We follow the random construction of an element of the family from Thm 4.9 and 4.10 as explained in Matrix factorizations and families of curves of genus 15
i1 : kk=ZZ/10007;S=kk[x_0..x_4]; |
i3 : N=constructEx6(S); |
i4 : betti res N
0 1 2 3
o4 = total: 7 15 12 4
0: 7 15 4 .
1: . . 8 3
2: . . . 1
o4 : BettiTally
|
i5 : (M0,M1)=matrixFactorizationFromModule(N); |
i6 : tangentKernelDimension(N,M0)==7 o6 = true |
i7 : N=constructEx6(S,{(4,1)});
|
i8 : betti res N
0 1 2 3
o8 = total: 7 15 12 4
3: 7 15 4 .
4: . . 8 3
5: . . . 1
o8 : BettiTally
|
i9 : (M0,M1)=matrixFactorizationFromModule(N); |
i10 : tangentKernelDimension(N,M0)==9 o10 = true |
i11 : N=constructEx6(S,14); |
i12 : betti res N
0 1 2 3
o12 = total: 7 15 12 4
0: 7 15 4 .
1: . . 8 3
2: . . . 1
o12 : BettiTally
|
i13 : E=annihilator N; (degree E,genus E)==(14,14) o13 : Ideal of S o14 = true |
i15 : (M0,M1)=matrixFactorizationFromModule(N); |
i16 : tangentKernelDimension(N,M0)==3 o16 = true |
i17 : betti res E
0 1 2 3
o17 = total: 1 6 9 4
0: 1 . . .
1: . . . .
2: . 6 3 .
3: . . 6 4
o17 : BettiTally
|