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Introduction

The moduli spacesMg of curves of genus g is
I unirational for g ≤ 14, [Severi, Sernesi, Chang-Ran, Verra],
I of general type for g = 22 and g ≥ 24, [Harris-Mumford,

Eisenbud-Harris, Farkas].
The cases in between are not fully understood:

I M23 has positive Kodaira dimension [Farkas],
I M15 is rationally connected [Bruno-Verra] ,
I M16 is uniruled [Chang-Ran, Farkas].

In this talk I report on an attempt to prove the unirationality of
M15.



M̃15

By Brill-Noether theory,

W r
d(C) = {L ∈ Picd C | h0(L) ≥ r + 1}

has dimension at least

ρ = g − (r + 1)(g − d + r),

a general curve of genus 15 = 5 · 3 has a finite number of
smooth models of degree 16 in P4. Let

H ⊂ Hilb16t+1−15(P4)

be the corresponding component of the Hilbert scheme, and let

M̃15 ⊂ {(C,L) | C ∈M15,L ∈W 4
16(C)} →M15

be the component of the Hurwitz scheme, which dominates
generically finite to one. So H//PGL(5) is birational to M̃15.

Our main result connects the moduli space M̃15 to a moduli
space of certain matrix factorizations of cubic threefolds.
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Main Results

Theorem
The moduli space M̃15 of curves of genus 15 together with a
g4

16 is birational to a component of the moduli space of matrix
factorizations of type

O18(−3)
ψ−→ O15(−1)⊕O3(−2)

ϕ−→ O18

of cubic forms on P4.

Theorem
M̃15 is uniruled.
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Matrix factorizations [Eisenbud, 1980]
R a regular local ring, f ∈ m2. A matrix factorization of f is a
pair (ϕ,ψ) of matrices satisfying

ψ ◦ ϕ = f idG and ϕ ◦ ψ = f idF .

M = cokerϕ is a maximal Cohen-Macaulay R/f -module.

Conversely, if M is a MCM on R/f , then as R-module M has a
short resolution

0←− M ←− F ←− G←− 0.

and multiplication with f on this complex is null homotopic

0 ← M ← F
ϕ←− G ← 0

↓0 ↓f ↘ψ ↓f

0 ← M ← F
ϕ←− G ← 0

which yields a matrix factorization (ϕ,ψ).
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2-periodic resolutions
As an R/f -module, M has the infinite 2-periodic resolution

0← M ← F
ϕ←− G

ψ←− F
ϕ←− G

ψ←− . . .

where F = F⊗R/f and G = G⊗R/f . In particular, this
sequence is exact, and the dual sequence corresponding to the
matrix factorization (ψt , ϕt) is exact as well.

The resolution of an arbitrary R/f -module N is eventually
2-periodic. If

0← N ← F0 ← F1 ← F2 ← . . .← Fc ← 0

is the finite resolution of N as R-module then

0← N ← F 0 ← F 1 ← F 2⊕F 0 ← F 3⊕F 1 ← . . .← F ev ← F odd ← . . .

is a R/f -resolution, where

Fev =
⊕

i≡0 mod 2

Fi and Fodd =
⊕

i≡1 mod 2

Fi .
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MCM-approximation

The high syzygy modules over a Cohen-Macaulay ring are
MCM.
In case of an hypersurface, M = coker(F odd → F ev ) is a MCM
module. There is a natural surjection from M to N with kernel P,

0← N ← M ← P ← 0

where P is a module of finite projective dimension

pdR/f P <∞.



The graded case: replace R by S = k [x0, . . . , xn]

If f ∈ S is a homogeneous form f degree d then we have to take
the grading into account:

I A matrix factorization is now given by a pair

G
ϕ−→ F

ψ−→ G(d)

of maps between graded free S-modules.
I The i-th term in the (not necessarily minimal) eventually

2-peroidic S/f -resolution obtained from an S-resolution F•
is

F i ⊕ F i−2(−d)⊕ . . .⊕ F 0(−id/2)

or
F i ⊕ F i−2(−d)⊕ . . .⊕ F 1(−(i − 1)d/2)

in case i is even or odd, respectively.



Vector bundles on hypersurfaces

If X = V (f ) ⊂ Pn is a smooth hypersurface then an MCM
module

M = cokerϕ

sheafifies to a vector bundle

F = M̃

on X with no intermediate cohomology,

Hp(X ,F(t)) = 0 for all p with 0 < p < dim X .

If detϕ = λf r with λ ∈ K a scalar, then

rankF = r .



Section 3. The structure theorem

We begin now with the proof of the main theorem.

Theorem
The moduli space M̃15 of curves of genus 15 together with a
g4

16 is birational to a component of the moduli space of matrix
factorizations of type

O18(−3)
ψ−→ O15(−1)⊕O3(−2)

ϕ−→ O18

of cubic forms on P4.



Postulation
For C ⊂ P4 be a smooth curve of degree d = 16 and genus
g = 15. We have

I SC = S/IC , the homogeneous coordinate ring, and
I H0

∗ (OC) = ⊕nH0(OC(n)) , the ring of sections.

Proposition
As S-modules these rings have free resolution with Betti tables

0 1 2 3 4
0 1 . . . .
1 . . . . .
2 . 1 . . .
3 . 15 30 18 3

and

0 1 2 3
0 1 . . .
1 . . . .
2 3 16 15 0
3 . . 0 3

iff C has maximal rank and (C,L) is not a ramification point of
M̃15 →M15. In particular a general curve C lies on a unique
cubic X.
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Syzygies H0
∗ (OC) of as SX -module

From now on, C ⊂ P4 will always denote a general curve of
degree 16 and genus 15.

The eventual 2-periodic resolution of H0
∗ (OC) as an SX = S/f

has the shape

0 1 2 3 4 5 6 · · ·
0 1 . . . . . . .
1 . . 1 . . . . .
2 3 16 15 . 1 . . .
3 . . 3 3+16 15 . 1 .
4 . . . . 3 19 15 · · ·
... . . . . . . 3 · · ·

This is not a minimal resolution.

Proposition
The minimal resolution of H0

∗ (OC) as an SX = S/f has the
shape

0 1 2 3 4 5 6 · · ·
0 1 . . .
1 . . . .
2 3 15 15 . .
3 . . 3 18 15 . .
4 . . . . 3 18 15 · · ·
... . . . . . . 3 · · ·
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From C to a matrix factorization

Corollary
A general curve C determines a matrix factorization of shape

0 1 2
1 15 . .
2 3 18 15
3 . . 3

Define F via

0← F ← O18
X (−3)

ϕ←− O15
X (−4)⊕O3

X (−5)).

The composition

O3
X (−2)← F ← O18

X (−3)

is surjective with a summand O3
X (−3) in the kernel, since there

are only 5 linear forms on P4.
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From the matrix factorization back to C

Theorem (Structure Theorem)
Given the matrix factorization associated to C then the complex

0← O3
X (−2) α←− F β←− O3

X (−3)← 0

is a monad for the ideal sheaf JC/X of C ⊂ X, i.e.
α is surjective, β injective and

JC/X
∼= kerα/ imβ.

F is a rank 7 vector bundle on the cubic X , because

deg det(
18 15
. 3

) = 15 + 3 · 2 = 7 · 3.



Proof of the main theorem

Since it is an open condition on matrix factorizations of shape

0 1 2
1 15 . .
2 3 18 15
3 . . 3

to lead to a monad of a smooth curve of genus 15 and degree
16, this completes the proof of the main theorem.

We now could study the moduli spaceMX (7; c1F , c2F , c3F) of
vector bundles on the cubic threefold X .



Section 4. Constructions

Different approach: construct auxiliary modules N, whose
syzygies would lead to a desired matrix factorization.

Possible shape of Betti tables β(N) are

0 1 2 3 4
0 a . . . .
1 b c d . .
2 . . e f h
3 . . . . i

or

0 1 2 3 4
0 a b . . .
1 . c d e .
2 . . . f h

with (a + d + h,b + e + i , c + f ) = (3,15,18) or (15,3,18)
for the first case, and (a + d + h,b + e, c + f ) = (18,15,3) or
(18,3,15) in the second case. A computation shows: There

are 39 of the tables in the Boij-Söderberg cone with
codimβ(N) ≥ 3, in all case we have equality.
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Four candiate tables

degβ(N) = 11 degβ(N) = 14
0 1 2 3

0 5 9 . .
1 . 3 13 6
2 . . . .

0 1 2 3 4
0 2 . . . .
1 1 9 . . .
2 . . 14 9 1

degβ(N) = 13 degβ(N) = 14
0 1 2 3

0 2 . . .
1 2 15 13 .
2 . . 1 3

0 1 2 3
0 6 11 . .
1 . 2 12 4
2 . . . 1



How to think about N?

I In all cases we will assume that

L = Ñ

is a line bundle on a auxiliary curve E of degree
dE = degβ(N).

I Since pdS(N) ≤ 4, N ⊂ H0
∗ (L) = ⊕n∈ZH0(L(n)) and local

cohomology measures the difference

0→ N → H0
∗ (L)→ H1

m(N)→ 0.

I Since H1
m(N) is dual to Ext4

S(N,S(−5)) the 4-th map in the
resolution gives us an idea about N.

The genus gE and the degree dL = degL are however not yet
determined. Their choice is motivated by a dimension count.
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Example 1.

The easiest case is perhaps dE = 11 with Betti table

0 1 2 3
0 5 9 . .
1 . 3 13 6
2 . . . 0

It is natural to assume that h0OE(1) = 5. Riemann-Roch
⇒ h1OE(1) = gE − dE + 4 = gE − 7. Parameter count:

dim{(E ,OE(1))} = 4gE − 3− 5 · h1OE(1) = 32− gE

dim{X | X ⊃ E} = 34− (3dE + 1− gE) = gE

Finally h1(L) = 0 can be read of the Betti table, so L is
non-special and we obtain further gE parameters.

Altogether
we get gE + 32 parameters, and to obtain (at least) 42
motivates the choice gE = 10.
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Example 1.
gE = 10⇒ h1(OE(1)) = 3, so E has a plane model E ′ of
degree 18− 11 = 7 with δ =

(6
2

)
− 10 = 5 double points. So we

can choose 5+10 points in P2,

E ′ ∈ |7h −
5∑

1=1

2pi −
10∑

j=1

qj |,

and take L = ωE(q1 + q2 + q3 − (q4 + . . .+ q10)).

By checking
an example with Macaulay2 over a finite field we conclude:

Theorem (Family 1)
There exists a 42-dimensional unirational family of tuples

(E ,OE(1),X ,L) with (dE ,gE ,dL) = (11,10,14)

such that N = H0
∗ (L) leads to a matrix factorization of desired

shape. The general one gives a smooth curve C ⊂ P4 of
degree 16 and genus 15.
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Example 2.
In case of

0 1 2 3 4
0 2 . . . .
1 1 9 . . .
2 . . 14 9 1

we have N ⊂ H0
∗ (L) with cokern K (−1). The resolution of N

and H0
∗ (L) differ by a Koszul complex on 5 linear forms.

Thus
the Betti table is H0

∗ (L) is

0 1 2 3
0 2 . . . .
1 2 14 10 .
2 . . 4 4

So E has a model in P3 and to pass from H0
∗ (L) to N amounts

to the choice a point in a P1.
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Example 2.
The dimension count suggest to take gE = 11. Riemann-Roch
⇒ h1(OE(1)) = 1, hence

OE(1) ∼= ωE(−(p1 + . . .+ p6)).

Take the line bundle L = ωE(−h), where h denotes the
hyperplane class of the model E ⊂ P3 of degree 12, that is a
Chang-Ran curve of genus 11. I do not know how to choose a
Chang-Ran curve together with 6 points unirationally. But over
a finite field Fq there are plenty of points in E(Fq) which are
easy to pick with a probabilistic method.

Theorem (Family 2)
There exists a 42-dimensional uniruled family of tuples

(E ,OE(1),X ,L,N) with (dE ,gE ,dL) = (14,11,8)

such the general tuple gives a smooth curve C ⊂ P4 of degree
16 and genus 15.
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Section 3. Tangent space computations

All what is needed to conclude from family 1 that M̃15 is
unirational, is to prove that the map gives an isomorphism on
tangent spaces in a random example.
Since the association

(N,X ) 7→ (M,X )

might not be surjective, this is a nontrivial assertion. So we
want to study the natural map

Ext1
SX

(N,N)0 → Ext1
SX

(M,M)0.



5. Tangent space diagram

The relevant diagram is

Ext1
SX

(M,P)→ Ext1
SX

(M,M)

∼=

−→ Ext1
SX

(M,N) → Ext2
SX

(M,P)

‖

↑

‖
0

Ext1
Sx
(N,N)

0

↑
HomSX (P,N)

deduced from the MCM approximation

0← N ← M ← P ← 0.

dim Ext1
SX

(M,M)0 = dim Ext1
Sx
(N,N)0 = 32 as expected,

HomSX (P,N)0 ↪→ Ext1
Sx
(N,N)0, but
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Dimensions of the families

Proposition
For a randomly chosen example,

dim HomSX (P,N)0 =

{
3 in case of family 1
0 in case of family 2

Hence family 1 leads to a 39-dimensional subvariety of M̃15
and family 2 dominates. Inparticular M̃15 is unirruled.



Section 6. Conclusion

Altogether I managed to construct 20 families of pairs (X ,N) all
of dimension at least 42, of which

I 17 families are unirational,
I 3 are (possibly) not, since they required the choice of

additional points on the auxiliary curve E .
I The three non-unirational families dominate.
I Most of the unirational families lead to 39-dimensional

subvarieties of M̃15. One has dimension 40, another one
dimension 41.

Could this be just bad luck?



A conjecture

and a complexity result

I think no.

A good explanation could be

Conjecture
The maximal rationally connected fibration of M̃15 has a three
dimensional base.

Theorem
The probabilistic algorithm, which for a finite field Fq selects
randomly curves of genus 15, has running time O((log q)3).

I I expect that the algorithm picks points from a subset of
M15(Fq) of density about 47%. The image of M̃15(Fq)
should have density about 63%. The same should hold for
the image of the Fq-rational points of the parameter space
in M̃15(Fq).

I A unirational description ofM15 would lead to an algorithm
with running time O((log q)2).

I For any fixed genus g there exists an algorithm which
selects points from a subset ofMg(Fq) of positive density
in running time O((log q)3)

.

Thank you!
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