THE WATER-WAVE PROBLEM

 $y = h + \eta(x, z, t)$ ѧУ $\underline{u} = \nabla \varphi$ y = 0^rz

Kinematic boundary condition:

 $\eta_{t} = \varphi_{y} - \eta_{x}\varphi_{x} - \eta_{z}\varphi_{z}$

Dynamical boundary condition:

$$\varphi_{t} + \frac{1}{2}(\varphi_{x}^{2} + \varphi_{y}^{2} + \varphi_{z}^{2}) + g\eta$$
$$-\sigma \left[\frac{\eta_{x}}{\sqrt{1 + \eta_{x}^{2} + \eta_{z}^{2}}}\right]_{x} - \sigma \left[\frac{\eta_{z}}{\sqrt{1 + \eta_{x}^{2} + \eta_{z}^{2}}}\right]_{z} = 0$$

Difficulties:

- A free-boundary value problem
- Nonlinear boundary conditions

Solitary waves:

 $\eta(x, z, t) = \eta(x - ct, z), \ \varphi(x, y, z, t) = \varphi(x - ct, y, z)$ $\eta(x-ct,z) \rightarrow 0, \qquad |x-ct| \rightarrow \infty$ Parameter:

$$a = gh/c^2$$
, $\beta = \sigma/hc^2$

DIMENSION BREAKING

Periodically modulated solitary waves bifurcate from line solitary waves

- Strong surface tension ($\beta > 1/3$)
- Weak surface tension ($\beta < 1/3$)

MODELLING

Strong surface tension ($\beta > 1/3$):

Dispersion relation:

• Write
$$a = 1 + \varepsilon^2$$

The Ansatz

$$\eta(x,z) = \varepsilon^2 \zeta(\varepsilon x, \varepsilon^2 z) + O(\varepsilon^4)$$

leads to the Kadomtsev-Petviashvili equation

$$\partial_{xx}\left(\zeta_{xx}-\zeta+\frac{3}{2}\zeta^2\right)-\zeta_{zz}=0$$

The KP equation admits line (KdV) and periodically modulated solitary-wave solutions

MODELLING

Weak surface tension ($\beta < 1/3$):

Dispersion relation:

- Write $a = a_0 + \varepsilon^2$
- The Ansatz

 $\eta(x,z) = \varepsilon \left(\zeta(\varepsilon x, \varepsilon z) e^{i\mu_0 x} + \overline{\zeta(\varepsilon x, \varepsilon z)} e^{-i\mu_0 x} \right) + O(\varepsilon^2)$

leads to the Davey-Stewartson system

$$\begin{aligned} \zeta - \zeta_{xx} - \zeta_{zz} - |\zeta|^2 \zeta - \zeta \psi_x &= 0, \\ -\psi_{xx} - \psi_{zz} + (|\zeta|^2)_x &= 0 \end{aligned}$$

The DS system has explicit line (NLS) and periodically modulated solitary-wave solutions

SPATIAL DYNAMICS

Formulate the water-wave problem as an evolutionary equation

$u_z = Lu + N(u), \qquad u \in X$

- z is the 'time-like' variable
- X is a phase space of functions which vanish as $x \rightarrow \pm \omega$
- Equilibrium solutions are line solitary waves
- Periodic solutions in the form of periodic orbits surrounding a nearby equilibrium are periodically modulated perturbations of the line solitary wave

Search for periodic orbits surrounding the equilibrium corresponding to the the KdV or NLS line solitary wave

LYAPUNOV CENTRE THEOREM

Classical form for Hamiltonian systems

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial q_j}, \qquad j = 1, \dots, n$$

Linearise around an equilibrium u^*

Nonresonance condition:

in ω , $n \neq \pm 1$ is not an eigenvalue

There exists a family $\{u_{\mathfrak{s}}\}$ of $2\pi/\omega_{\mathfrak{s}}$ -periodic solutions with

 $u_{\mathfrak{s}} \to u^{\star}, \ \omega_{\mathfrak{s}} \to \omega \qquad \text{as } \mathfrak{s} \to 0$

Devaney extension: (infinite-dimensional) reversible systems

 $\dot{u} = Lu + N(u),$ $S^2 = I, SL = -LS, SN = -NS$

Iooss extension:

iω

 $-i\omega$

Nonresonance condition violated:

 $O \in \sigma_{ess}(L)$

Additional condition:

 $Lu = N(u^{\dagger})$

is solvable for each u^{\dagger}

VARIATIONAL PRINCIPLE

Luke's variational principle:

$$\delta \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ \int_{0}^{1+\eta} \left(-\varphi_{x} + \frac{1}{2} (\varphi_{x}^{2} + \varphi_{y}^{2} + \varphi_{z}^{2}) \right) dy + \frac{1}{2} a\eta^{2} + \beta (\sqrt{1 + \eta_{x}^{2} + \eta_{z}^{2}} - 1) \right\} dx \, dz = 0$$

New variables:

$$\widetilde{y} = y/(1 + \eta(x, z)), \qquad \varphi(x, y, z) = \Phi(x, \widetilde{y}, z)$$
$$\Rightarrow \qquad \delta \mathcal{L} = 0, \qquad \delta \mathcal{L} = \int_{-\infty}^{\infty} \mathcal{L}(\eta, \Phi, \eta_z, \Phi_z) \, dz$$

Legendre transform:

$$\omega = \frac{\delta L}{\delta \eta_z}, \qquad \xi = \frac{\delta L}{\delta \Phi_z}$$

$$\Rightarrow \quad \eta_z = \eta_z(\eta, \omega, \Phi, \xi), \qquad \Phi_z = \Phi_z(\eta, \omega, \Phi, \xi)$$
Hamiltonian:
$$H(\eta, \omega, \Phi, \xi) = \int_{-\infty}^{\infty} \int_{0}^{1} \Phi_z \xi \, d\widetilde{y} \, dz + \int_{-\infty}^{\infty} \eta_z \omega \, dz - L(\eta, \Phi, \eta_z, \Phi_z)$$
Hamilton's equations:
$$\eta_z = \frac{\delta H}{\delta \eta}, \quad \omega_z = -\frac{\delta H}{\delta \rho}, \quad \Phi_z = \frac{\delta H}{\delta \xi}, \quad \xi_z = -\frac{\delta H}{\delta \Phi}$$

(with boundary conditions for ϕ at y = 0, 1)

■ Reversibility: $(\eta, \omega, \Phi, \xi) \mapsto (\eta, -\omega, \Phi, -\xi)$

LINEAR SPECTRAL ANALYSIS

P Resolvent equations for $u = (\eta, \omega, \Phi, \xi)$:

 $(L - ik\varepsilon l)u = u^{\dagger}, \qquad O < k \leq k_{\max}$

Solve for ω, ξ, Φ as functions of η, u^{\dagger}

$$\Rightarrow \qquad g(D)\eta = \mathcal{N}(\eta, u^{\dagger}),$$

where

 $g(\mu) = a_0 + \beta q^2 - \frac{\mu^2}{q} \coth q, \qquad q = \sqrt{\mu^2 + \varepsilon^2 k^2}$

g(µ) ≥ 0 with equality iff $µ = ±µ_0$ Write

 $\eta_1 = \chi(D)\eta, \quad \eta_2 = (1 - \chi(D))\eta$ where χ is the indicator function of $[\pm \mu_0 - \delta, \pm \mu_0 + \delta]$ Solve for η_2 as a function of η_1 and u^{\dagger} Write

$$\eta_1(x,z) = \varepsilon^2 \zeta(\varepsilon x, \varepsilon^2 z)$$

or

$$\eta_{1}(x,z) = \varepsilon \left(\zeta(\varepsilon x, \varepsilon z) e^{i\omega x} + \overline{\zeta(\varepsilon x, \varepsilon z)} e^{-i\omega x} \right)$$

to arrive at the reduced system

 $\zeta_{xxxx} - \zeta_{xx} + \Im(\zeta^*\zeta_x)_x + \Im(\zeta\zeta_x^*)_x + O(\varepsilon) + k^2\zeta = \zeta^{\dagger}$ or

$$\begin{aligned} \zeta - \zeta_{xx} - \Im(\zeta^*)^2 \zeta - (\zeta^*)^2 \overline{\zeta} - \zeta^* \psi_x + O(\varepsilon) + k^2 \zeta &= \zeta^{\dagger}, \\ -\psi_{xx} - 2(\operatorname{Re} \zeta^* \zeta)_x + k^2 \psi &= 0 \end{aligned}$$

LINEAR SPECTRAL ANALYSIS

Reduced equation:

$$(\mathcal{B}_{\varepsilon,k}+k^2l)w=w^{\dagger}$$

- $\mathcal{B}_{O,k}$ is known explicity, is self-adjoint and does not depend upon k
- Spectrum of $\mathcal{B}_{O,k}$:

● Spectral perturbation for $k \in [k_{min}, k_{max}]$:

 $\lambda_{\varepsilon,k}$ O

- The point $-k^2$ lies inside the ellipse
- $\mathcal{B}_{\varepsilon,k} + k^2 l$ is invertible if and only if $\lambda_{\varepsilon,k} + k^2 \neq 0$, otherwise it has a simple eigenvalue
- $\lambda_{\varepsilon,k} + k^2 = 0$ has exactly one solution k_{ε} with $k_{\varepsilon} = \omega + O(\varepsilon)$
- $\pm i\varepsilon k_{\varepsilon}$ are simple eigenvalues of *L* and *L* $i\lambda l$ is invertible for all other values of $|\lambda| > \varepsilon k_{min}$
- Iooss condition:
 - $Lu = N(u^{\dagger})$ leads to $C_{\varepsilon,k}\zeta = \zeta^{\dagger}$
 - C_{0,0} is known explicity and invertible
 - Hence $C_{\varepsilon,O}$ is invertible