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ENTIRE FUNCTIONS SHARING SIMPLE a-POINTS WITH

THEIR FIRST DERIVATIVE
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Abstract. We show that if a nonconstant complex entire function f and

its derivative f ′ share their simple zeroes and their simple a-points for some

nonzero constant a, then f ≡ f ′. We also discuss how far these conditions

can be relaxed or generalized. Finally, we determine all entire functions f

such that for 3 distinct complex numbers a1, a2, a3 every simple aj-point of

f is an aj-point of f ′.

1. Introduction

Throughout f(z) or f denotes an entire function, i.e., a function that is holo-

morphic in the whole complex plane, and f ′(z) or f ′ denotes its derivative. We

write f ≡ g to say that the two functions are identical.

Everybody knows that f ≡ f ′ if and only if f(z) = Cez with some complex con-

stant C. For an apparently much weaker condition that has the same implication

we recall the following.

Two meromorphic functions f and g are said to share the value a ∈ C IM

(ignoring multiplicity), or just to share the value a, if f takes the value a at

exactly the same points as g. If moreover at any given such point the functions f

and g take the value a with the same multiplicity, then f and g are said to share

the value a CM (counting multiplicity).
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The general philosophy is that two meromorphic functions that share “too

many” values must be equal. In the special situation where g is the derivative of

f one usually needs even less values.

Theorem 1.1 (Rubel and Yang [17]). Let f be a nonconstant entire function

and let a and b be complex numbers with a 6= b. If f and f ′ share the values a

and b CM, then f ≡ f ′.

Actually, in this case one doesn’t even need the multiplicities, as was proved

two years later.

Theorem 1.2 (Mues and Steinmetz [13, Satz 1]). Let f be a nonconstant entire

function and let a and b be complex numbers with a 6= b. If f and f ′ share the

values a and b IM, then f ≡ f ′.

See also [18, Theorem 8.3] for a proof in English. Theorem 1.1 and later

Theorem 1.2 have been generalized in [9] resp. [11] by relaxing the requirements

on the sharing. We content ourselves with one representative example, which we

will need later.

Theorem 1.3 (Lü, Xu and Yi [11, Corollary 1.1]). Let b be a nonzero number

and let f(z) be a nonconstant entire function. If f(z) = 0 ⇒ f ′(z) = 0 and

f(z) = b⇒ f ′(z) = b, then one of the following cases must occur:

(a) f ≡ f ′,
(b) f = b{ 14A

2ez/2 +Aez/4 + 1}, where A is a nonzero constant.

There are yet other ways to generalize the sharing of two values between f and

f ′. For example the papers [8] and [10] also treat the case of f and f ′ sharing a

two-element-set {a, b}, i.e., the two shared values might get mixed up.

But we want to investigate a generalization that, to the best of our knowledge,

has not been applied yet to an entire function and its derivative.

2. Results

Definition. Let f and g be two meromorphic functions and a ∈ C. We say that

f and g share their simple a-points if the points where f takes the value a with

multiplicity one are exactly those where g takes the value a with multiplicity one.

In the literature sometimes the notation

E1)(a, f) = E1)(a, g)

is used to describe this kind of sharing.
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Obviously, this property generalizes sharing a CM, and even sharing a with

weight one in the sense of [7], but in general it is neither stronger nor weaker

than sharing a IM. Note that sharing simple a-points does not imply sharing the

value a since we make no requirements at all concerning points where the value

a is taken with higher multiplicity.

Very roughly, the philosophy is that the bulk of a-points should be simple, at

least if one considers enough values a, and hence the loss of information when

giving up control over the multiple values can be compensated.

For example, in contrast to Nevanlinna’s famous theorem that two nonconstant

meromorphic functions that share 5 values must be equal, one obtains that two

nonconstant meromorphic functions that share simple aj-points for 7 values aj
must be equal. See [5] or [18, Section 3.3.1].

In this paper we try to find similar results corresponding to Theorems 1.1 and

1.2.

Theorem 2.1. Let f(z) be a nonconstant entire function and 0 6= a ∈ C. If

f and its derivative f ′ share their simple a-points and their simple zeroes, then

f ≡ f ′.

Actually, we even prove a slightly stronger statement in the spirit of [9] and

[11]. We will be working with the following conditions (in order of decreasing

strength):

• f and f ′ share their simple a-points, i.e.

(f = a and f ′ 6= 0) ⇔ (f ′ = a and f ′′ 6= 0);

• Every simple a-point of f is a simple a-point of f ′, i.e.

(f = a and f ′ 6= 0) ⇒ (f ′ = a and f ′′ 6= 0);

• Every simple a-point of f is a (not necessarily simple) a-point of f ′, i.e.

(f = a and f ′ 6= 0) ⇒ f ′ = a.

This condition is of course equivalent to

f = a⇒ f ′ ∈ {a, 0}.

Theorem 2.2. Let f(z) be a nonconstant entire function and 0 6= a ∈ C. If f and

f ′ share their simple zeroes and if every simple a-point of f is a (not necessarily

simple) a-point of f ′, then f ≡ f ′.

The proof is given in Section 4.



1140 A. SCHWEIZER

Example 1. From [9, Theorem 2] we take the function

f(z) = Ce
b

b−a z + a

with nonzero constants C, a, b(6= a). It shares the value b CM with f ′ and omits

the value a. This shows that in Theorem 2.2 we cannot simply replace sharing

simple zeroes by sharing simple b-points. This is perhaps not overly surprising.

As the easy Lemma 3.1 in the next section shows, sharing simple zeroes with f ′

has much stronger implications on f than sharing simple b-points for some b 6= 0.

Example 2. Let

f(z) =
a

2
(sin(2z) + 1);

then f ′(z) = a cos(2z). All a-points of f and of f ′ and all zeroes of f have

multiplicity 2. Thus the condition that f and f ′ share their simple a-points and

that every simple zero of f is a simple zero of f ′ does not imply f ≡ f ′.

The more interesting question is whether in Theorem 2.1 we can replace sharing

the simple zeroes by sharing the simple b-points for some nonzero b different from

a. In general the answer again is negative.

Example 3. Let 0 6= a ∈ C. The entire function f(z) = a sin z and its derivative

f ′(z) = a cos z share their simple a-points and their simple −a-points, for the

trivial reason that all their a-points and −a-points have multiplicity 2.

However, somehow this counterexample seems to hinge on the fact that the

second value is the negative of the first. It is still conceivable that if f and f ′

share their simple a-points and their simple b-points the sufficient condition that

forces f ≡ f ′ is simply a+ b 6= 0, not ab = 0.

For example, in the somewhat similar context of f and f ′ sharing a two-

element-set {a, b} CM, the only case for which non-obvious functions f exist is

a+ b = 0 (see [8, Theorem 3] and [10]).

So we ask the following

Question. Let a, b be two distinct nonzero complex numbers with a+ b 6= 0. If

a nonconstant entire function f and its derivative f ′ share their simple a-points

and their simple b-points, does this imply f ≡ f ′?

At the moment we don’t know the answer and we do not even have a clear

feeling whether it will be positive or negative. As a small consolation we prove

another result, which in case of a positive answer to this question would follow as

an immediate corollary.
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Theorem 2.3. Let a1, a2, a3 be three distinct complex numbers and let f be

a nonconstant entire function. If f and f ′ share their simple aj-points for j =

1, 2, 3, then f ≡ f ′.

Again, we prove a stronger result.

Theorem 2.4. Let a1, a2, a3 be three distinct complex numbers. Nonconstant

entire functions f with f 6≡ f ′ and

f = aj ⇒ f ′ ∈ {aj , 0}

for j = 1, 2, 3 exist if and only if aj = ζja3 with ζ being a third root of unity, that

is, if (X − a1)(X − a2)(X − a3) is of the form X3 − δ.
Moreover, functions with this property necessarily are of the form

f(z) =
4δ

27β2
e

2
3 z + βe−

1
3 z

with a nonzero constant β.

Conversely, every function of this form has the stronger property that every

simple aj-point of f is a simple aj-point of f
′ for j = 1, 2, 3.

The three Examples above and the second case of Theorem 1.3 show that the

condition in Theorem 2.4 cannot be reduced to two values a1, a2.

3. idea of proof and some lemmas

The following observation is almost trivial.

Lemma 3.1. Suppose that f and f ′ share their simple zeroes. Then

(a) f ′ has no simple zeroes.

(b) Every multiple point of f has multiplicity at least 3.

(c) Every zero of f has multiplicity at least 3.

The proofs of the theorems follow an overall strategy that we have seen in

several articles from the last ten years on entire (or meromorphic) functions f

with certain value sharing properties. This strategy gains its strength from the

combination of different methods. To emphasize this we have divided it into four

steps.

In Step 1 one constructs from f a family of analytic functions by shifting the

argument and then uses the properties of f to show that this family is normal.

In Step 2 one obtains from the normality of that family that f has order at

most 1. This is almost automatic. Nevertheless, we want to consider this as a
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separate step for the following reason: Even if the family in Step 1 is not normal,

there might be other ways to show that f has order at most 1.

In Step 3 one constructs an auxiliary function h from f and its derivative(s)

that somehow encodes the value sharing property of f . Then one uses Nevanlinna

Theory arguments to show that h is constant. This task is greatly facilitated, and

sometimes only possible, thanks to the knowledge that f has order at most 1.

In Step 4 one uses the information encoded in h ≡ const to derive the desired

properties of f . In the proof of Theorem 2.4 we will to that end emphasize

geometric considerations concerning the algebraic curve described by h ≡ const.
To start with, i.e. for Step 1, we need the following minor strengthening of the

famous Zalcman Lemma.

Lemma 3.2. Let F be a family of holomorphic functions on the unit disk. If F
is not normal, then there exist

(i) a number 0 < r < 1,

(ii) points zn, |zn| < r,

(iii) functions fn ∈ F ,
(iv) positive numbers ρn → 0,

such that

fn(zn + ρnξ) =: gn(ξ)→ g(ξ)

uniformly on compact subsets of C, where g is a nonconstant entire function.

Moreover, given a complex number a, if there exists a bound M and a positive

integer m such that for every function f in F and every z0 ∈ C with f(z0) = a we

have |f (k)(z0)| ≤M for k = 1, 2, . . .m, then every a-point of g has multiplicity at

least m+ 1.

Proof. This is essentially the original version of Zalcman’s Lemma [19]. The

only thing we have to prove is the last assertion. For fixed n we differentiate

gn(ξ) with respect to ξ and get

g(k)n (ξ) = ρknf
(k)
n (zn + ρnξ).

Now suppose that g(ξ0) = a. Since g is nonconstant, by Hurwitz’s theorem

there exist ξn, ξn → ξ0, such that for sufficiently large n we have a = g(ξ0) =

gn(ξn). Hence our assumptions imply |g(k)n (ξn)| ≤ ρknM for k = 1, 2, . . . ,m and n

sufficiently large. Since g
(k)
n (ξ) converges locally uniformly to g(k)(ξ), we obtain

g(k)(ξ0) = lim
n→∞

g(k)n (ξn) = 0

for k = 1, 2, . . . ,m. �
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Remark. For m = 1 the same argument is already in [1] (and in other papers).

Actually, [1] claims that under certain stronger conditions the function g omits

the value a. However, we feel uneasy about Theorem 1 and Theorem 3 in [1] as

it seems to us that by practically the same argument one would then be able to

prove that a holomorphic family F with f(z) ∈ {1,−1} ⇒ f ′(z) ∈ {1,−1} for all

f ∈ F would be normal, in contradiction to Example 1 in the same paper.

The problem seems to be that on lines 6 and 7 of page 1476 of [1] the value

al in g′n(ξ
(j)
n ) = ρnal depends on j, and therefore on line 13 one cannot conclude

that g′n(ξ)− ρnal has k zeroes.

4. Proof of Theorem 2.2

Proof. Step 1: We set fω(z) = f(z+ω) and consider the family of holomorphic

functions F = {fω(z) : ω ∈ C}. Note that due to its special form F is normal on

C if and only if it is normal on the unit disk. Obviously, this family satisfies the

conditions of Lemma 3.2 for 0 with m = 2 and for a with m = 1. We conclude

that F must be normal. Otherwise we could construct a nonconstant entire func-

tion g such that all a-points of g have multiplicity at least 2 and all zeroes have

multiplicity at least 3. So for the function Θ (the sum of the deficiency and the

ramification defect) we would have Θ(a, g) ≥ 1
2 and Θ(0, g) ≥ 2

3 , in contradiction

to the defect relation
∑
b∈C Θ(b, g) ≤ 1 for entire functions ([2, Corollary 5.2.4]

or [18, Section 1.2.4]).

Step 2: From Step 1 we readily obtain that f has order at most 1. This is

a general principle; f is a Yosida function (i.e. its spherical derivative is uni-

formly bounded on C) if and only if the family {f(z + ω) : ω ∈ C} is normal on

C [12, p.198], and a holomorphic Yosida function has order at most 1 [12, p.211].

Step 3: Consider the auxiliary function

h =
(f ′)2(f − f ′)
f2(f − a)

.

It is easy to see that the potential poles arising from zeroes of f − a are cancelled

either by f ′ = a or by the zeroes of (f ′)2. As for the zeroes of f , note that by

Lemma 3.1(c) then f − f ′ has at least a double zero. So h is an entire function.

Using the standard functions from Nevanlinna theory and their basic properties

(see e.g. [2] or [18]), from

h =
f ′

f
· f ′

f − a
− f ′

f
· f
′

f
· f ′

f − a
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we obtain

T (r, h) = m(r, h)

≤ m(r,
f ′

f
) +m(r,

f ′

f − a
) +m(r,

f ′

f
) +m(r,

f ′

f
) +m(r,

f ′

f − a
) +O(1).

From [15] or [6, Theorem 4.1] we see that if f is an entire function of order at most

1, then m(r, f
′

f ) = o(log r) (compare [2, Section 3.5]). Hence the above estimate

gives T (r, h) = o(log r), which means that h is constant.

Step 4: If h ≡ 0, then (f ′)2(f − f ′) ≡ 0, and hence f ≡ f ′ since f is non-

constant.

Now consider the case h ≡ γ for some nonzero constant γ. Then every a-point

of f must be simple; otherwise by Lemma 3.1(b) it would have multiplicity at least

3 and then the term (f ′)2 would cause a zero of h. So we have f = a ⇒ f ′ = a

and by Lemma 3.1(c) also f = 0 ⇒ f ′ = 0, that is, we are in the situation of

Theorem 1.3. But the second possibility f = a(A2 e
z
4 +1)2 is ruled out, for example

because all zeroes of that function have multiplicity 2, in contradiction to Lemma

3.1(c). �

5. Proof of Theorem 2.4

Proof. We prefer to write a, b, c for a1, a2, a3.

The holomorphic family {fω(z) : ω ∈ C} with fω(z) = f(z + ω) is normal. If

not, as in Step 1 of the proof of Theorem 2.2 we could construct a nonconstant

entire function g with 3 totally ramified values (namely a, b and c); this would

contradict the defect relations [2, Theorem 5.4.1]. But actually our claim is just

a special case of [3, Lemma 4].

Next, exactly the same argument as in Step 2 shows that f has order at most

1, and as in Step 3 we see that

h =
(f ′)2(f − f ′)

(f − a)(f − b)(f − c)

=
f ′

f − c

(
b

b− a
· f ′

f − b
− a

b− a
· f ′

f − a
− f ′

f − a
· f ′

f − b

)
must be constant. If h ≡ 0, again we get f ≡ f ′ since f ′ 6≡ 0.

Now we discuss the case h ≡ γ for a nonzero constant γ. This can probably

be done by some case distinctions as in [11], or rather, more complicated ones.

But we prefer a more geometric argument that would also work in many more

complicated situations.
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Consider the holomorphic map

z 7→ (f(z), f ′(z)) = (X,Y )

from C to the affine curve

A : Y 3 −XY 2 + γ(X − a)(X − b)(X − c) = 0.

This polynomial is irreducible in C[X,Y ]. If not, it would have a factor Y −uX+v

with u 6= 0; but then by the equation above X − v
u would be a multiple factor of

(X − a)(X − b)(X − c).
Now we write (X − a)(X − b)(X − c) as X3 + c2X

2 + c1X + c0 and examine

the corresponding projective curve

R : Y 3 −XY 2 + γ(X3 + c2X
2Z + c1XZ

2 + c0Z
3) = 0.

This is an irreducible cubic curve. So either it is smooth and has genus 1, or it

has exactly one singular point and genus 0. In the latter case the smooth model

of R is a Riemann sphere. We suppress discussing the somewhat complicated

conditions on γ and c2, c1, c0 that distinguish the two cases, as it would not really

help us in finishing the proof.

If the genus is 1, the affine curve A is obtained by removing at least one

point from a smooth, projective curve (equivalently, from a compact Riemann

surface) of positive genus. Hence A is hyperbolic [4, Theorem 27.12], i.e., its

universal covering is the unit disk. Hence (essentially by Liouville’s Theorem)

every holomorphic map from C to A must be constant. This would mean that f

is constant.

Alternatively, as Andreas Sauer has pointed out to me, hyperbolicity of alge-

braic curves can also be obtained from value distribution theory of meromorphic

functions. See [14, Chapter X, §3] and the references given there. As mentioned

there, it is already a classical theorem by Picard [16] that if an algebraic curve

F (X,Y ) = 0 is uniformized by two nonconstant meromorphic functions X(z)

and Y (z) then the curve necessarily has genus 0 or 1. But if the genus is 1, the

functions are elliptic and hence not entire.

Either way, we can assume from now on that the genus of R is 0. Then the

function field C(f, f ′) is a rational function field C(t). It is a classical result

that f ′ has the same order (in the sense of Nevanlinna theory) as f and that

adding, multiplying and dividing functions does not increase the order. As some

textbooks do not mention this, we give the reference [18, Theorem 1.21 and

Section 1.3.4]. Since t is a rational expression in f and f ′, we thus obtain that

t(z) is a meromorphic function of order at most 1.
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Plugging Z = 0 into the homogeneous equation for R, we see that there are

at least 2 points outside the affine part. After a Möbius transformation we can

assume that t has a zero and a pole at these two points. Then t(z) is an entire

function of order at most 1 without zeroes. By Hadamard’s factorization theorem

[18, Theorem 2.5] we have

t(z) =
eαz

β
with nonzero constants α, β.

Of course, f is a rational function of degree 3 in t. If t(z) omits other values

than∞ and 0, it must be constant by Picard’s Theorem, so f would be constant.

Thus the poles of f are exactly at t = 0 and t =∞. Replacing t by 1
t if necessary,

we can assume that the double pole is at t =∞. Then f = b2t
3+b1t

2+b0t+b−1

t with

b2b−1 6= 0. Choosing β suitably, we can assume b−1 = 1, that is,

f = b2t
2 + b1t+ b0 +

1

t
,

and hence

f ′ = 2αb2t
2 + αb1t−

α

t
.

We plug this into the equation for A and compare coefficients for the powers of

t. From the coefficients of t6 and of t−3 we obtain 8α3b32 − 4α2b32 + γb32 = 0 and

−α3 − α2 + γ = 0, so together

α =
1

3
and γ =

4

27
.

Using this, the coefficient of t4 forces c2 = 0, and then from the t−2-coefficient

b0 = 0 follows. From the t3-coefficient we get b1 = 0, and with that the t−1-

coefficient implies c1 = 0. Finally, the coefficient of t0 tells us that b2 = −4
27 c0 =

4
27δ. This shows

f(z) =
4δ

27β2
e

3
2 z + βe−

1
3 z

and proves the main part of the theorem.

Checking the coefficients for the remaining powers of t confirms that such f do

indeed satisfy the differential equation

(f ′)3 − f(f ′)2 +
4

27
(f3 − δ) ≡ 0.

So, conversely, assume f is of the above form. Then the differential equation

shows that if f = ζjc and f ′ 6= 0 then f ′ = ζjc. Moreover, since f also satisfies

the differential equation f ′′ ≡ 1
3f
′ + 2

9f , such ζjc-points of f ′ are simple. �
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6. Proof of Theorem 2.3

Proof. If f 6≡ f ′, then by Theorem 2.4 we must have aj = ζjc and f = 4c3

27 t
2 + 1

t

with t = 1
β e

1
3 z. Correspondingly, f ′ = 8c3

81 t
2 − 1

3t and f ′′ = 16c3

243 t
2 + 1

9t . In

particular, f ′ = c if and only if t ∈ {−3c ,
3(2±

√
6)

4c }. But for t = 3(2+
√
6)

4c we get

f ′′ 6= 0 and f = (
√

6 − 1
2 )c 6= c. So not every simple c-point of f ′ is a c-point of

f . �
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