Matrix factorizations and families of curves of
genus 15

Frank-Olaf Schreyer

Universitat des Saarlandes
E-Mail: schreyer@math.uni-sb.de.

August 9, 2014
ICM 2014 Sattelite Conference, Daejeon


mailto:schreyer@math.uni-sb.de

Introduction

The moduli spaces Mg of curves of genus g is
» unirational for g < 14, [Severi, Sernesi, Chang-Ran, Verra],

» of general type for g = 22 and g > 24, [Harris-Mumford,
Eisenbud-Harris, Farkas].

The cases in between are not fully understood:
» M3 has positive Kodaira dimension [Farkas],
» M5 is rationally connected [Bruno-Verra] ,
» Mg is uniruled [Chang-Ran, Farkas].

In this talk | report on an attempt to prove the unirationality of
Myis.



Mis
By Brill-Noether theory,
Wi(C)={LePic? C| HO(L) > r+1}
has dimension at least

p=g—(r+1)g-d+n).
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By Brill-Noether theory,
a general curve of genus 15 = 5 - 3 has a finite number of
smooth models of degree 16 in P*. Let

H C Hi|b161+1_15(P4)
be the corresponding component of the Hilbert scheme, and let
Mis C {(C,L) | C € Mys,L € Wi(C)} — Mjys

be the component of the Hurwitz scheme, which dominates
generically finite to one. So H//PGL(5) is birational to M s.

Our main result connects the moduli space Mv15 to a moduli
space of certain matrix factorizations of cubic threefolds.



Main Results

Theorem -
The moduli space M s of curves of genus 15 together with a
gj‘6 is birational to a component of the moduli space of matrix
factorizations of type

018(-3) 4 015(—1) 3 03(~2) & 018
of cubic forms on P*.

Theorem
M5 is uniruled.
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Matrix factorizations [Eisenbud, 1980]

R a regular local ring, f € m?. A matrix factorization of f is a
pair (v, ) of matrices satisfying

Yvop="~Ffidg and oy =TFidF.

M = coker ¢ is a maximal Cohen-Macaulay R/f-module.



Matrix factorizations [Eisenbud, 1980]

R a regular local ring, f € m2. A matrix factorization of f is a
pair (¢, v) of matrices satisfying

Yvop="~Ffidg and oy =TFidF.

M = coker ¢ is a maximal Cohen-Macaulay R/f-module.

Conversely, if Mis a MCM on R/f, then as R-module M has a
short resolution

O+— M«+— F«+—G+—0.
and multiplication with f on this complex is null homotopic
0« M « F & G « 0
10 Ny
0« M « F & G « 0

which yields a matrix factorization (¢, v).



2-periodic resolutions
As an R/f-module, M has the infinite 2-periodic resolution

0«M—FEGEFLEGY .

where F = FoR/f and G = GoR/f. In particular, this
sequence is exact, and the dual sequence corresponding to the
matrix factorization (!, ©?) is exact as well.



2-periodic resolutions
As an R/f-module, M has the infinite 2-periodic resolution

0+ M FEGEFEGE ...
where F = FoR/fand G = GRR/f.

The resolution of an arbitrary R/f-module N is eventually
2-periodic. If

O+N—Fy+—Fi+F+...<F<«+0

is the finite resolution of N as R-module then

0<—N<—?0<—F1 <—T'_2@F0<—F3@F1 (—...(—I?ev<—?odd<—...

is a R/f-resolution, where

Fev = @ Fi and  Foqy = @ Fi.

i=0 mod 2 i=1 mod 2



MCM-approximation

The high syzygy modules over a Cohen-Macaulay ring are
MCM.

In case of an hypersurface, M = coker(Fyqq — Fev) is @ MCM
module. There is a natural surjection from M to N with kernel P,

O—N+M«~—P+0
where P is a module of finite projective dimension

de/fP < Q.



The graded case: replace Rby S = k[x, . . ., X

If f € Sis a homogeneous form f degree d then we have to take
the grading into account:

» A matrix factorization is now given by a pair
G4 FY Gd)

of maps between graded free S-modules.

» The i-th term in the (not necessarily minimal) eventually
2-peroidic S/f-resolution obtained from an S-resolution F,
is

,?,' ©® ?,’_2(—0') D...P ?0(—/(1/2)

or
T‘_,' EB?,’_Q(—O') D... @?1(—(1' — 1)d/2)

in case i is even or odd, respectively.



Vector bundles on hypersurfaces

If X = V(f) C P"is a smooth hypersurface then an MCM

module
M = coker ¢

sheafifies to a vector bundle
F=M
on X with no intermediate cohomology,
HP (X, F(t)) = 0 for all pwith 0 < p < dim X.
If det o = A" with \ € K a scalar, then

rank F =r.



Section 3. The structure theorem

We begin now with the proof of the main theorem.

Theorem -
The moduli space M s of curves of genus 15 together with a

gj‘6 is birational to a component of the moduli space of matrix
factorizations of type

018(-3) L 015(-1) 3 03(~2) & 018

of cubic forms on P*.
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For C C P* be a smooth curve of degree d = 16 and genus
g = 15. We have

» Sc = S/Ic, the homogeneous coordinate ring, and
» HY(O¢c) = @nH°(O¢(n)) , the ring of sections.



Postulation

For C C P* be a smooth curve of degree d = 16 and genus
g = 15. We have

» Sc = S/Ic, the homogeneous coordinate ring, and
» HY(O¢c) = @nH°(O¢(n)) , the ring of sections.

Proposition
As S-modules these rings have free resolution with Betti tables
\ o 1 2 3 4 \ o 1 2 3
o1 . . o1 .
11. . and 11. . .
2. 1 . .. 2|3 16 15 0
3 15 30 18 3 3 0 3

iff C has maximal rank and (C, L) is not a ramification point of
Mys5 — Mis. In particular a general curve C lies on a unique
cubic X.



Syzygies H°(O¢) of as Sx-module

From now on, C c P* will always denote a general curve of
degree 16 and genus 15.

The eventual 2-periodic resolution of H%(O¢) as an Sy = S/f
has the shape

o 1 2 3 4 5 6
0|1 .
11, . 1
213 16 15 . 1
3. 3 3+16 15 1
4| . 3 19 15

This is not a minimal resolution.



Syzygies H°(O¢) of as Sx-module

From now on, C c P* will always denote a general curve of
degree 16 and genus 15.

Proposition
The minimal resolution of H®(O¢) as an Sy = S/f has the
shape
0 1 2 3 4 5 6

0|1

1] . . .

213 15 15 . .

3 3 18 15 . .

4 3 18 15

: 3




From C to a matrix factorization

Corollary
A general curve C determines a matrix factorization of shape
o 1 2
115 . .
213 18 15

30 . .3



From C to a matrix factorization

Corollary
A general curve C determines a matrix factorization of shape
o 1 2
115 . .
213 18 15
31 . . 3

Define F via
0« F « 0(=3) & 0P(—4) @ 03(-5)).
The composition
0%(—2) « F «+ 0(-3)

is surjective with a summand 0%(—3) in the kernel, since there
are only 5 linear forms on P4,



From the matrix factorization back to C

Theorem (Structure Theorem)
Given the matrix factorization associated to C then the complex
3 o B 3
0 Ox(—2)« F«+ Ox(-3)«0

is a monad for the ideal sheaf J¢,x of C C X, i.e.
« is surjective, (8 injective and

Jc/x = kera/im 3.

F is a rank 7 vector bundle on the cubic X, because

18 15

deg det( 3

)=15+3.2=7-3.



Proof of the main theorem

Since it is an open condition on matrix factorizations of shape

o 1 2
s ..
203 18 15
3. . 3

to lead to a monad of a smooth curve of genus 15 and degree
16, this completes the proof of the main theorem.

We now could study the moduli space M x(7; ¢1F, coF, c3F) of
vector bundles on the cubic threefold X.



Section 4. Constructions

Different approach: construct auxiliary modules N, whose
syzygies would lead to a desired matrix factorization.

Possible shape of Betti tables 5(N) are

1 2 3 4 ‘
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w
SN

| O

0
a
b

o o=

c d . . or
e f h
i

(SIS R )
N = O
Q
~ O -
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Section 4. Constructions

Different approach: construct auxiliary modules N, whose
syzygies would lead to a desired matrix factorization.

Possible shape of Betti tables 5(N) are

1 2 3 4 ‘

[\
w
SN

| O

0
a
b

o o=

c d . . or
e f h
i

(SIS R )
N = O
Q
~ O -

with (a+d+h,b+e+i,c+f)=(3,15,18) or (15,3,18)
for the first case, and (a+d+ h,b+ e,c+ f) = (18,15,3) or
(18,3,15) in the second case.



Section 4. Constructions

Different approach: construct auxiliary modules N, whose
syzygies would lead to a desired matrix factorization.

Possible shape of Betti tables 5(N) are

[0 123 4 |01 2 3 4
oOla . . . . 0o a b
1/b ¢ d . . or )
5 e f h 1 c d e .
) 2 f h
3 i

A computation shows: There

are 39 of the tables in the Boij-S6derberg cone with
codim 5(N) > 3, in all case we have equality.



Four candiate tables

N = O

deg 3(N) =1
0 1

0|5 9 .

1. 3 13

2

deg 5(N) =13
o 1 2

0|2

112 15 13

2 1

N = O
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How to think about N?

» In all cases we will assume that
L=N

is a line bundle on a auxiliary curve E of degree
de = deg B(N).

» Since pdg(N) <4, N C HY(L) = ®pezH(L(n)) and local
cohomology measures the difference

0— N— H(L) — HI(N) 0.

» Since HJ\(N) is dual to Exté(N, S(—5)) the 4-th map in the
resolution gives us an idea about N.

The genus g and the degree d, = deg £ are however not yet
determined. Their choice is motivated by a dimension count.



Example 1.

The easiest case is perhaps dg = 11 with Betti table

0 1 2 3
0[5 9 . .
1 3 13 6
2 0

Altogether
we get gg + 32 parameters, and to obtain (at least) 42
motivates the choice g = 10.



Example 1.

The easiest case is perhaps dg = 11 with Betti table

0 1 2 3
0[5 9 . .
1. 3 13 6
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It is natural to assume that h°Og(1) = 5. Riemann-Roch
= hOe(1)=ge —de +4 =9 7.

Altogether
we get gg + 32 parameters, and to obtain (at least) 42
motivates the choice g = 10.



Example 1.

The easiest case is perhaps dg = 11 with Betti table

0 1 2 3
0[5 9 . .
1. 3 13 6
2/. . . 0

It is natural to assume that i°Og(1) = 5. Riemann-Roch
= h'Og(1) = ge — de + 4 = g — 7. Parameter count:

dim{(E,Og(1))} =49 —3—-5-h'O(1) =32 — g¢

dim{X | X D> E}=34—(8dc+1—9gEr) =0c

Finally h'(£) = 0 can be read of the Betti table, so £ is
non-special and we obtain further g¢ parameters. Altogether
we get gg + 32 parameters, and to obtain (at least) 42
motivates the choice g = 10.



Example 1.

ge = 10 = h'(Og(1)) = 3, so E has a plane model E’ of
degree 18 — 11 = 7 with § = (§) — 10 = 5 double points. So we
can choose 5+10 points in P2,

5 10
E'e7h- 20~ g
1=1 j=1

andtake £ = we(q1 + o+ gz — (g4 + ... + G10))-



Example 1.

ge = 10 = h'(Og(1)) = 3, so E has a plane model E’ of
degree 18 — 11 = 7 with § = (§) — 10 = 5 double points. So we
can choose 5+10 points in P2,

5 10
E'e7h- 20~ g
1=1 j=1

and take £ = we(q1 + @ + @3 — (Qa + - .. + g10))- By checking
an example with Macaulay2 over a finite field we conclude:

Theorem (Family 1)
There exists a 42-dimensional unirational family of tuples

(E, 05(1 ), X,,C) with (dE, 9E, dg) = (1 1, 10, 14)

such that N = HO(L) leads to a matrix factorization of desired
shape. The general one gives a smooth curve C C P* of
degree 16 and genus 15.



Example 2.
In case of
1 2 3 4

- N O

0 .
1 9 . . .

2 14 9 1

we have N ¢ H2(£) with cokern K(—1). The resolution of N
and HO(L) differ by a Koszul complex on 5 linear forms.
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Example 2.
In case of
1 2 3 4

- N O

0 .
1 9 . . .

2 14 9 1

we have N ¢ H2(£) with cokern K(—1). The resolution of N
and HO(L) differ by a Koszul complex on 5 linear forms. Thus
the Betti table is HO(L) is

0o 1 2 3
o2 . .

112 14 10 .
2 4 4

So E has a model in P° and to pass from H°(£) to N amounts
to the choice a point in a P'.



Example 2.

The dimension count suggest to take g = 11. Riemann-Roch
= h'(Og(1)) = 1, hence

Og(1) = we(—(p1 + ... + ps))-

Theorem (Family 2)
There exists a 42-dimensional uniruled family of tuples

(E, 05(1),X,£, N) with (dE,gE, d[;) = (14, 1 1,8)

such the general tuple gives a smooth curve C C P* of degree
16 and genus 15.
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Take the line bundle £ = wg(—h), where h denotes the
hyperplane class of the model E c P® of degree 12, that is a
Chang-Ran curve of genus 11.
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Example 2.

The dimension count suggest to take g = 11. Riemann-Roch
= h'(Og(1)) = 1, hence

Og(1) = we(—(p1 + ... + ps))-

Take the line bundle £ = wg(—h), where h denotes the
hyperplane class of the model E c P® of degree 12, that is a
Chang-Ran curve of genus 11. | do not know how to choose a
Chang-Ran curve together with 6 points unirationally.

Theorem (Family 2)
There exists a 42-dimensional uniruled family of tuples

(E, 05(1),X,£, N) with (dE,gE, d[;) = (14, 1 1,8)

such the general tuple gives a smooth curve C C P* of degree
16 and genus 15.



Example 2.
The dimension count suggest to take g = 11. Riemann-Roch
= h'(Og(1)) = 1, hence

Og(1) = we(—(p1 + ... + ps))-

Take the line bundle £ = wg(—h), where h denotes the
hyperplane class of the model E c P® of degree 12, that is a
Chang-Ran curve of genus 11.

But over
a finite field IF4 there are plenty of points in E(F4) which are
easy to pick with a probabilistic method.

Theorem (Family 2)
There exists a 42-dimensional uniruled family of tuples

(E, 05(1),X,£, N) with (dE,gE, d[;) = (14, 1 1,8)

such the general tuple gives a smooth curve C C P* of degree
16 and genus 15.



Section 3. Tangent space computations

All what is needed to conclude from family 1 that M;s is
unirational, is to prove that the map gives an isomorphism on
tangent spaces in a random example.

Since the association

(N, X) — (M, X)

might not be surjective, this is a nontrivial assertion. So we
want to study the natural map

Ext (N, N)o — Extl (M, M)o.



5. Tangent space diagram

The relevant diagram is
Ext;X(M,P)—> Extgx(M,M) — Ext;X(M,N) —>Ext§X(M,P)
/l\
Ext;X(N, N)
/]\
Homs, (P, N)
deduced from the MCM approximation

ONM<P«+0.



5. Tangent space diagram

The relevant diagram is

Exty (M, P) — Ext} (M,M)

= Ext} (M,N) — Ext3 (M,P)
| i I
0 Ext} (N, N) 0
T
Homs, (P, N)

deduced from the MCM approximation

ONM<P«+D0.



5. Tangent space diagram

The relevant diagram is

Exty (M, P) — Ext} (M,M)

= Ext} (M,N) — Ext3 (M,P)
| i I
0 Ext} (N, N) 0
T
Homs, (P, N)

deduced from the MCM approximation

ONM<P«+D0.

dim ExtéX(M, M)y = dim Ext;X(N, N)o = 32 as expected,
Homsg, (P, N)o — Ext{ (N, N)o, but



Dimensions of the families

Proposition
For a randomly chosen example,

' f famil
dim Homg, (P, N) = 3 /.n case o am/.y 1
0 incase of family 2

Hence family 1 leads to a 39-dimensional subvariety of /\715
and family 2 dominates. Inparticular M s is unirruled.



Section 6. Conclusion

Altogether | managed to construct 20 families of pairs (X, N) all
of dimension at least 42, of which

» 17 families are unirational,

» 3 are (possibly) not, since they required the choice of
additional points on the auxiliary curve E.

» The three non-unirational families dominate.

» Most of the unirational families lead to 39-dimensional
subvarieties of M15. One has dimension 40, another one
dimension 41.

Could this be just bad luck?
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Conjecture
The maximal rationally connected fibration of M4s has a three
dimensional base.

Theorem
The probabilistic algorithm, which for a finite field F; selects
randomly curves of genus 15, has running time O((log q)?).

» | expect that the algorithm picks points from a subset of
Mis(Fq) of density about 47%. The image of M5(Fq)
should have density about 63%. The same should hold for
the image of the F4-rational points of the parameter space

in Mis(Fq).
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Conjecture
The maximal rationally connected fibration of M4s has a three
dimensional base.

Theorem
The probabilistic algorithm, which for a finite field F; selects
randomly curves of genus 15, has running time O((log q)?).

» | expect that the algorithm picks points from a subset of
M5(Fq) of density about 47%.

» A unirational description of M5 would lead to an algorithm
with running time O((log q)?).

» For any fixed genus g there exists an algorithm which
selects points from a subset of My(Fg) of positive density
in running time O((log q)3) .



A conjecture and a complexity result
| think no. A good explanation could be

Conjecture
The maximal rationally connected fibration of M4s has a three
dimensional base.

Theorem
The probabilistic algorithm, which for a finite field F; selects
randomly curves of genus 15, has running time O((log q)?).

» | expect that the algorithm picks points from a subset of
M5(Fq) of density about 47%.

» A unirational description of M5 would lead to an algorithm
with running time O((log q)?).

» For any fixed genus g there exists an algorithm which
selects points from a subset of My(Fg) of positive density
in running time O((log q)3) .

Thank you!



