i1 : kk=ZZ/10007;R=kk[y_0..y_2];
|
i3 : m=transpose random(R^{1,2},R^2);E=annihilator coker m;
2 2
o3 : Matrix R <--- R
o4 : Ideal of R
|
i5 : (degree E, genus E) ==(3,1)
o5 = true
|
i6 : RE=R/E; M= coker m**RE; N=coker transpose m**RE;
|
i9 : betti(phi'= Hom0(M,N))
0 1
o9 = total: 4 5
-2: 2 .
-1: 2 5
o9 : BettiTally
|
i10 : phi=homomorphism0(M,N,phi'_{1})
o10 = {-1} | -642y_0-2535y_1-2040y_2 1302y_1+4870y_2 |
{-2} | y_1^2+4616y_1y_2+1975y_2^2 -4464y_1y_2+1432y_2^2 |
o10 : Matrix
|
i11 : degree coker phi
o11 = 5
|
i12 : betti M, betti N, betti Hom(M,N)
0 1 0 1 0 1
o12 = (total: 2 2, total: 2 2, total: 2 2)
0: 2 1 -2: 1 . -1: 2 1
1: . 1 -1: 1 2 0: . 1
o12 : Sequence
|
i13 : apply(4,i->hilbertFunction(i-2,Hom(M,N)))
o13 = {0, 2, 5, 8}
o13 : List
|