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Introduction

The moduli spacesMg of curves of genus g is
I unirational for g ≤ 14, [Severi, Sernesi, Chang-Ran, Verra],
I of general type for g = 22 and g ≥ 24, [Harris-Mumford,

Eisenbud-Harris, Farkas].
The cases in between are not fully understood:

I M23 has positive Kodaira dimension [Farkas],
I M15 is rationally connected [Bruno-Verra] ,
I M16 is uniruled [Chang-Ran, Farkas].



Introduction

In this talk I will report on unirationality proofs for moduli
spaces. The emphasis will lie on the construction technique,
trying to point out, where (from my point of view) the methods
fail for the next cases. We will focus on

I Hurwitz schemes Hg,d = {C f−→ P1} →W 1
g,d of degree d

covers of P1 by curves of genus g,
I Severi varieties Vg,d →W 2

g,d of degree d nodal plane
curves of geometric genus g,

I further spaces W r
g,d for r ≥ 3.



Brill-Noether theory
A general curve C of genus g has a linear system gr

d of
dimension r of divisors of degree d if and only if the
Brill-Noether number

ρ = ρ(g, r ,d) = g − (r + 1)(g + r − d)

is non-negative. Moreover, in this case, the Brill-Noether
scheme

W r
d (C) = {L ∈ Picd (C) | h0(L) ≥ r + 1}

has dimension ρ.

Recall some notation from [ACGH]:

Mr
g,d = {C ∈Mg | ∃L ∈W r

d (C)},

W r
g,d = {(C,L) | C ∈Mr

g,d ,L ∈W r
d (C)}

and

Gr
g,d = {(C,L,V ) | (C,L) ∈W r

g,d ,V ⊂ H0(L),dim V = r + 1}.
Then we have natural morphisms

Hg,d → G1
g,d →W 1

g,d →M
1
g,d ⊂Mg .
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Color coding
Color coding indicates where W 1

g,d is known to be unirational,
uniruled or not unirational.

Results are due to

I Petri (d ≤ 5) (1923) or B. Segre (d = 5) (1928)
I Harris and Mumford (1982)
I Chang and Ran (1984)
I Eisenbud and Harris (1987)
I Mukai (g ≤ 9) (1995)
I Farkas (2000), Verra (2005)
I Geiß (2012)
I Bini, Fontanari and Viviani (2012)
I Farkas and Verra (2013)
I Casalaina-Martin, Kass and Viviani (2014)
I Damadi, Schreyer and Tanturri (2016)
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Color coding indicates where W 1
g,d is known to be unirational, uniruled or not unirational. The red shaded region is

just a guess.



Mukai’s Theorem

A general canonical curve C of genus g = 7,8,9 arises as
transversal intersection of a linear space with a homogeneous
variety:

7 C = P6 ∩ Spinor10 ⊂ P15 isotropic subspaces of Q8 ⊂ P9

8 C = P7 ∩G(2,6)8 ⊂ P14 Grassmannian of line in P5

9 C = P8 ∩ L(3,6)6 ⊂ P13 Lagrangian subspaces of (C6, ω)

⇒ the moduli spacesMg,g of g-pointed curves of genus g and
the universal Picard varieties Picd

g →Mg are unirational for
g ≤ 9.

⇒M1
g,d and Hg,d are unirational for g ≤ 9 and d ≥ g.



Petry’s Theorem on 5-gonal curves
Let C → P1 be given by a complete linear series of degree 5.
The canonical image of C lies on a 4-dimension scroll X

C ⊂ X = P(E) ⊂ Pg−1

of a rank 4 bundle E = O(e1)⊕ . . .⊕O(e4) degree f = g − 4
over P1.

As an OX -module OC has a self-dual resolution of
shape

0→ OX (−5H + (f − 2)R)→

⊕5
j=1OX (−3H + bjR)

ψ−→ ⊕5
i=1OX (−3H + aiR)→

OX → OC → 0
where the middle matrix ψ = (ψij) is skew-symmetric with
entries ψij ∈ H0(OX (H − (bj − ai)R)) and ai + bi = f − 2. The
other maps have entries the 4× 4 pfaffians of ψ (in accordance
with the Buchsbaum-Eisenbud structure theorem)

⇒ Hg,5 and M1
g,5 are unirational for all g ≥ 7.
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Florian Geiß’ approach to 6-gonal curves

No structure theorem for Gorenstein rings in codimension 4.
Not even for the Betti table

0 1 2 3 4
0 1 . . . .
1 . 9 16 9 .
2 . . . . 1

Let |L1| = g1
6 . Consider in addition an |L2| = g2

d and the
embedding

C
|L1|×|L2|−−−−−→ P1 × P2.

Think of C as a family of 6 points in P2. The ideal of six points
in P2 is generated by cubics, and they are linked via two cubics
to three points. Thus C is linked to a trigonal curve E via two
hypersurface of bi-degree (a1,3), (a2,3). E might be easier to
construct.
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The case W 1
10,6

Since 10 > 3 · 3 a curve of genus 10 has a 1-dimensional family
of g2

9 . So C ⊂ P1 × P2 has intersection numbers C.A = 6,
C.B = 9 with the two generators A,B of the Picard group.

h0OP1×P2(a,3) = (a + 1)10,h0OC(a,3) = 6a + 3 · 9 + 1− 10

hence h0JC(a,3) ≥ 4a− 8 ≥ 2 for a = 3. So C ∼(3A+3B)2 E .

(C + E).A = (3A + 3B)2.A = 9 = 6 + 3,

(C + E).B = (3A + 3B)2.B = 18 = 9 + 9

and gC − gE = 1
2(C − E).(4A + 3B) = (6− 3) · 2 = 6. Thus E is

a genus 10− 6 = 4 curve of bi-degree (3,9) in P1 × P2 which
are easy to construct. Since
h0JE (3,3) = 40− (3 · (3 + 9) + 1− 4) = 7 > 2 we can reverse
the construction. Moreover we can impose that the two
hypersurfaces pass to 5 general points in P1 × P2.
⇒W 1

10,6,5 →M10,5 are both unirational.
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Why does this approach to W 1
g,6 fails for g � 0?

A general curve C of genus g has a g2
d if only if

3 · (g − d + 2) ≤ g ⇔ d ≥ 2g + 6
3

.

h0OC(a,3) ≈ 6a + 2g + 6 + 1− g ≤ 10(a + 1)− 1

⇔ g + 8 ≤ 4a

The two hypersurface have bi-degree (a1,3), (a2,3) with

a1 ≈ a2 ≈ g/4 + 2

and
(C + E).B = (a1A + 3B).(a2A + 3B).B = 3(a1 + a2) = dC + dE .
For g � 0 the plane model E has larger degree than the plane
model of C:

dE ≈ 3/2g − 2/3g = 5/6g > 2/3g ≈ dC .

The approach fails at the point where E has to be chosen
special within its Hilbert scheme to achieve h0JE (a1,3) > 0.
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Verra’s case: W 1
14,8 →M14 are both unirational

h0(D)− h0(K − D) = 8 + 1− 14⇒ h0(K − D) = 7. Betti
numbers of C ⊂ P6

β(SC) =

0 1 2 3 4 5
0 1 . . . . .
1 . 5 . . . .
2 . 8 45 56 25 .
3 . . . . . 2

C ∼25 E , 32 = deg C + deg E = 18 + 14

gC − gE =
1
2

(C − E).(5 · 2− 7)H =
3
2

(18− 14) = 6⇒ gE = 8

β(SE ) =
0 1 . . . . .
1 . 7 . . . .
2 . . 35 56 35 8

OE (H) = ωE (p1 + . . .+ p4 − (p5 + . . .+ p8))

Mukai: M8,8 unirational; W 1
14,8 ≈ G(5,7)-bundle over Pic14

8
also.
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Sernesi, Chang-Ran unirationality ofMg for
g = 11,12,13 via space curves

25 -
24
23
22
21
20
19
18
17
16 ?
15
14
13 CR
12 Se Sc
11 CR
10 FV
9
8
7
6
5
4
3
2
1
0

g/d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17



Space curves via Hartshorne-Rao modules, W 1
12,9

h0(D)− h0(K − D) = 9 + 1− 12⇒ h0(K − D) = 4, study
C ⊂ P3. Hartshorne-Rao module

M = ⊕nH1(P3,JC(n)).

C maximal rank⇒ expected syzygies:

β(M) =

0 1 2 3 4
2 5 12 4 . .
3 . . 4 . .
4 . . 9 16 6

and

β(Γ∗OC) =

0 1 2
0 1 . .
1 . . .
2 5 12 4
3 . . 2

β(SC) =

0 1 2 3
0 1 . . .
1 . . . .
2 . . . .
3 . 2 . .
4 . 9 16 6
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Construction of points in W 1
13,9

β(M) =
2 5 12 4 . .
3 . . 4 . .
4 . . 9 16 6

β(Γ∗OC) =

0 1 . .
1 . . .
2 5 12 4
3 . . 2

Construction

1. Choose a general map O12(−3)
ϕ←− O4(−4)

and compute generators 0← ker(ϕt )← O(2)8 ⊕O(1)8

2. Choose a point in G(5,8) and obtain the presentation

0← M ← S5(−2)
ψ←− S12(−3)

3. Choose a point in G(2,4) and obtain a locally free
resolution

0← JC ← F ← O4(−4)⊕O2(−5)← 0

where F = k̃er(ψ) is a rank 7 vector bundle on P3.
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Strong maximal rank space curves of diameter ≤ 3

25 -19
24
23 -17
22
21 -15
20 -12
19 -13
18 -10
17 -11 -7
16 -8 -4 0?
15 -9 -5 -1
14 -6 -2
13 -7 -3 CR
12 Se Sc
11 -5 -1 CR
10 2 6 FV
9 -3 1 5 9
8 0 4 8
7 -1 7
6 -2 2 6 10
5 1 5 9
4 0 4 8 12
3 3 11 15
2 2 10 14 18
1 1 5 9 13
0 0 4 12 16

g/d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17



Space curves

25 - - - - - - - - - ci © -19
24 - - - - - - - - - q q q
23 - - - - - - - - - © © cm -17
22 - - - - - - - - - © q
21 - - - - - - - - - q -15
20 - - - - - - - - cm © cm q -12
19 - - - - - - - - © ci -13
18 - - - - - - - - q q -10
17 - - - - - - - - © cm -11 -7
16 - - - - - - - ci © q -8 -4 0?
15 - - - - - - - q -9 -5 -1
14 - - - - - - - © q,cm -6 -2
13 - - - - - - - © -7 -3 CR
12 - - - - - - cm q Se Sc
11 - - - - - - © -5 -1 CR
10 - - - - - - q,ci 2 6 FV
9 - - - - - ci -3 1 5 9
8 - - - - - q 0 4 8
7 - - - - - -1 3 7
6 - - - - -2 2 6 10
5 - - - - 1 5 9
4 - - - 0 4 8 12
3 - - - 3 7 11 15
2 - - 2 6 10 14 18
1 - 1 5 9 13
0 0 4 8 12 16

g/d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17



Plane nodal models Nd ,g

26 - - - - - - - -31 -28 -25 -22
25 - - - - - - - -29 -26 -23 -20
24 - - - - - - - -27 -24 -21
23 - - - - - - - -25 -22 -19
22 - - - - - - - -23 -20 -17
21 - - - - - - -24 -21 -18 -15
20 - - - - - - -22 -19 -16 -13
19 - - - - - - -20 -17 -14
18 - - - - - - -18 -15 -12
17 - - - - - - -16 -13 -10
16 - - - - - - -14 -11 -8
15 - - - - - -15 -12 -9 -6 0Sc
14 - - - - - -13 -10 -7
13 - - - - - -11 -8 -5 1CR
12 - - - - - -9 -6 -3 0Se
11 - - - - - -7 -4 -1 2G
10 - - - - -8 -5 -2 1
9 - - - - -6 -3 0
8 - - - - -4 -1 2
7 - - - - -2 1 4
6 - - - -3 0 3
5 - - - -1 2 5
4 - - - 1 4 7
3 - - 0 3 6
2 - - 2 5 8
1 - 1 4 7
0 0 3 6 9

g/d 2 3 4 5 6 7 8 9 10 11 12 13



Models in P4 and matrix factorizations; W 1
12,8

|K − D| embeds C ↪→ P4 as a curve of degree
deg C = 22− 8 = 14. Postulation

β(Γ∗OC) =

0 1 2 3
0 1 . . .
1 . . . .
2 2 14 15 2
3 . . . 2

In particular h0(P4,JC(3)) = 4.

Fix f ∈ H0(P4,JC(3)) and
consider the cubic solid X = V (f ). Resolve Γ∗OC as an
SX = S/f module:

βX (Γ∗OC) =

0 1 2 3 4 5
0 1 . . . . .
1 . . 1 . . .
2 2 14 15 2
3 . . 2 15 15 2
4 . . . . 2 15
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Models in P4 and matrix factorizations; W 1
12,8, II

βX (Γ∗OC) =

0 1 . . . . .
1 . . . . . .
2 2 13 15 2
3 . . 2 15 15 2
4 . . . . 2 15

The sheaf

F = coker(O2
X (−2)⊕O15

X (−3)
ψ←− O15

X (−3)⊕O2
X (−4))

is a rank 7 vector bundle on X .

Theorem (S.-Tanturri)
There is a monad

0← O2
X (−2)← F ← O2

X (−2)⊕O2
x (−3)← 0

whose homology is JC/X . For fixed F there is a G(2,5) of
choices which yield curves C′ of desired degree and genus.
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Theorem (S.-Tanturri)
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x (−3)← 0

whose homology is JC/X . For fixed F there is a G(2,5) of
choices which yield curves C′ of desired degree and genus.



Models in P4 and matrix factorizations; W 1
12,8, III

Consider a module N with Betti numbers

β(N) =

0 1 2 3 4
0 1 . . . .
1 . . . . .
2 . 5 . . .
3 . 2 15 11 2

Syzygies of N as an SX -module yield a matrix factorization of
desired shape.

3 4 5
3 15 2 .
4 2 15 2
5 . . 15

N is the homogeneous coordinate ring SE of a curve of degree
deg E = 13 and (arithmetic) genus gE = 10.
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Models in P4 and matrix factorizations; W 1
12,8, IV

Riemann-Roch for OE (H):

5− h1(OE (H)) = 13 + 1− 10⇒ h1(OE (H)) = 1.

Hence
OE (H) = ωE (−(p1 + . . .+ p5).

Geiß applies: M10,5 is unirational, and the same holds for the
W 1

12,8, since this is birational to a G(2,5)-bundle over W 0
10,5.

Easier way to relate C and E :

C ∼33 E , 27 = 14 + 13 = deg C + deg E

and gC − gE = 1
2(C − E).((9− 5)H = 2

⇒ gE = gC − 2 = 10.
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Models in P4 and matrix factorization; W 1
13,9

|K − D| embeds C ↪→ P4 as a curve of degree 15.

β(Γ∗OC) =

0 1 . . .
1 . . . .
2 3 17 18 3
3 . . . 2

; h0(P4,JC(3)) = 2.

As an SX -module:

βX (Γ∗OC) =

0 1 . . . . .
1 . . . . .
2 3 16 18 3
3 . . 3 18 18 3
4 . . . . 3 18

Monad for JC/X with a rank 9 bundle F on X :

0← O3
X (−2)← F ← O3

X (−2)⊕O2
X (−3)← 0,

a G(2,3) ∼= P2 of choices. ⇒W 1
13,9 is ruled. Why non-trivial?

Start with a 13-nodal rational C, general C′ will be smooth!
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Hurwitz schemes Hg,d →W 1
g,d

45 P G
| |

40 P G
| |

36 P G
35 P G
34 P
33 P G
32 P
31 P G
30 P G
29 P
28 P G
27 P G
26 P G EH
25 P G HM
24 P G EH EH
23 P G HM HM
22 P G F F F
21 P G
| | |

16 P G
15 P G V
14 P G V FV
13 P G ST ST FV CKV
12 P G G ST S FV CKV CKV
11 P G G CR FV CKV CKV CKV
10 P G G FV CKV CKV CKV BFV
9 P G G DS M M M M M M
8 P | G M M M M M M M
7 P | M M M M M M M M
6
|
1

g / d 2 3 4 5 6 7 8 9 10 11 12 13 14

Color coding indicates where W 1
g,d is known to be unirational, uniruled or not unirational.


	1. Introduction

