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Abstract. In dieser Notiz zeigen wir, dass die Räum der globalen Schnitten in äusseren
Potenzen eines global erzeugten Vektorbündles auf einer Kurve nicht notwendig von lokal
zerlegbaren Schnitten erzeugt wird. Die Beispiele basieren auf dem Studium generischer
Syzygienvarietäten. Eine weitere Anwendung dieser Syzygienvarietäten ist ein kurzer
Beweis von Mukais Satz, dass jede glatte Kurve vom Geschlecht 7 und Cliffordindex 3
als Durchschnitt der Spinorvarietät S ⊂ P15 mit einem transversalen P6 entsteht.
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1. Introduction

Let C be a smooth curve of genus g,

φk : C → Pg−1

the canonical map, and
NK := φ∗K(TPg−1(−1))

the pullback of the twisted tangent bundle. It is well-known that the syzygies
of the canonical image of C are controlled by NK (e.g., [9], 1.10) and that they
correspond to the cokernels of the maps

ηj : ΛjH0(C,NK) → H0(C,ΛjNK).

In [15], Thm. 1.3, Paranjape and Ramanan proved that all locally decomposable
sections of H0(C,ΛjNK) lie in the image of ηj provided that j ≤ Cliff(C), the
Clifford index of C (cf. [8] for a definition). Moreover, they formulated

Conjecture 1.1. (cf. [10]) H0(C,ΛjNK) is spanned by locally decomposable sec-
tions for all j.

By [15], Thm. 1.3, the Paranjape-Ramanan conjecture implies Green’s conjec-
ture on syzygies of canonical curves [7], Conjecture (5.1).

NK is a semi-stable (even stable if C is not hyperelliptic) globally generated vector
bundle on C. One might ask, more generally than the above conjecture 1, whether

(∗) H0(C,ΛjN) is spanned by locally decomposable sections
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holds for every (stable) globally generated vector bundle N on every curve C. The
purpose of this note is to give counterexamples to this more general question. Our
examples show that it will be rather difficult to give a criterion for pairs (C,N) for
which (∗) holds, which include canonical curves (C,NK) (provided this is possible,
i.e., Conjecture 1.1 is true).

Acknowledgement. A first version of this paper was written in1997. At
that time using the classical Macaulay [1] was much more limit in its scope, than
nowadays Macaulay2 [2]. In particular, computations over Q were not possible at
that time. We decided to cut the explicit computation of the original draft. Instead
refer to http://www.math.uni-sb.de/ag/schreyer/home/computeralgebra.htm were
the reader can find explicit Macaulay2 code which establish Proposition 4.1 and
Theorem 2.6. We thank Klaus Hulek for bringing the question of Paranjape and
Raman to our attention. We also thank Gavril Farkas, who encouraged us to
publish these result after all, as these syzygies schemes occur frequently.

2. The examples

Example 2.1. If (C,N, j) is an example such that H0(C,ΛjN) is not generated
by locally decomposable sections, the cokernel of

ηj : ΛjH0(C,N) → H0(C,ΛjN)

is nontrivial, and 2 ≤ j ≤ rankN − 2. Also in view of the desired application of
Conjecture 1, an example where

N = NL = φ∗L(TPr (−1))

for some very ample line bundle L and

φL : C → Pr = PH0(C,L)

the corresponding morphism is more interesting.

Example 2.2. In this situation, NL is globally generated, and the cokernel of
ηj corresponds to the (r − 1 − j)th linear syzygies among the quadrics in the
homogeneous ideal of C (cf. [7], 1.b.4 or 2.1 below). In some sense, j = r−2, rank
NL = h0(L) − 1 ≥ 4, and a single linear relation among quadrics, is the simplest
possible case.

Lemma 2.3. (cf. [17], 4.3) If `1q1 + · · · + `nqn = 0 is a linear syzygy among
quadrics qi ∈ k[x0 . . . , xm] with linearly independent linear forms `1, . . . , `n then
there is a skew-symmetric n × n-matrix A = (aij) of linear forms aij such that
(q1, . . . , qn) = (`1, . . . , `n)(aij).

For n ≥ 3, we consider the following varieties: Let Rn := Z[x1, . . . , xn; aij , 1 ≤
i < j ≤ n] be the polynomial ring in

N :=
(
n+ 1

2

)

http://www.math.uni-sb.de/ag/schreyer/home/computeralgebra.htm
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variables, A = (aij) the generic n×n skew symmetric matrix, i.e., aij = −aji and if
i > j, and aii = 0, p := Pfaff(A) the Pfaffian of A if n is even, and (q1, . . . , qn) :=
(x1, . . . , xn)(aij) the generic set of n quadrics with a syzygy. We define Xn ⊂
PN−1 = Proj(Rn) as the variety defined by (q1, . . . , qn) or (q1, . . . , qn, p) if n is odd
or even, respectively.

Proposition 2.4. For 3 ≤ n ≤ 6, the variety Xn is arithmetically Cohen-
Macaulay of codimension n− 1 with syzygies:

n = 3 :
1 − −
− 3 2 n = 4 :

1 − − −
− 5 5 −
− − − 1

n = 5 :

1 − − − −
− 5 1 − −
− − 11 10 1
− − − − 1

n = 6 :

1 − − − − −
− 6 1 − − −
− 1 21 21 1 −
− − − 1 6 −
− − − − − 1

(cf. [1],[2] for the notation of syzygies).

Proof. It suffices to prove the statement about the syzygies, the other assertions
follow then from the Hilbert functions and the Auslander-Buchsbaum-Serre for-
mula. For a fixed small prime p, the syzygies of Xn mod p can be computed by
Macaulay2 [1],[2]. The result will be as stated. From this and the semi-continuity
of syzygy numbers, it follows that the syzygies are as stated generically over Spec Z,
in particular, the assertion is true over Q. (Note that in case n = 6, the syzygy
among the the quadrics does not cancel against the Pfaffian by construction. Since
X6 is Gorenstein, the resolution is symmetric. So, also the 1-dimensional pieces of
the higher syzygies do not cancel.)

For a proof of this result without a computer and valid for abitrary characteristic
and arbitrary n ≥ 3, we refer to [11] and [12].

Remark 2.5. X3 is P1 × P2 ⊂ P5, X4 is isomorphic to G(2, 5). X5 ⊂ P14 is
isomorphic to the projection of the 10-dimensional spinor variety S ⊂ P15 from a
point, a fact which we will utilize to give an elementary proof of [14], Thm. 2, for
genus 7 later on, valid in all characteristics. The variety X6 was studied in [6],
4.4, from a somewhat different viewpoint. The singular locus of X5 is isomorphic
to the Grassmannian G(2, 5) ⊂ P9 = {x1 = x2 = x3 = x4 = x5 = 0} ⊂ P14, so
X5 is singular in codimension 4. A similar argument shows that X6 is singular in
codimension 7.

Theorem 2.6. a) The curve C5 = X5∩P5 for a general P5 ⊂ P14 is a smooth curve
of genus 7 embedded by the linear system L = K(−p), p ∈ C a single point, and
there is a linear subspace P5 ⊂ P14 such that for C5 = X5∩P5 the above conclusions
hold, and H0(C5,Λ3NL) is not spanned by locally decomposable sections.

b) The curve C6 = X6 ∩ P6 for a general P6 ⊂ P20 is a smooth curve of genus
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22 embedded by a halfcanonical linear system L, and there is a subspace P6 ⊂ P20

such that for C6 = X6 ∩ P6 the above conclusions hold and H0(C6,Λ4NL) is not
spanned by locally decomposable sections.

Proof. C5 and C6 are smooth for general P5 and P6 respectively by Bertini’s the-
orem. That the embedding line bundles are as stated, follows from the syzygies
which do not change by cutting down since X5 and X6 are arithmetically Cohen-
Macaulay. Note that the point p ∈ C5 is just V (x1, . . . , x5) ∩ P5. The assertion
about the locally decomposable sections will be proved in section 4.

Remark 2.7. C4 = X4 ∩ P4 does not lead to a counter-example of (∗) due to
the additional syzygies. Indeed, this is just the elliptic normal curve of degree 5,
and H0(C4,ΛjNL) is spanned by locally decomposable sections for all j. Note,
however, that the varieties X3 and X4 play an important role for the solution of
Green’s conjecture in case of the second syzygy module in the approaches of [17]
and [3]. Also C5 and C6 play a somewhat special role for Green’s conjecture. C6

is a curve of Clifford dimension 6, cf. [6], p. 193. C5 is an important obstacle to
any extension of Ehbauer’s approach to the next syzygy module.

Remark 2.8. We believe that actually there exists an open subset U ⊂ G(P5,P14)
such that for every curve

C5 = X5 ∩ P5, P5 ∈ U ,

the space H0(C5,Λ3NL) is not spanned by locally decomposable sections. How-
ever, since not spanning is not an open property, one has to have a good knowledge
of what the decomposable sections look like to prove this. Set-theoretically, the
scheme of locally decomposable sections coincides with the Grassmannian cone in
Λ3H0(C5, NL) ⊂ H0(C5,Λ3NL). However, the natural scheme structure comes
with embedded components whose behaviour we could not control without an un-
derstanding what their geometric explanation is. So this natural question remains
open.

3. Properties of NL

Let L be a base point free line bundle on a curve C,

φL : C → Pr = PH0(C,L)

the corresponding morphism, and

NL = φ∗L(TPr (−1)), ML = N∗
L.

Thus
ΛjNL

∼= Λr−jML ⊗ L. (1)

The syzygies in degree p+1 of the S = Sym(H0(C,L))-moduleRL = Γ∗((φL)∗(OC))
can be computed as the homology of the exact sheaf complex

· · · → Λp+1V ⊗OC → ΛpV ⊗ L→ Λp−1V ⊗ L2 → · · · (2)
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on global sections where V = H0(C,L). Breaking (2) into short exact sequences

0 → Λp−jML ⊗ Lj+1 → Λp−jV ⊗ Lj+1 → Λp−j−1ML ⊗ Lj+2 → 0 (3)

gives

TorS
p (RL, k)p+1 = Kp,1

= cokern(Λp+1V → H0(C,ΛpML ⊗ L))
= Λr+1V ⊗ cokern(Λr−pV ∗ → H0(Λr−pNL))
∼= cokern(Λr−pH0(C,NL) → H0(C,Λr−pNL))

(cf. [7] or the nice exposition [13], 1.3).

Under the isomorphism (1), locally decomposable sections of Λr−pNL and ΛpML⊗
L correspond to each other. Here, a section s ∈ H0(C,ΛpML ⊗ L) is locally
decomposable if for every point p ∈ C there exists an open neighbourhood U and
section s1, . . . , sp ∈ Γ(U,ML), t ∈ Γ(U,L) such that

s|U = s1 ∧ · · · ∧ sp ⊗ t.

The following proposition has independently been proved by D. Butler in an un-
published paper.

Proposition 3.1. Let L be a base point free line bundle on a non-hyperelliptic
curve C of genus g, NL as above. If Cliff(L) ≤ Cliff(C) and degL 6= 2g then NL

is stable.

Proof. For degL ≥ 2g + 1, this is proved in [5], Prop. 3.2, for L = K in [15],
3.5. We follow their argument closely: First, we observe some general facts about
quotient bundles of NL: Let F be a subbundle of NL then we have the exact
sequence

0 → F → NL → G→ 0 (4)

with G = NL/F . From the restricted Euler sequence

0 → L−1 → H0(C,L)∗ ⊗OC → NL → 0, (5)

we see that N∗
L = ML does not have any nonzero global sections, and because

of the dual of (1), the same is true for G∗. Since NL is globally generated, so is
G, and since one can choose rank G + 1 global sections to generate G, we have a
surjective map

0 → (detG)−1 → O⊕(rankG+1)
C → G→ 0

whose kernel is isomorphic to (detG)−1. For any quotient bundle G of NL, this
gives the following inequality

h0(C,detG)− 1 ≥ rankG (6)

If L is a special line bundle, i.e., h1(C,L) ≥ 1, then by Clifford’s theorem 0 ≤
degL− 2(h0(C,L)− 1) = d− 2r and because C is not hyperelliptic, equality only
holds for L ∼= OC (in this case there is nothing to prove) or L ∼= K where we have

0 = d− 2r < Cliff(C), i.e., µ(NK) =
d

r
= 2.
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For all other special line bundles L and for all non-special line bundles of degL ≤
2g − 1, we must have

0 < d− 2r, i.e., µ(NL) =
d

r
> 2.

Now, for a non-trivial subbundle F ⊂ NL, we have two cases:

(i) h1(C detG) ≥ 2, i.e., detG ≥ 2 contributes to the Clifford index of C.

(ii) h1(C,detG) ≤ 1

(i) Here we have

d− 2 ≤
(< if L=K)

Cliff(C) ≤ Cliff(detG)

= degG− 2(h0(C,detG)− 1)
(6)

≤ degG− 2 rankG
= d− degF − 2r + 2 rankF

and therefore
degF
rankF

≤
(< if L=K)

2 .

(ii) Here we have by Riemann-Roch for detG:

d− degF = degG = h0(C,detG)− h1(C,detG)− 1 + g

(6)+(ii)

≥ rankG− 1 + g

= r − 1 + g − rankF.

Together with Riemann-Roch for L, this gives

1 ≥
(> if L=K)

1− h1(C,L) = d− r + 1− g ≥ degF − rankF ,

and therefore
degF
rankF

≤
(< if L=K)

1 +
1

rank F
≤ 2 .

So in both cases, we find

µ(F ) =
deg F
rankF

≤
(< if L=K)

2 ≤
(= if L=K)

µ(NL)

and NL is stable.

Note that NL is semi-stable for degL = 2g but if we take L = K ⊗F for a line
bundle F with a global section and degF = 2 then NL is not stable because F
occurs as a line subbundle of NL.
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Corollary 3.2. (a) If C5 = P5 ∩ X5 ⊂ P14, a linear subspace is a smooth curve
and L = OC(1) then NL is stable.

(b) For C6 = P6 ∩ X6, P6 ⊂ P20 a general linear subspace and L = OC(1), the
vector bundle NL is stable.

Proof. (b) By [6], Thm. 3.6, Cliff(L) = Cliff(C) = 21 − 12 = 9 iff (IC)2 contains
no quadric of rank ≤ 4. This is the case for general P6 ⊂ P20, cf. [6], Thm. 4.4.
(a) Since L = K(−p) by 1.7, Cliff(L) = 1 and it suffices to prove Cliff(C) = 3 for
all such curves. This follows from our next result.

Theorem 3.3. Let C be a smooth curve of genus 7, p ∈ C a point and L = K(−p).
The following are equivalent:

(1) L is normally generated, and the homogeneous ideal of the image of C under
φL in P5 is generated by quadrics.

(2) Cliff(C) = 3.

(3) The pair (C,L) is isomorphic to a pair (C5,OC5(1)) for C5 = X5 ∩ P5 for
some linear subspace P5 ⊂ P14.

Proof. (1) ⇒ (2) is elementary: If Cliff(C) ≤ 2, say C is 4-gonal and |D| = g1
4

then the (not necessarily distinct) points {p1 + p2 + p3} ∈ |D(−p)| span a line
in P5. Hence, the homogenous ideal needs cubic generators. If C is trigonal or
hyperelliptic then L is even not normally generated.
(2) ⇒ (1) is conjectured by [8], Conj. 3.4, since

degL ≥ 2g + 1 + 1− 2h1(L)− Cliff(C) = 14 + 1 + 1− 2− 3 = 11

is satisfied. Actually, their results [8], Thm. 1, and [13], Prop. 2.4.2, nearly give
(1): L is normally generated, and the image of C is scheme theoretically defined
by quadrics. To prove the assertion about the homogeneous ideal, we note that
by the Hilbert function h0(P5, IC(2)) = 5 and the homogeneous ideal IC has cubic
generators iff there are > 1 linear syzygies among the five quadrics. Now from
≥ 2 syzygies, one can easily derive a contradiction to the fact that C is scheme
theoretically cut out by quadrics:

Suppose, there are more syzygies. Let ψ be a 5×2-submatrix of the syzygy matrix
with linear entries. If ψ is 1-generic then cokern(ψtr : 5O(2) → 2O(3)) has support
on a rational normal curve of degree 5 in P5, cf. [4], Thm. 5.1. Hence, F = ker(ψtr)
is locally free of rank 3 away from the rational normal curve. The five quadrics
define a section s ∈ H0(P5, F ) whose zero-locus coincides with the intersection
C of the quadrics (at least away from the rational normal curve). This gives the
contradiction

4 = codimC ≤ rankF = 3.
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If ψ is not 1-generic then a generalized column of ψ has 5 linearly dependent linear
forms `1, . . . , `5 as entries. We distinguish the cases

n = dim〈`1, . . . , `5〉 = 1, 2, 3 or 4.

If n = 4 then we may assume by 2.3 that

(q1, . . . , q4) = (`1, . . . , `4)(aij),

so rank(aij) < 4 on C. From this we deduce that either q5 = Pfaff(aij) or
Pfaff(aij) ∈ (q1, . . . , q4). In the first case, we obtain 4 = codimV (q1, . . . , q5) ≤
codimX4 = 3. In the second case, codimV (q1, . . . , q4) < codimX4 = 3, hence
the contradiction codimC < 4 again. If n = 3, either V (q1, q2, q3) is a 3-fold of
degree 3 and C = V (q1, . . . , q5) has wrong degree 12, or V (q1, . . . , q5) has too small
codimension again. Finally, the case n = 2 leads to reducible quadrics, impossible
since C is non-degenerate and integral, and n = 1 is absurd, anyway.
(3) ⇒ (1) follows from Proposition 2.4 since X5 is arithmetically Cohen-Macaulay.
Finally, (1) ⇒ (3) follows from Lemma 2.3: Since C ⊂ P5 satisfies (1), the ho-
mogeneous ideal is generated by five quadrics with one linear syzygy. By what
was proved in (2) ⇒ (1) above, the five coefficients `1, . . . , `5 have to be linearly
independent, hence

(q1, . . . , q5) = (`1, . . . , `5)(aij)

for some skew-symmetric 5 × 5-matrix (aij) of linear forms. Writing the `i’s and
aij ’s as linear combinations of x0, . . . , x5, defines the desired P5 ⊂ P14.

Corollary 3.4. ([14], Thm. 2, g = 7) Every smooth curve C of genus 7 and
Clifford index 3 is isomorphic to a section S ∩ P6 of the 10-dimensional spinor
variety S ⊂ P15.

Proof. X5 ⊂ P14 is isomorphic to the projection of S ⊂ P15 from a point p ∈ S.
In particular, X5 and S are birational equivalent. Since C ∼= P5 ∩ X5 by 2.5, it
follows that C ∼= P6 ∩ S where P6 ⊂ P15 is the cone over P5 ⊂ P14 with vertex
p.

Remark 3.5. This result is valid for arbitrary characteristic of the ground field.
The proof of [8], Thm. 1, and [13], Prop. 2.4.2, goes through in arbitrary charac-
teristic, so does Proposition 1.5. Note, however, that contrary to the syzygies of
X5 ⊂ P14, the syzygies of S ⊂ P15 depend on the characteristic. In char 2, there is
an extra syzygy (cf. [16], p. 108) which shows that Green’s conjecture (and also
the Paranjape-Ramanan conjecture) is not valid in char 2.

Also, k algebraically closed is not needed in the proof of Corollary 3.4. The
existence of a k-rational point suffices.

Corollary 3.6. The moduli space M7,1 of 1-pointed genus 7 curves is unirational.

Proof. The rational map G(6, 15) →M7,1, P 7−→ X5 ∩ P5 dominates M7,1.
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4. The computation

In this section, we complete the proof of Theorem 2.6 by a computation. We only
treat the case C5, the case C6 is very similar. Let C5 = X5∩P5 be the curve which
is determined by the 5× 5-matrix

A = (aij) =

0BBB@
0 3x0 x0 − x2 + x5 −x0 − 2x2 − x3 x2 − 2x3 + x4

−3x0 0 2x1 + x4 −x1 + x5 −x0 + x3
−x0 + x2 − x5 −2x1 − x4 0 3x2 + x5 x2 − x4
x0 + 2x2 + x3 x1 − x5 −3x2 − x5 0 x0 − x3
−x2 + 2x3 − x4 x0 − x3 −x2 + x4 −x0 + x3 0

1CCCA
A straightforward computation with Macaulay2 [1],[2] shows that C5 is a smooth
curve of genus 7 embedded by the linear system L = K(−p), p = (1 : 0 : 0 : 0 :
0 : 0) ∈ C5. The coordinates (x0, . . . , x5) on P5 are chosen such that p = p1 = (1 :
0 : . . . : 0), p2 = (0 : 1 : 0 : . . . : 0), . . . , p6 = (0 : . . . : 0 : 1), p7 = (1 : . . . : 1) and
p8 = (4 : 0 : 0 : 2 : 1 : 2) are contained in C5. With this notation we prove the
stronger assertion:

Proposition 4.1. For C = C5 = P5 ∩X5, every section s ∈ H0(C,Λ3NL) whose
values s(pν) ∈ Λ3NL ⊗ k(pν) are decomposable for ν = 1, . . . , 8 lies in the image
of Λ3H0(C,NL) under

η3 : Λ3H0(C,NL) → H0(C,Λ3NL).

Proof. Recall that V = H0(C,L), V ∗ = H0(C,NL). It is simpler and in view of
Section 3 (2) also more natural to to work with

Λ3V ⊂ H0(C,Λ2ML ⊗ L) ⊂ Λ2V ⊗ V

instead of
Λ3V ⊂ H0(C,Λ3NL) ⊂ Λ4V ∗ ⊗ V.

A moment’s thought gives that the linear syzygy among the quadrics is represented
by

s0 =
∑

0≤i<j≤5

xi ∧ xj ⊗ aij ∈ Λ2V ⊗ V

where Ã = (aij) is the skew-symmetric 5 × 5-matrix from the definition of C,
extended by a row and column of zeroes, i.e., a0j = 0 ∈ V . Indeed, the Koszul
differential

d : Λ2V ⊗ V → V ⊗ S2V

maps

s0 7−→
5∑

i=0

xi ⊗ qi 6= 0

where q0 = 0, q1, . . . , q5 ∈ (IC)2. Hence,

[s0] ∈
ker(H0(C,Λ2V ⊗ L) → H0(C, V ⊗ L2))

Im(H0(C,Λ3V ⊗OC) → H0(C,Λ2V ⊗ L))
= TorS

2 (RL,Q)3
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gives a non-trivial cohomology class, and s0 together with the elements

si,j,k = xi ∧ xj ⊗ xk − xi ∧ xk ⊗ xj + xj ∧ xk ⊗ xi ∈ Λ2V ⊗ V

forms a basis of H0(C,Λ2ML ⊗ L) because the syzygy module is 1-dimensional.
To prove the assertion for C, we have to show that if

s = sb = b0s0 + b1s0,1,2 + b2s0,1,3 + b3s0,1,4 + b4s0,1,5 + b5s0,2,3

+ b6s0,2,4 + b7s0,2,5 + b8s0,3,4 + b9s0,3,5 + b10s0,4,5

+ b11s1,2,3 + b12s1,2,4 + b13s1,2,5 + b14s1,3,4 + b15s1,3,5

+ b16s1,4,5 + b17s2,3,4 + b18s2,3,5 + b19s2,4,5 + b20s3,4,5

with b0, b1, . . . , b20 ∈ C is decomposable in pν for all ν = 1, 2, . . . , 8 then b0 is zero.
Now, sb similarly to s0 is given by

∑
0≤i<j≤5 xi∧xj⊗bij where B = (bij) is a skew-

symmetric 6 × 6-matrix whose entries bij are linear in xi and bj . The section sb

is decomposable in pν iff the matrix B(pν) = (bij(pν)) represents a decomposable
skew form, i.e., rankB(pν) ≤ 2. Note that rankB(pν) ≤ 4 is clear since

(x0(pν), . . . , x5(pν))(bij(pν)) = b0(0, q1(pν), . . . , q5(pν)) = 0

as pν ∈ C. Hence, B(pν) induces indeed a skew symmetric bilinear form on
NL ⊗ k(pν) with values in L⊗ k(pν). Now rank B(pν) ≤ 2 holds if and only if all
4× 4-Pfaffians of B(pν) vanish. All these Pfaffians generate an ideal

J ⊂ Q[b0, b1, . . . , b20],

and a straight forward Macaulay2 computation shows that b20 ∈ J . For details, we
refer to http://www.math.uni-sb.de/ag/schreyer/home/computeralgebra.htm.
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