Construct the ring homomorhism A->Asym which induce the isomorphism A/lin = Asym, where lin denote the ideal of purely linear flattening relations.
i1 : p=0,n=5 o1 = (0, 5) o1 : Sequence |
i2 : (R,A,I)=unfoldingEquations(p,n); |
i3 : time (lin,J)=equationsInThePaper(n,A);betti J
-- used 0.0351477 seconds
0 1
o4 = total: 1 30
0: 1 8
1: . 15
2: . 6
3: . 1
o4 : BettiTally
|
i5 : (Asym,phi)=symmetryMap(n,A); |
i6 : betti(J2= ideal mingens phi J)
0 1
o6 = total: 1 10
0: 1 .
1: . 6
2: . 3
3: . 1
o6 : BettiTally
|
i7 : betti vars Asym
0 1
o7 = total: 1 20
0: 1 10
1: . 6
2: . 3
3: . 1
o7 : BettiTally
|
i8 : lT=leadTerm gens J2
o8 = | 2a_(1,4,4) a_(1,3,4) 2a_(1,3,3) a_(1,2,4) a_(1,2,3) 2a_(1,2,2)
------------------------------------------------------------------------
a_(1,1,4) a_(1,1,3) a_(1,1,2) 4a_(1,1,5) |
1 10
o8 : Matrix Asym <--- Asym
|
i9 : betti lT == betti J2 o9 = true |