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Abstract. Brief comments on selected topics in computational alge-
braic geometry are given. One of the topics is an experimental investi-
gation of the possible Betti numbers of smooth canonical curves of low
genus.
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1. Introduction

Modern computer algebra systems allow to treat impressive examples in
computational algebraic geometry. The basic mathematical tool are Gröbner
bases as invented by Gordon (1899), Buchberger (1965), Hironaka (1964) and
Grauert (1972). In particular Buchberger’s algorithm to compute Gröbner
bases is essential. For localization of polynomial rings this algorithm was
adapted by Mora (1982). A rough classification of the applications is as
follows:

(1) Elementary applications: ideal membership, normal forms, Hilbert
function, dimension, degree, elimination, projective closure, tan-
gent cone, syzygies, intersections, (I:J), Hom(M,N).

(2) Modifications of algebraic sets: primary decomposition, normaliza-
tion, Puiseux expansion, rational parameterization of curves (and
surfaces), resolution of singularities.

(3) Homological methods: Ext, Tor, cohomology of coherent sheaves,
Tate resolutions, monads, resultants.

(4) Parameter spaces: invariant rings, versal deformations of singular-
ities and modules, special families: existence, uni-rationality.

(5) Enumerative geometry.
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(6) D-modules and topology: Bernstein-Sato polynomials, monodromy
and Brieskorn lattices of isolated singularities, de Rham cohomo-
logy.

In this survey we focus on few topics: resolution of singularities, monodromy,
Tate resolutions, invariant theory and constructions of special families. For
a more complete survey including a short treatment of basic Gröbner basis
theory we refer to our survey Decker, Schreyer (2001).

2. Resolution of singularities

Gabor Bodnar and Josef Schicho (2000) implemented Villamayor’s algo-
rithm of resolution of singularities (see Encinas, Villamajor 1998) as part of a
CASA package for Maple, mainly for surfaces and threefolds, see
http://www.risc.uni-linz.ac.at. At the current state the algorithm is
implemented for characteristic zero, but future implementation will include
characteristic p > 0, with the expectation, that the algorithm will work
in many but not all cases. Note that the running time in characteristic
p > 0 might be shorter than for characteristic zero due to the fact that the
coefficients in a Gröbner basis computation in characteristic p > 0 do not
accumulate.

The input are the polynomial equations of an affine scheme Z embedded
into a nonsingular affine subvariety X of An. The output is a tree of charts of
blow-ups, whose final leaves consist of a covering of an embedded resolution
f : Y → X of Z, all put together in an HTML document.

The number of charts, which are used to cover Y even in simple examples
can be large. For example the desingularisation of the Whitney umbrella
Z = {z2−xy2 = 0} ⊂ X = A3 gives a tree with 50 nodes and 16 final leaves
covering Y .

3. Monodromy and Brieskorn lattices

A SINGULAR package to compute the monodromy of an isolated hypersur-
face singularity has been developed by Mathias Schulze. It uses an algorithm
by Brieskorn (1970) to compute a connection matrix of the meromorphic
Gauss-Manin connection up to arbitrarily high order, and an algorithm of
Gerard and Levelt (1973) to transform it to a simple pole.

The computation of the monodromy of the D4 surface singularity in
SINGULAR looks as follows:

>LIB "mondromy.lib";
>ring R = 0, (x,y,z),ds;
>poly f= z^2+y^2*x+x^3;
>matrix M =monodromyB(f);
>print(M);
11/6,0, 0, 0,
0, 3/2,0, 0,
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0, 0, 3/2,0,
0, 0, 0, 7/6

The monodromy operator is then exp(−2πiM) in terms of the output matrix
M .

4. Tate resolution

Bernstein, Gel’fand, Gel’fand (1978) established an equivalence between
the derived category of coherent sheaves on P(W ) and the stable module
category of finitely generated graded modules over the graded exterior alge-
bra E = ΛV , where V = W ∗ are dual vector spaces over the ground field K.
The heart of the construction associates to a graded S = Sym(W ) module
M =

∑
d Md the infinite linear complex

R(M) : . . .→ HomK(E,Md)→ HomK(E,Md+1)→ . . .

and vice versa. In Eisenbud, Fløystad, Schreyer (2001) we review this con-
struction starting from R(M). We obtain novel methods to compute coho-
mology of sheaves and to compute the Beilinson monad of a sheaf explicitely.

R(M≥r) becomes exact precisely for r > reg(M). Thus adjoining a free
resolution of ker(Rr(M)→ Rr+1(M)), we may extend R(M≥r) to a doubly
infinite exact complex of graded free E-modules

T(M̃) → T e → . . .→ T r−1 → T r = Rr(M)→ T r+1 = Rr+1(M)→ . . .

which depends only on the sheaf F = M̃ .

Theorem 4.1 (Eisenbud, Fløystad, Schreyer 2001). For a coherent sheaf
F = M̃ on P(W ) = Pn we have

T e(F) =
n∑

i=0

HomK(E,HiF(e− i))

where we regard HiF(e− i) as a vector space in degree e− i.

Thus syzygies over the exterior algebra allow to compute cohomology
groups: Starting from the multiplication map

Md ⊗W →Md+1

for sufficiently high d, we obtain one of the differentials of R(M) and a
Gröbner basis calculation over the exterior algebra gives us any desired
finite piece of T(F).

If we compare this with previous methods to compute cohomology, e.g.

Hi
∗(F) ∼= Extn−i

S (Γ∗(F), S(−n− 1))∗,

then we see that to compute e.g. H1 we do not have to compute the complete
free resolution of Γ∗(F) but only some steps in the Tate resolution, which
seems to be of more appropriate complexity.
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The differentials of T(F) are related to the Beilinson monad of F , c.f.
Beilinson (1978). Let Ω be the additive functor, which maps the free E
module ωE(i) = HomK(E,K(i)) to the sheaf Ωi(i), the twisted regular i-
forms, and which maps morphisms via the identification

HomE(ωE(i), ωE(j)) ∼= Λi−jV ∼= HomP(W )(Ω
i(i),Ωj(j)).

Then

Theorem 4.2 (Eisenbud, Fløystad, Schreyer 2001). Ω(T(F)) is the
Beilinson monad for F .

Thus the differentials of T(F) give us the differentials of the Beilinson
monad. The differential of Beilinson monad were previously very difficult to
compute explicitly.

Example. Consider the 2× 5 matrix

ϕ =
(

e1e4 e2e0 e3e1 e4e2 e0e3

e2e3 e3e4 e4e0 e0e1 e1e2

)
over the exterior algebra with generators e0, . . . , e4. By direct computation
we find the following Betti numbers in the Tate resolution of ϕ, where ϕ sits
in the indicated spot.

100 35 4 . . . . . . . .
. 2 10 10 5 . . . . . .
. . . . . 2 . . . . .
. . . . . . 5 10 10 2 .
. . . . . . . . 4 35 100

The Beilinson functor Ω picks out a finite complex

0→ ⊕5Ω4(4)→ ⊕2Ω2(2)→ ⊕5OP4 → 0

Its homology is the famous Horrocks-Mumford bundle (1973). It is easy
to see from these Betti numbers, that it is the Tate resolution of a vector
bundle, see Eisenbud, Fløystad, Schreyer (2001) for details.

5. Invariant theory

Let G be a group and ρ : G→ GL(V ) a linear representation. The basic
problem of invariant theory is to compute for R = k[V ] the ring RG of invari-
ant functions. If G is reductive, then RG is a finitely generated k-algebra
as proved by Hilbert in his first landmark paper (1890). Hilbert himself
provided an algorithm to compute generators in his second landmark paper
(1893), in which he introduced Noether normalization, the Hilbert-Mumford
criterion and the Nullstellensatz, see also Sturmfels (1993) and Decker, de
Jong (1999). A variant of Hilbert’s original proof of finite generation was
turned into an algorithm recently by Derksen (1999)

For finite groups this gives a reasonable good algorithm implemented by
Decker and his group into SINGULAR. However for algebraic groups none of
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the algorithms works in practice so far, the reason being that at some step
a too expensive elimination computation is required.

A computer implementation of Gordon’s method for binary forms includ-
ing covariants was done by Holger Cröni (2002). It can treat in reasonable
time the case of binary septics, the case in which Sylvester’s enumerative
method predicted too few generators (1878). Later von Gall computed a
complete system of invariants for binary septics in 1888. However von Gall
got too many, which was finally corrected by Dixmier and Lazard (1986).

The weakest spot of Cröni’s program is that the theoretical bounds for
the degree of the generators are too large.

Clearly one would hope that the computation of invariant rings with
Computer algebra improves upon the state of art a hundred years ago sub-
stantially. I think it is time to reconsider this problem from an algorithmic
point of view.

6. Constructions

In this last section I would like to comment on computer algebra meth-
ods for constructions. For example one might want to prove, that a certain
component of the Hilbert scheme is non-empty, and that its general points
correspond to smooth varieties, or that the component is uni-rational. Com-
puter algebra for this purpose was very successfully applied by Decker, my-
self and our students to the study of smooth non-general type surfaces in
P4.

In this survey I will illustrate this method with an investigation of the
possible Betti numbers for canonical curves.

Let C−→Pg−1 be the canonical morphism of a smooth curve of genus
g. The syzygies of the canonical ring RC =

∑
n≥0 H0(C,ω⊗n) as S =

Sym(H0(C,ω)) module are conjectured to be closely related to the Brill-
Noether theory of C. Since RC is Gorenstein, it has a self-dual resolution
of length g − 2. Moreover RC is 3-regular. We summarize the numbers of
generators of the modules Fi =

∑
j S(−j)βij in a minimal free resolution

0← RC ← F0 ← F1 ← . . .← Fg−2 ← 0

in a Betti table
1 . . . . . . . . . . . . . . .
. β12 . . . ∗ βp+1,p+2 . . . βg−2−p,g−1−p . . . β02

β02 β13 . . . βp,p+2 ∗ . . . ∗ . . . βg−3,g−1 .
. . . . . . . . . . . . . . . 1

.

Gorenstein gives the symmetry βij = βg−2−i,g+1−j . The difference βi+1,i+2−
βi,i+2 depends only on g and i but not on the curve. The famous conjecture
of Green gives a geometric interpretation of the range of nonzero βij ’s.

Conjecture 6.1 (Green, 1984). Let C be a smooth curve defined over
C. Then βp,p+2 6= 0 iff C has Clifford index Cliff(C) ≤ p.



6 FRANK-OLAF SCHREYER

The Clifford index of a line bundle L is defined as

Cliff(L) = deg L− 2(h0(L)− 1)

and the Clifford index of C is

Cliff(C) = min{Cliff(L) | L a line bundle on C with h0(L), h1(L) ≥ 2}.
The direction from the existence of special line bundles to the existence of
exceptional syzygies was established by Green and Lazarsfeld (1984). At
present the conjecture is known for curves of genus g ≤ 9, Mukai (1995).
The case p ≤ 2 is known by M. Noether (1880), Petri (1923), Voisin (1988),
Schreyer (1991). Recently Voisin (2001) proved the conjecture for a general
k-gonal curves of arbitrary genus except for the case of general curves of odd
genus.

Thus it might be time to try to formulate a more precise version of the
conjecture, i.e. to answer the question, which Betti tables actually occur for
smooth curves. Also the conjecture is known to be false for fields of some
finite characteristics. It is interesting to try to explain the exceptional char-
acteristics for various genera. A computational approach to these questions
runs along the following lines: Pick curves over finite fields at random, and
compute their syzygies. For genus g ≤ 14 it is possible to pick curves at
random, as was shown in Schreyer, Tonoli (2001). Below I summarize, what
I think are the possible Betti numbers for small g, and which are the ex-
ceptional characteristics. For g ≤ 8 this was established in Schreyer (1986).
For genus 9 we have:

general case

1 . . . . . . .
. 21 64 70 . . . .
. . . . 70 64 21 .
. . . . . . . 1

∃1 g1
5

1 . . . . . . .
. 21 64 70 4 . . .
. . . 4 70 64 21 .
. . . . . . . 1

∃ g1
5 × g1

5, more pre-
cisely ∃ a g2

8 with 2
triple points, possibly
infinitesimal near

1 . . . . . . .
. 21 64 70 8 . . .
. . . 8 70 64 21 .
. . . . . . . 1

∃ g2
7

1 . . . . . . .
. 21 64 70 24 . . .
. . . 24 70 64 21 .
. . . . . . . 1

∃ g1
4

1 . . . . . . .
. 21 64 75 24 5 . .
. . 5 24 75 64 21 .
. . . . . . . 1
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∃ g1
4 × g1

5

1 . . . . . . .
. 21 64 75 48 5 . .
. . 5 48 75 64 21 .
. . . . . . . 1

∃ g2
6 or g3

8 ( =⇒ ∃ g1
4)

1 . . . . . . .
. 21 64 90 64 20 . .
. . 20 64 90 64 21 .
. . . . . . . 1

∃ g1
3

1 . . . . . . .
. 21 70 105 84 35 6 .
. 6 35 84 105 70 21 .
. . . . . . . 1

∃ g1
2

1 . . . . . . .
. 28 112 210 224 140 48 7
7 48 140 224 210 112 28 .
. . . . . . . 1

Table: Conjectural Betti numbers for genus 9, characteristic 6= 3

It is not known whether this is the correct table for curves of Clifford
index 3. For example the table claims that the existence of three g1

5’s implies
the existence of a g2

7.
In characteristic 3 the conjecture fails for the general curve. The following
Betti numbers are possible for curves of genus 9 and Clifford index ≥ 3:

general case

1 . . . . . . .
. 21 64 70 6 . . .
. . . 6 70 64 21 .
. . . . . . . 1
1 . . . . . . .
. 21 64 70 8 . . .
. . . 8 70 64 21 .
. . . . . . . 1
1 . . . . . . .
. 21 64 70 10 . . .
. . . 10 70 64 21 .
. . . . . . . 1

∃ g2
7

1 . . . . . . .
. 21 64 70 24 . . .
. . . 24 70 64 21 .
. . . . . . . 1

Table: Conjectural Betti numbers for genus 9 in characteristic 3
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For genus 10 over a field of characteristic 6= 3 we find the following:

general case

1 . . . . . . . .
. 28 105 162 84 . . . .
. . . . 84 162 105 28 .
. . . . . . . . 1

∃1 g1
5

1 . . . . . . . .
. 28 105 162 89 5 . . .
. . . 5 89 162 105 28 .
. . . . . . . . 1

∃ g1
5 × g1

5, more pre-
cisely ∃ g2

8 with 2 triple
points, possibly infini-
tesimal near

1 . . . . . . . .
. 28 105 162 94 10 . . .
. . . 10 94 162 105 28 .
. . . . . . . . 1

∃ g3
9

1 . . . . . . . .
. 28 105 162 104 20 . . .
. . . 20 104 162 105 28 .
. . . . . . . . 1

∃ g2
7

1 . . . . . . . .
. 28 105 162 119 35 . . .
. . . 35 119 162 105 28 .
. . . . . . . . 1

∃ g1
4

1 . . . . . . . .
. 28 105 168 119 35 6 . .
. . 6 35 119 168 105 28 .
. . . . . . . . 1

∃ g1
4 × g1

5

1 . . . . . . . .
. 28 105 168 139 55 6 . .
. . 6 55 139 168 105 28 .
. . . . . . . . 1

∃ g2
6

1 . . . . . . . .
. 28 105 189 189 105 27 . .
. . 27 105 189 168 105 28 .
. . . . . . . . 1

∃ g1
3

1 . . . . . . . .
. 28 112 210 224 140 48 7 .
. 7 48 140 224 210 112 28 .
. . . . . . . . 1

∃ g1
2

1 . . . . . . . .
. 36 168 378 504 420 216 63 8
8 63 216 420 504 378 168 36 .
. . . . . . . . 1

Table: Conjectural Betti numbers for genus 10 in characteristic 6= 3



COMPUTATIONAL ALGEBRAIC GEOMETRY 9

The general curve of genus 10 over a field of characteristic 3 does not satisfy
Green’s conjecture.

general case,
characteristic 3

1 . . . . . . . .
. 28 105 162 85 1 . . .
. . . 1 85 162 105 28 .
. . . . . . . . 1

In the case of genus 11 Green’s conjecture does not hold in characteristic 2
and 3. For other characteristics the following Betti numbers are possible:

general case

1 . . . . . . . . .
. 36 160 315 288 . . . . .
. . . . . 288 315 160 36 .
. . . . . . . . . 1

k = 1, 2, . . . , 10,
12, 20

1 . . . . . . . . .
. 36 160 315 288 5k . . . .
. . . . 5k 288 315 160 36 .
. . . . . . . . . 1

triple cover of an
elliptic curve

1 . . . . . . . . .
. 36 160 315 288 27 . . . .
. . . . 27 288 315 160 36 .
. . . . . . . . . 1

tri-elliptic with
further g1

6 for
k = 1, 2, 3.

1 . . . . . . . . .
. 36 160 315 288 27 + 5k . . . .
. . . . 27 + 5k 288 315 160 36 .
. . . . . . . . . 1

∃ g1
5

1 . . . . . . . . .
. 36 160 315 294 35 6 . . .
. . . 6 35 294 315 160 36 .
. . . . . . . . . 1

∃ g1
5 × g1

6

1 . . . . . . . . .
. 36 160 315 294 40 6 . . .
. . . 6 40 294 315 160 36 .
. . . . . . . . . 1

∃ g1
5 and tri-

elliptic

1 . . . . . . . . .
. 36 160 315 294 64 6 . . .
. . . 6 64 294 315 160 36 .
. . . . . . . . . 1
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∃ g2
8 with a

triple point ( =⇒
∃ g1

5 and seven g1
6)

1 . . . . . . . . .
. 36 160 315 294 75 6 . . .
. . . 6 75 294 315 160 36 .
. . . . . . . . . 1

∃ g2
8 with two

triple points ( =⇒
∃ two g1

5 and ten g1
6)

1 . . . . . . . . .
. 36 160 315 300 140 12 . . .
. . . 12 140 300 315 160 36 .
. . . . . . . . . 1

∃ g2
7

( =⇒ ∃ four g1
5)

1 . . . . . . . . .
. 36 160 315 336 210 48 . . .
. . . 48 210 336 315 160 36 .
. . . . . . . . . 1

∃ g1
4

1 . . . . . . . . .
. 36 160 322 336 140 48 7 . .
. . 7 48 140 336 322 160 36 .
. . . . . . . . . 1

∃ g1
4 × g1

6

1 . . . . . . . . .
. 36 160 322 336 210 48 7 . .
. . 7 48 210 336 322 160 36 .
. . . . . . . . . 1

∃ g2
7 with a triple

point ( =⇒ ∃ g1
4)

1 . . . . . . . . .
. 36 160 322 392 280 104 7 . .
. . 7 104 280 392 322 160 36 .
. . . . . . . . . 1

∃ g2
6

( =⇒ bi-elliptic)

1 . . . . . . . . .
. 36 160 350 448 350 160 35 . .
. . 35 160 350 448 350 160 36 .
. . . . . . . . . 1

∃ g1
3

1 . . . . . . . . .
. 36 168 378 504 420 216 63 8 .
. 8 63 216 420 504 378 168 36 .
. . . . . . . . . 1

∃ g1
2

1 . . . . . . . . .
. 45 240 630 1008 1050 720 315 80 9
9 80 315 720 1050 1008 630 240 45 .
. . . . . . . . . 1

Table: Conjectural Betti numbers for genus 11, characteristic 6= 2, 3

Some remarks are in place: The case β46 = 50 occurs, when C is a double
cover of a plane quartic, or, if C has a birational g2

8 with nodes in general
position. A special position of the nodes might result in an extra g1

6 and
β46 = 60. A curve which is simultaneously tri-elliptic and a double cover of
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a plane quartic has β46 = 100. The same number occurs for curves with a
g3
10. I am not certain whether the number k in these tables can always be

interpreted as the number of extra g1
6’s counted suitably.

I do not present a conjectural table of possible Betti numbers for higher
genera. Conjecturally exceptional characteristics are summarized in the fol-
lowing table:

genus g characteritic p extra syzygies
≤ 6 none −−
7 2 β24 = 1
8 none −−
9 3 β35 = 6
10 3 β35 = 1
11 2, 3 β46 = 28, 10
12 2 β46 = 1
13 2, 5 β57 =??, 120

Table: Exceptional characteristics and Betti numbers of a general curve

What is the evidence for the correctness of these tables? First the excep-
tional characteristics in the case of the even genera are really counter exam-
ples to Green’s conjecture, because in these cases the number of additional
syzygies is too small to come from a linear system. However that the generic
curve of that genus has extra syzygies is not fully established. We just have
a probabilistic argument, as in the case of the odd genera. For g = 9 we can
use Mukai’s theorem (1995), which says that all curves of Clifford index 4
are transversal sections C = X ∩ P8 of the symplectic Grassmanian

X = LG(3, 6) ⊂ P13

of Lagrangian subspaces, and compute the syzygies of X for various small
p. The evidence is then based on our believe that exceptions occur only for
small p. For larger odd genera we can compute examples for each small p.
Our evidence is, that it is unlikely, that we always hit the loci of curves with
extra syzygies, if we pick random different examples.

For the table of all possible Betti numbers we know for odd genus
g = 2k + 1 by Hirschowitz and Ramanan (1998), that curves with extra
syzygies lie in the locus Mg(g1

k+1) of curves with a g1
k+1 and that βk−1,k+1 ≥ k

with equality on an open set of Mg(g1
k+1). On the other side every smooth

curve of any genus with βi,i+2 6= 0 for i ≤ 2 satisfies Green’s Conjecture by
Max Noether (1880), Petri (1923), Voisin (1988) and Schreyer (1991), and
their Betti numbers are computed in (Schreyer, 1986). So for odd genus
g ≤ 11 the Betti numbers are not yet known only in the case of Clifford
index 3 and g = 9 and Clifford index 3,4 and g = 11. Turning to Green’s
Conjecture the only open question in this range is, whether a curve of genus
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g = 11 and Clifford index 4 satisfies β35 = 0. However there could be
many more cases of possible Betti tables. To get some confidence in its
completeness, we can do the following. Take a small characteristic p, say
p = 5, and construct curves in each stratum at random over Z/5. Then
since βk−2,k = βk−1,k we know that this number jumps up in codimension 1.
Hence we roughly expect to see such a phenomenon with a chance of 1 : p.
If this expectation turns out to be true, and no new Betti tables are found,
we may have some more confidence. In particular I expect, that β46 = 100
is the maximum possible value for curves of genus g = 11 and Clifford index
4. In this stratum I did not find any jumps at all. I checked this over Z/5
running 20 random examples observing no jumping up. The probability,
that all twenty curves miss the jump loci in this stratum, is (if the jump loci
is nonempty) roughly 0.820 = 0.0115. So in some sense we can be certain
with 98% that this jump loci is really empty.

For even genus g = 2k I am less confident. By Voisin’s result (2001)
we know, that Green’s conjecture holds for the general curve and for general
q-gonal curves. On the other hand there is no apriori reason why jumps in
Betti numbers, say for βk,k+1 = βk−2,k−1, occur in small codimension. The
loci of curves with βk,k+1 6= 0 is reducible for g = 10. We have the loci

M10(g1
5) and M10(half canonical g3

9),

where Mg(gr
d) = {curves of genus g with a gr

d}, which have dimension 25
and 21 hence codimension 2 and 6 in M10 respectively. None of these strata
lies in the closure of the other.
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[4] Bernštĕın, I. N., I. M. Gel’fand, and S. I. Gel’fand. Algebraic vector bundles on Pn

and problems of linear algebra. Functional Anal. Appl., 12:212–214, 1978.
[5] Bodnar,G. and J. Schicho. Automated resolution of singularities for hypersurfaces.

J. Sym. Comp., 30:401–428, 2000.
[6] Brieskorn, E. Die Monodromie der isolierten Singularitäten von Hyperflächen.
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