primes are known
for number fields (cf. the discussion in section 6.1.2).
Of course, all this applies also to other primes than p = 2, and also to a finite
number of primes.
CAUTION: We get a different probability space for each finite set of primes,
and those probability spaces are not compatible. As we have seen in section
5.1, there is no rich probability measure whose σ-algebra would make all
projections G → Gp continuous.
So there are no objections against ruling out some bad primes in a number
field situation (in the sense of section 6.1.2), since these primes are fixed.
But if you fix one situation and make statements about the p-parts of the
class groups for various p (as it is often done, e.g. in [CL84]), then you must
be extremely careful, because our analysis above has shown that you will
inevitably lose countable additivity. Therefore, the interpretation as prob-
abilities is not valid in this context! Unfortunately, this point is usually
ignored in the literature.
A more general way of extending uniform properties is to split up the primes
into a finite number of subsets, e.g., into P1 := {p ∈ P | p ≡ 1 mod 4},
P2 := {2}, and P3 := {p ∈ P | p ≡ 3 mod 4}. Then we may define uniform
properties for each of the sets GP1 , GP2 , and GP3 (in the obvious way), and by
combining them we obtain a probability measure on G that is an extension
of the probability measure we have defined in the preceding sections. In this
way, we may formulate equidistribution statements for congruence classes of
primes. However, we have the same restriction as we have when taking out
finitely many primes: Each partition of the set P yields its own probability
measure, and combining more than finitely many of them will eventually
result in losing the countable additivity.

Another extension is obvious from measure theory: Of course, we are not re-
stricted to measuring properties, but we may measure any measurable func-
tion, which includes measuring expected values, higher moments of random
variables and many other things. This seems like a trivial remark, but so
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far it has been an unsolved problem which quantities to consider in the
Cohen-Lenstra context. Cohen and Lenstra declared that we should take
“reasonable” functions without specifying what “reasonable” means, and this
handwaving concept was adapted in basically all subsequent papers. By our
preparatory work, we get the solution for this problem for free from measure
theory.
For convenience, let me explicitly state what it means for a sequence of
groups to be random (more precisely: equidistributed) with respect to the
Cohen-Lenstra heuristic:

5.4.1 Definition. Let (Gi)
∞
i=1 be a sequence of finite abelian groups. Let

Σ be the σ-algebra on G generated by uniform properties and let µ be the
probability measure on Σ as defined in 5.2.5. We say that Gi behaves as a
random sequence or is equidistributed with respect to the Cohen-Lenstra
measure if for all measurable functions f : G → C we have

lim
n→∞

∑n
i=1 f(Gi)

n
=

∫
G
fdµ.

5.5 Combination of both methods

The methods of restricted countability and uniform properties may be com-
bined. Let A denote the algebra of subsets of G generated by sets π−1

p (M),
for various p ∈ P and M ⊆ Gp, and let Σ denote the σ-algebra over G that
is generated by uniform properties. Then we may consider the algebra A′
that is generated by A∪Σ, and we naturally have a content on A′. It turns
out that this is still a content with restricted countable additivity (in the
sense of 5.1.2). I will only give a sketch of the proof, because in my eyes it
is (at least from a theoretical point of view) only a minor extension of the
σ-algebra Σ. Nevertheless, it justifies at least to some extent the convenient
habit of researchers to switch between local and global (uniform) properties
when studying a sequence of global groups.
Essentially, the reason for the two concepts being compatible is that uniform
properties are “horizontal” (uniform over the set of all primes), whereas the
algebra A is “vertical” (each set lives only on finitely many primes), and
therefore they do not interfere with each other. More precisely, whenever a
set S ∈ Σ is a superset of a non-empty set A ∈ A, then there are primes
p such that for any Gp ∈ Gp, there is a group G ∈ A ⊆ S with p-part Gp.
Since S is uniform, this already implies S = G. Hence, sets in Σ cannot
contribute to a disjoint cover of an element of A in a non-trivial way, and
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the restricted countability for A′ reduces to the restricted countability of A,
which was already shown in section 5.1.2.



Chapter 6

Applications and Extensions

I already mentioned two applications of the Cohen-Lenstra heuristic: Firstly,
it is the probability distribution that one obtains by randomly choosing gen-
erators and relations (cf. section 2.2.3), which is perhaps the most natural
way to produce a finite abelian p-group.

Secondly, the size of conjugacy classes of GL(n, p) is essentially governed by
the Cohen-Lenstra probability, as explained in detail in chapter 4. Conse-
quently, one can deduce statements about random matrices from the Cohen-
Lenstra measure. Examples are the probability that a random matrix has
fixed spaces of given dimension (corollary 4.6.4), is regular, is semisimple
([Ful97, Thm. 27, Thm. 25], respectively), or satisfies a given polynomial
equation ([Ger61], [Sto88], and [Ful97, Thm. 13]).

However, the main application for us are the class groups of number fields.
This was also the motivation for Cohen and Lenstra to invent this distribu-
tion. We first look at the case of imaginary quadratic number fields, which is
in some sense the “generic case”. Afterwards, I will demonstrate how to ex-
tend the Cohen-Lenstra heuristic to arbitrary number fields. Note that this
section is completely conjectural (unless otherwise stated). To make things
more concrete, I will exemplarily show how this extension looks like for real
quadratic number fields.

In section 6.2, I give a “real-world application” for which it is important to
know the distribution of number fields for a certain cryptographic protocol.
In the final sections, I give some other applications of the Cohen-Lenstra
heuristics, as well as its transfer from number fields to function fields.

136
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6.1 Number fields

6.1.1 Imaginary quadratic number fields

An imaginary quadratic number field is of the form K = Q(
√
d), where d < 0

is a square-free integer. They are naturally ordered by their discriminants
DK (where DK = d if d ≡ 1 mod 4, and DK = 4d otherwise). We write HK

for the class group of K.
By H 6=2

K we denote the group HK/HK,2 where HK,2 is the 2-part of HK . Why
do we exclude the 2-part? By genus theory, we know that HK,2 has rank
r − 1, where r is the number of distinct prime factors of DK . Thus the 2-
part is clearly “biased” in the sense mentioned in the introduction. This is
why the following prediction can only be valid for the non-2-part.
Cohen and Lenstra have predicted in [CL84] that the sequence (H 6=2

K )K of
class groups of imaginary quadratic number fields, ordered by their discrimi-
nant, behaves like a random sequence of groups w.r.t. to the Cohen-Lenstra
probability subject to the condition that the 2-part is trivial. Of course, they
did not have a probability measure, nor the notion of measurable functions,
so their formulation was a bit vague. I will say a more about their formula-
tion in remark 6.1.3. With our knowledge about the global theory, we may
state the conjecture as follows:

6.1.1 Conjecture. If f is a measurable random variable on G 6=2 with existing
expected value E(f) (w.r.t. the global Cohen-Lenstra probability measure, cf.
chapter 5), then the limit

lim
x→∞

∑
0>DK≥−x f(H 6=2

K )∑
0>DK≥−x 1

exists and is equal to E(f), where the sums run over all imaginary quadratic
number fields of discriminant 0 > DK ≥ −x.

Let me remind you that characteristic functions (that output 1 if a group
satisfies a certain property, and 0 otherwise) are of particular interest, be-
cause they enable us to compute the probability that a class group satisfies
this property.
I want to emphasize that a proof of this conjecture seems far out of reach.
Some partial results have been proven for the 3-part of the class group (cf.
section 6.1.2), but these only confirm some implications of the Cohen-Lenstra
conjecture, and they could so far not be generalized to other primes.
On the other hand, extensive numerical tests strongly support the prediction,
and a huge majority of researchers has no doubt that the Cohen-Lenstra
conjectures will prove true.
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6.1.2 Arbitrary number fields

The probabilistic model

Following the notation of Malle [Mal06], we fix a situation Σ = (K0, G0, σ)
consisting of a number field K0 (the base field), a transitive permutation
group G0 ⊂ Sn for some n ≥ 2, and a possible signature σ (which is a pair
(r1, r2) of the number of real and pairs of complex embeddings, respectively)
of a degree n galois extension K/K0 with group G. By K := K(Σ) we denote
the set of all galois extensions K/K0 (inside a fixed algebraic closure) with
Galois group G0 and signature σ.
As in the previous section, for a field K ∈ K we denote by DK the (relative)
discriminant ofK/K0 and by HK the class group ofK. For each discriminant
there are at most finitely many fields in K. If B = {p1, p2, . . .} (“B” like “bad”)
is a finite set of primes, then H /∈B

K is the group HK/(HK,p1 × HK,p2 × . . .)
where HK,pi is the pi-part of the class group HK .
Let further u := uΣ be the rank of the group of units in K. By Dirichlet’s
unit theorem, u = r1 + r2 − 1, where r1 is the number of real embeddings
and r2 is the number of conjugate pairs of complex embeddings of K into
the (fixed) algebraic closure.
Then the Cohen-Lenstra heuristic predicts that except for a finite set B of
“bad primes”, the class group of fields in K behaves like a random finite group
G modulo the image of a random homomorphism φ : Zu → G. In formula:

6.1.2 Conjecture. If f is a measurable random variable on G /∈B, then the
limit

lim
x→∞

∑
K∈K,|DK |<x f(H /∈B

K )∑
K∈K,|DK |<x 1

exists and equals the limit

lim
x→∞

(∑
G∈G /∈B ,ord(G)≤x

w(G)
#Hom(Zu,G)

∑
φ∈Hom(Zu,G) f(G/im(φ))∑

G∈G /∈B ,ord(G)≤xw(G)

)
. (6.1)

6.1.3 Remark.

• The conjecture was formulated by Cohen and Lenstra [CL84] for (imag-
inary and real) quadratic number fields and was extended by Cohen and
Martinet [CM87], [CM90] to arbitrary number fields. The generaliza-
tions of Cohen and Martinet seem to be wrong in details (at least they
do not fit the numerical data). More precisely, Cohen and Martinet



CHAPTER 6. APPLICATIONS AND EXTENSIONS 139

have seemingly chosen the set B to be too small. But of course, the
above conjecture is in the general spirit of their statement, and there-
fore it is only fair to call it “Cohen-Lenstra conjecture” for quadratic
fields, and “Cohen-Lenstra-Martinet conjecture” when number fields of
higher degrees are included.

• The formulation of Cohen and Lenstra was in fact quite different from
the formulation above. As I mentioned, they did not have the notion of
a measurable function, so they said that the conjecture should be true
for all “reasonable” functions f . However, although they did not specify
it they clearly considered many more functions to be “reasonable” than
just our measurable ones. In particular, they included functions that
live only on one fixed prime p, e.g., the function that decides whether
a group has p-part G0 for some fixed p-group G0. In this sense, our
formulation is only a special case of the more general conjectures of
Cohen and Lenstra. However, as we have seen earlier, including these
functions makes it at least highly problematic to speak about “prob-
abilities”. In section 5.1.1, we have seen further unsatisfactory effects
that such a broad choice of functions entails.

How to interpret formula (6.1)? Perhaps the most intuitive way is the fol-
lowing: We divide out the image of all maps φ ∈ Hom(Zu, G) and average
over the results. Note that this is equivalent to choosing u elements in G
arbitrarily (i.e., uniformly at random) and dividing those out. Hence, the
heuristic can be reformulated as follows:

The sequence of class groups within a situation Σ is random with respect
to the following stochastic process: Pick a finite abelian group G w.r.t. the
Cohen-Lenstra probability, then choose u elements uniformly at random, and
divide out those elements.

This idea is due to Cohen and Lenstra [CL84], at least in the case u = 1.
A similar formulation is the one of Friesen [Fri99], formulated for quadratic
function field extensions and involving elliptic curves (see below).
How could a geometric object look like that might play the role of the random
group G? Two analogies are known:
Firstly, as Cohen and Lenstra pointed out, in the case of real quadratic
number fields the set of all reduced binary quadratic forms having the right
discriminant carries a “group-like” structure. This set breaks up into cycles,
all of the same length (given by the regulator), and the number of cycles
equals the class number. Viewing the principal cycle as a “subgroup”, we get
operations that are very similar to dividing out a cyclic subgroup.
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This has been properly formalized by Lenstra, Schoof and others in terms of
Arakelov theory. They defined the Arakelov class group Pic0

K of a number
field K, and showed that there is a natural exact sequence

0→ T 0 → Pic0
K → HK → 0,

where T 0 is the cokernel of the natural homomorphism from the unit group
O∗K into the group (Ru)0 of degree 0-divisors defined at the infinite primes,
i.e., T 0 is a real torus of dimension u (see [Sch08] for details).
Concurrently, a theory of binary forms corresponding to higher number fields
is emerging for extensions of degree ≤ 5 — for a brief overview you may have
a look into the introduction of [Bha05].
Secondly, Friesen [Fri99, Thm. 2.4] has established the following: If we
consider quadratic function fields of the form Fq(T,

√
f(T )), where f is an

irreducible monic polynomial of degree 4 without cubic term, and char(Fq) 6=
2, 3, then there is a 1−1 correspondence between such polynomials and pairs
(E,P ) of non-singular elliptic curves E with #E(Fq) even and points P on
E such that #(E(Fq)/ord(P )) is odd. Under this correspondence the ideal
class group is isomorphic to the quotient E(Fq)/〈P 〉. The analogy is even
clearer than in the former example, but it applies only to a very special case
and it is unclear how this correspondence could be generalized.
Let me return to the probabilistic process given above. There is one delicate
point in the formulation: Despite of my nomenclature, the Cohen-Lenstra
probability measure is not defined on the whole power set of G (not even
the content in the original sense of Cohen and Lenstra is). In particular, it
is not defined on one-element sets, unless we define (as Cohen and Lenstra
did) every one-element set to have “measure” 0. So the probability measure
(or even the content) does not allow us to choose a single group randomly.
However, for each u ≥ 1 we get a u-probability on the set of all finite abelian
p-groups, and switching to the global case we obtain a probability measure
on the whole power set of G. Hence, for u ≥ 1 all the problems that we
addressed in chapter 5 collapse. I will not prove this assertion formally but
instead refer to [CL84]. I only give the key calculation:
By theorem 4.6.9, for a p-group Gp of size np, the u-probability that a random
p-group is isomorphic to Gp equals

Pu(Gp) = n−up
1

#Aut(Gp)

∞∏
i=u+1

(1− p−i).

Multiplying up over all primes, we compute the u-probability that a random
group is isomorphic to a particular group G =

∏
p∈PGp of size n =

∏
p∈P np

as
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Pu(G) =
∏
p∈P

Pu(Gp)

=
∏
p∈P

n−up
1

#Aut(Gp)

∞∏
i=u+1

(1− p−i)

= n−u
1

#Aut(G)

∏
p∈P

∞∏
i=u+1

(1− p−i)

= n−u
1

#Aut(G)

∞∏
i=u+1

ζ(i)

u≥1
> 0.

So every group is obtained with a positive probability, and this computation
already implies that we have absolute convergence and that we may inter-
change limits, so Pu is a probability measure on G. It is not completely
trivial that this probability measure coincides with formula (6.1), but it is
true ([CL84, §5]).

Bad primes

Let me comment on the set B of bad primes. In their original work [CM87],
[CM90], Cohen and Martinet excluded the primes that divided the degree n of
the extension. It is a (proven!) fact that those primes are indeed bad primes.
As in the case of imaginary quadratic number fields, this is a consequence of
genus theory.
However, there seem to be other bad primes. Eventually Cohen and Martinet
noticed [CM94] that growing numerical evidence seemed not to support their
predictions, particularly for p = 2 in the case of cubic extensions. Instead,
they proposed to take the larger set B := {p ∈ P | gcd(p, |G0|) > 1},
where G0 is the shared Galois group of the situation. Indeed, numerical
data supports the assumption that those primes are bad primes. However,
this is still not the end. Gerth noticed ([Ger89], see also [Ger90]) that the
distributions of class groups might be influenced by the existence of roots of
unity in the base field. Although his results did not directly contradict the
Cohen-Martinet choice of B, they led Malle [Mal08] to extend the set B to
be

B :=

{
p ∈ P

∣∣∣∣ gcd(p, |G0|) > 1, or K0

contains the p-th roots of unity

}
.
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In the same paper, Malle proposed modified probability distributions for the
new bad primes (adding to work of Gerth [Ger89] and Wittmann [Wit05]),
and tested it extensively by computer calculations, which gave good support
for his modified predictions.
As you have noticed, the debate about the set B is still vivid and not fin-
ished. However, I want to emphasize that it is undoubted by the experts in
the field (and strongly supported by computer tests) that the Cohen-Lentra
heuristic is still true in principle — only the finite set of exceptions needs to
be identified.
As I already mentioned, for bad primes there exist modified conjectures which
seem to fit the data and which are still equidistribution statements — only
for (modestly) modified probability distributions. They are still conjectural,
but for ramified primes there are some partial results proven. Recently the
most general results are obtained by Fouvry and Klüners [FK07] in the case
of quadratic extensions, and by Wittmann [Wit05] in the case of general
cyclic extensions – the latter paper relying heavily on the extensive work
of Gerth (especially [Ger86] and [Ger89], but also [Ger82], [Ger84], [Ger87],
[Ger90], [Ger05], only to mention the most important of his papers). The
case of bad primes is in some sense easier because genus theory allows to
formulate a probability distribution for each rank individually by restricting
on regulators with a fixed number of prime divisors, which yields probability
distributions on finite sets.

Real quadratic number fields

I give this as an example case. As long as u > 0 the formulas can be
translated in a straightforward way from section 4.6.5 by multiplying up the
local probabilities. Since all series and products converge absolutely, we may
change the order of summation and multiplication just as we like. The only
open question is to find the set B of bad primes (cf. the discussion above).
For u = 0, we get exactly the same probabilities as in the imaginary quadratic
case, up to correction terms because of a different set B of bad primes.
So considering the situation Σ = (Q,Z/2Z, (2, 0)), we specialize on real
quadratic number fields. The rank of the unit group is u = 1, so the class
group is predicted to behave like a finite abelian group with one random
element divided out.
Clearly, 2 is a bad prime, and we suspect that it is the only bad prime, so
B = {2}.
Since u > 0, we get a probability measure (!) on the whole power set of G 6=2.
The probability for a finite group G of odd order n to be obtained is
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Pr(G) =
1

n

 ∏
p∈P\{2}

∞∏
s=2

(1− p−s)

w(G), (6.2)

where w(G) = 1
|Aut(G)| .

Proof. [CL84, Example 5.9]. For formula (6.2), it suffices to multiply up the
local probabilities Pu(G) (for u = 1) for all p 6= 2, which are given in theorem
4.6.9 of this thesis.

In particular, for G the trivial group we get a probability of Pr(0) ≈ 75.446%
that the odd part of a class group in this situation is trivial. Further val-
ues are Pr(Z/3Z) ≈ 12.574%, Pr(Z/5Z) ≈ 3.772%, Pr(Z/7Z) ≈ 1.796%,
Pr(Z/3Z× Z/3Z) ≈ 0.175% and Pr(Z/9Z) ≈ 1.397%. This already shows
that the class groups (at least the odd parts) have a very strong tendency to
be of rank 1 and exponent 1. Keep in mind, however, that each other group
still accounts for a small but positive fraction.
The gap between our conjectural “knowledge” and provable theorems is im-
mense. In fact, it was a conjecture of Gauß in his famous Disquisitiones
Arithmeticae [Gau89] in 1801 that there are infinitely many real quadratic
number fields with class number 1, and this has remained unproven since
then. It is not even known whether there are infintely many arbitrary num-
ber fields (over Q) with class number 1. On the other hand, at least if we
suppress the 2-part of the class group, then the Cohen-Lenstra conjectures
tell us that the majority of all class groups of real quadratic number fields is
trivial!

Theoretical evidence

The Cohen-Lenstra conjectures for number fields have turned out to be very
hard to prove. However, there are some theoretical results which support the
conjectures.

The Spiegelungssatz
One of the historically first results concerns Leopoldt’s Spiegelungssatz (“re-
flection theorem”), which gives for any (for simplicity odd) prime p a pairing
of certain number fields, such that the ranks of the p-parts of the class groups
of paired fields are closely related. Since a precise formulation would require
a lot of additional notation, I will not give the general statement and re-
fer to [Lee02] for an overview without proofs, or to [Lon77] for a complete
treatment; for a treatment of the p = 2 case, see also [DP70].
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Instead I give as an example Scholz’s theorem, which is the p = 3 case of
the Spiegelungssatz. This case was studied by Dutarte [Dut84], only one
year after Cohen-Lenstra had published their heuristic: Let K = Q(

√
m),

for a positive integer m. For simplicity, we assume m is a square-free positive
integer and 3 - m. Then the reflection field of K is K ′ := Q(

√
−3m), and

the 3-ranks rK and rK′ of the class groups of K and K ′ satisfy

rK′ − rK ∈ {0, 1}.
Assuming some very natural equidistribution property concerning the be-
haviour of fundamental units (which was removed later on by Klüners),
Dutarte computed the conditional probability that rK and rK′ are equal,
provided that rK is known, as

Pr(rK′ = rK | rK = a) =
1

3a+1
.

Now let us summarize: The Cohen-Lenstra heuristic gives us a probability
distribution for rK , where K runs through all real quadratic number fields
(if we neglect the technical condition that 3 - m). By Dutarte’s result, we
may compute the probability distribution for rK′ , where K ′ runs through all
imaginary quadratic number fields of the form Q(

√
−3m). Combining both

probabilities, we obtain a probability distribution for rK′ , and it turns out
that this is exactly the probability that the Cohen-Lenstra heuristic predicts
for imaginary quadratic number fields. Although a different result would
not immediately contradict the Cohen-Lenstra heuristic, since K ′ does not
run through all imaginary quadratic number fields, it still indicates that the
Cohen-Lenstra heuristics for several number fields are compatible with each
other.
In the sequel, several similar results for other special cases of the Spiegelungs-
satz were obtained (e.g., [Ger01] for p = 2) until finally Lee proved that the
general Spiegelungssatz is compatible with the Cohen-Lenstra heuristic in
[Lee02], still making a similar equidistribution assumption as Dutarte. For
the p = 2 and p = 3 case, this assumption could be removed by Fouvry and
Klüners [FK09], and Belabas [Bel99], [Bel04], respectively.

Special cases
In the case of cubic field extensions, we have an additional tool: There is a
discriminant-preserving correspondence between isomorphism classes of cubic
number fields and certain equivalence classes of integral binary cubic forms,
established by Delone and Faddeev [DF64]. Apparently unaware of this work,
Davenport and Heilbronn rediscovered this connection [DH69], [DH71], and
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were able to deduce formulas for the average size of the 3-part of the class
number of quadratic number fields (by a theorem of Hasse [Has30, Satz 8],
the 3-parts of the class groups of quadratic number fields are linked with
cubic number fields) by counting binary cubic forms. Actually, the counting
part was already done by Davenport in [Dav51a] and [Dav51b].
Their methods were extended by Datskovsky and Wright [DW88] to arbi-
trary global base fields K0 (including function fields). Instead of binary
cubic forms, they counted cubic extensions (which is essentially the same,
because a cubic extension of Q can be described by an equivalence class of
binary cubic forms F (x, y) = aX3 + bX2Y + cXY 2 + dY 3 by adjoining to Q
a root of the polynomial F (x, 1) – this gives a bijection which preserves dis-
criminants). In order to count such cubic extensions, they used ζ-functions
methods invented by Shintani [Shi75]. For the case K0 = Q, Belabas, Bhar-
gava, and Pomerance [Bel99], [Bel04], [BBP09] proved some upper bounds
for the rate of convergence.

Following ideas of Wright and Yukie [WY92], Bhargava could count quartic
extensions of Q, for which there exists a connection to the 2-parts of the class
groups of cubic number fields. In this way, he could prove some formulas
about (in particular, the average size of) the 2-part of class groups of cubic
extension of Q [Bha05]. Explicit error bounds are given in [BBP09].

Summarizing, we see that for some very specific cases partial results could be
proven, but unfortunately the methods all rely on specific tools that are only
available in these settings and cannot be easily transferred to other cases.

The methods used in these special cases show that the Cohen-Lenstra conjec-
tures for number fields are closely related to the number of number fields of a
certain type over a fixed base field. Malle [Mal02], [Mal04] has given precise
conjectures on the asymptotics, and in fact, Klüners could prove some of the
conjectures modulo the Cohen-Lenstra heuristics [Klü06]. (He also disproved
some of Malle’s conjectures by counterexamples [Klü05].) This may be seen
as another application of the Cohen-Lenstra heuristic for number fields.

6.2 A Fiat-Shamir protocol based on real qua-
dratic number fields

There are also some algorithms which rely on the hypothesis that the class
groups obey the Cohen-Lenstra predictions. In particular, there are some
cryptographic protocols which work over real quadratic number fields with
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large discriminants but small class groups. Since the Cohen-Lenstra heuristic
predicts that asymptotically 75.4 . . .% of all real quadratic number fields have
class groups with trivial odd part, it ensures that there exist such number
fields (if we assume further that the 2-part of the class group does not interfere
in an unexpected way). As I mentioned earlier, this existence is not proven
yet. So if the Cohen-Lenstra heuristic should turn out to be wrong (which
none of us expects), then the algorithms might work over the empty set.
As an example for such an algorithm, I will briefly sketch a variant of the
Fiat-Shamir identification protocol (FS) that was proposed by Buchmann,
Maurer and Möller in [BMM00].
Let me first describe a generalized version of the FS protocol. I will follow
the description of Buchmann, Maurer and Möller, simplifying where possible.
For the basic version of FS, see [FS87]; an improved and more detailed version
can be found e.g. in [BMM00]. There you will also find a description on how
one can derive a digital signature scheme from FS.
The goal of the FS protocol is that one party, called the prover, convinces
the other party, called the verifier, of his knowledge of a private key without
revealing any relevant information about this key.
In the setup phase of the protocol, the two parties agree on two abelian
groups G and H, and on an isomorphism ϕ : G → H which must be a one-
way-function, i.e., it is possible to compute ϕ in polynomial time, but no way
is known to compute the inverse ϕ−1 in polynomial time. The prover selects
a group element g ∈ G as his private key, and publishes h := ϕ(g) as his
public key.
Now the FS identification protocol works as follows:

(i) (Commitment and Witness) The prover randomly chooses a commit-
ment g0 ∈ G and computes the witness h0 = ϕ(g0). He sends the
witness h0 to the verifier.

(ii) (Challenge) The verifier selects a challenge bit b ∈ {0, 1} and sends it
to the prover.

(iii) (Response) The prover computes the response r = gbg0 and sends it to
the verifier.

(iv) (Verification) The verifier checks whether hbh0 = ϕ(r).

If the prover does not know the private key then it can be shown that it is
impossible for him to give the correct answer to both challenges unless he can
invert ϕ (which we assume is impossible). Hence, the probability to convict
him is 50%. The probability can be increased by repeating the protocol.
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For our purpose, we choose a real quadratic number field F with large dis-
criminant and small class group, and maximal order O ⊆ F . Let G := F ∗

be the group of invertible elements of F , let

H := {αO | α ∈ F ∗},
and let ϕ : G→ H;α 7→ αO. (Note that ϕ is not bijective. This problem can
be solved by choosing the generator α of αO for which the euclidean length
a of the logarithmic embedding is minimal. For details, see [BMM00].) The
result is output in standard form

αO = q

(
Z+

b+
√
D

2a

)
,

where a, b ∈ Z, q ∈ Q, a, q > 0, c = b2−D
4a
∈ Z and gcd(a, b, c) = 1 (cf. [BB94,

5.1]).
In order for the FS-protocol to be secure, inverting ϕ must be intractable.
Inverting ϕ is known as principal ideal problem. The two most efficient
methods known for solving this problem are the babystep-giantstep algo-
rithm and the index calculus method ([BB94]). The former algorithm takes
Ω(min(

√
a,
√
R)) time, where R is the regulator of O, and a is the length

of the logarithmic embedding of the generator α, as above. The index cal-
culus method has running time exp(Ω(

√
log(D) log log(D))), where D is the

discriminant of F .
One can show that if R is big then a is also big for a high proportion of all
orders of F ([BMM00]), so we only need to make the regulator R sufficiently
large.
The analytic class number formula relates the regulator to the class group.
For real quadratic number fields, it reads:

2hR = L(1, χ)
√
D,

where L is the Dirichlet L-series and χ is the Kronecker symbol. It is well-
known that L(1, χ) grows asymptotically much slower than

√
D (only poly-

logarithmical), hence we have 2hR ≈
√
D. Since we have chosen fields with

small class number h (independent of D), we see that R becomes arbitrarily
large, and hence the FS protocol is resistant against the babystep-giantstep
algorithm.

6.3 Function fields
The first steps in order to transfer the Cohen-Lenstra heuristics to function
fields came from Friedman and Washington [FW89]. Their approach was
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not quite correct. (Essentially they thought that they might take the group
GL(2g,Zp) instead of Sp2g(Zp), which turned out to be wrong – cf. the
description below.) The first one to correct them was seemingly Yu [Yu96],
although his work has never been published. Friesen [Fri99] was probably
the first one to publish results citing Yu’s work. For the sake of clarity, I
will describe only the case of quadratic extensions in detail; generalizations
are possible (e.g. [Ach06]), and considerable parts of the conjectures have
been proven in the general case as well [Pac04], [Ach06]. Also, I will restrict
myself to the local heuristic. I will follow closely the text of Friedman and
Washington, correcting their approach in the way of Yu where necessary.
We want to transfer the (imaginary quadratic) number field heuristic to
(imaginary quadratic) function fields. We replace Q by the projective line
P 1 over a fixed finite field F of characteristic l ∈ P. Instead of an imaginary
quadratic field, take a double cover C of P 1 defined over F and ramified at∞
(i.e., for l 6= 2, a hyperelliptic curve, given by an equation y2 = f(x) for some
separable polynomial f over F of odd degree). Fix an odd prime p 6= l, and
replace the class group of the number field by the 0-Picard group of divisor
classes of degree 0 defined over F. Denote the p-part of this group by Cp. We
order the function fields by the genus gC . In this case, the Cohen-Lenstra
conjecture would predict that for any finite abelian p-group H,

lim
g→∞

∑
C,gC≤g
Cp∼=H

1∑
C,gC≤g 1

??
=

1

#Aut(H)

∞∏
i=1

(1− p−i). (6.3)

Here C ranges over all hyperelliptic curves which are defined over F, which
are ramified at ∞, and which have genus gC ≤ g, and we always assume C
to be complete, nonsingular and absolutely irreducible.
The distinguishing feature of the function field case is that the Frobenius map
is available. Let Fr be the Frobenius map with respect to F and let Tp(C) be
the p-adic Tate module of C. We have Tp(C) ∼= Z2g

p (non-canonically). Then
MC := I − Fr is an endomorphism of Tp(C) whose cokernel is isomorphic to
Cp. Thus the groups whose distribution we seek all appear as coker(MC),
where C is a variable hyperelliptic curve.
In which matrix space does MC live? Since Fr = I −MC is a symplectic
similitude with respect to the Weil pairing, MC may be considered (non-
canonically) as an element of Sp2g(Zp) (see [Ach06] for details). And how
is Fr distributed in this space? The most naive possible answer turns out
to be correct: It is equidistributed by a result of Katz [KS99, Thm. 9.7.13].
Hence a random class group is obtained by choosing a random matrix A in
Sp2g(Zp) (with respect to the Haar measure, and for g → ∞), and taking
the cokernel of I − A.
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Note the analogy with the basic Cohen-Lenstra probability measure for qua-
dratic imaginary number fields, where a random class group is obtained by
taking a random matrix in Zn×np (with respect to the Haar measure, and for
n→∞) and taking its cokernel (cf. section 2.2.3). However, it turns out that
the results are only analogous, not identical. The probability distribution
is modified, so equation (6.3) is false and its right hand side needs to be
replaced by some twisted Cohen-Lenstra probabilities.
I should add that the fact that the Frobenius is equidistributed is also proven
with explicit error bounds [Ach08]. Moreover, Achter shows in [Ach06] that
the equidistribution property is even true for every “sufficiently general” se-
quence of quadratic function fields.
It remains to compute the twisted probabilities. They were computed by
Achter [Ach06], and Gekeler gives in [Gek06] explicit error bounds for the
special case of groups of rank 2 (which is the interesting case for elliptic
curves). This is again a case where the unfortunate unawareness between
the number theory group and the combinatoric group has produced double
statements: The formulas are already contained in Fulman’s thesis [Ful97]
and in a summary paper on the case of symplectic groups [Ful00a, Thm. 1].
Fulman computes not only the probabilities, but also provides a cycle index
description and a description by Markov chains, and deduces formulas for
the average size and rank of such groups and for some higher moments of
these values.

6.4 Modules over group rings

There are various ways to generalize the Cohen-Lenstra heuristic. Greither
proposed to fix a finite abelian p-group G0 and consider all finite Zp[G0]-
modules M , where Zp[G0] denotes the group ring of G0. He proves [Gre98],
[Gre00] that∑

M finite
Zp[G0]-module

1

#AutZp[G0](M)
=

∑
G finite

abelian p-group

1

#Aut(G)
= w(Gp), (6.4)

where the right hand side is just the standard overall Cohen-Lenstra weight.
In other words, considering finite Zp[G0]-modules is a refinement of con-
sidering finite abelian p-groups. In the former paper, Greither gives some
indication that for certain families of number fields the p-class group of an
extension K/Q should be considered as a Zp[G0]-module.
Let me add that, following unpublished ideas of Lenstra and de Smit, Grei-
ther proves in [Gre00] that equation (6.4) is also valid for non-abelian finite
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p-groups G0 if we restrict M to be finite and cohomologically trivial (i.e., in
this case, of projective dimension ≤ 1).
These ideas enable me to conclude my thesis with a highly speculative and
not yet sufficiently formalized conjecture, which might lead to a vast gener-
alization of the Cohen-Lenstra heuristic for number fields:
As an example, consider the following sequence of number fields: Fix an
odd p ∈ P, and consider the following sequence of fields Kr, where r runs
through all primes in P1 := {r ∈ P | r ≡ 3 mod 4 and r ≡ 1 mod p}. We let
Kr be the unique abelian extension of Q of degree 2p and conductor r. (The
field Kr is then always imaginary.) Then the p-part H−p (Kr) of the minus
class group H−(Kr) of Kr may be considered as a Zp[Gr]-module, where
Gr is the subgroup of order p in Gal(Kr/Q). Then a way of extending the
Cohen-Lenstra heuristic would be:

6.4.1 Conjecture. Consider the following stochastic process: For each r ∈
P1 choose randomly a module M over Zp[Gr] according to the probability
measure

P (M) =
1

w(Gp)
1

#AutZp[Gr](M)
,

where the proportionality factor 1
w(G)

does not depend on Gr (and hence, Kr).
Now consider the sequence (H−p (Kr))r∈P1. The group H−p (Kr) may be viewed
as a Zp[Gr]-module.
Then both sequences are stochastically indistinguishable.

6.4.2 Remark.

• Note that the conjecture is not precise. One would need to specify
what “stochastically indistinguishable” means in this context. But it
would probably at least include the following: Let us fix an r0 ∈ P1.
Whenever we have for all r a morphism from the set of all Zp[Gr]-
modules to the set of all Zp[Gr0 ]-modules, for various r, so that we can
map all the modules to Zp[Gr0 ], then the images of both sequences are
stochastically indistinguishable in Zp[Gr0 ]. Further research would be
necessary in order to find out whether this notion is useful, or whether
we should replace it by something else.

• The conjecture can be transferred to many other sequences of field
extensions over a fixed ground field. We would only need to specify
what Gr is in the general setting. Opposed to the classical Cohen-
Lenstra conjectures for number fields, we are not restricted to a fixed
Galois group.
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• Note that this conjecture would imply the classical (local) Cohen-
Lenstra conjecture. This would be the case where all Galois groups
are isomorphic.

Summarizing, the conjecture is remarkable, because M is a module over
different rings for each number field Kl. On the one hand, it looks like a step
backwards, because it is not clear what the meaning of probability should
be in this context. On the other hand, if it could be rigidly formalized, it
would allow us to formulate conjectures of Cohen-Lenstra types for much
more general sequences of class groups. This new perspective on the Cohen-
Lenstra heuristic might also be useful when attention turns to non-abelian
field extension, for which only little numerical evidence is available so far.
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