# UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik Prof. Dr. Frank-Olaf Schreyer



Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

## Computer Algebra Summer Term 2019

Exercise Sheet 3. Hand in by Tuesday, May 7.

#### Exercise 1

Let F be an infinite field and let  $f \in F[x_1, \ldots, x_n]$  be a non-zero polynomial. Prove:

There exists a point  $a \in F^n$  such that  $f(a) \neq 0$ .

#### Exercise 2

Let  $F = \mathbb{C}$  and let  $f \in \mathbb{C}[x_1, ..., x_n]$  be a non-zero polynomial. Prove for every  $a \in \mathbb{A}^n(\mathbb{C}) = \mathbb{C}^n$  and every  $\epsilon > 0$  the ball  $B_{\epsilon}(a)$  with radius  $\epsilon$  around a intersects the complement  $\mathbb{C}^n \setminus V(f)$  of V(f).

Hint: If  $f \in F[x_1]$  is polynomial in one variable of degree  $\leq d$ , and  $b_1, \ldots, b_{d+1} \in F$  are pairwise distinct, then  $f(b_j) = 0$  for all  $j = 1, \ldots, d+1$  holds if and only if f is the zero polynomial.

#### Exercise 3

Let  $I \subset F[x_1, ..., x_n]$  be an ideal, let L(I) denote its lead ideal with respect to a global monomial order and let  $A = V(I) \subset \mathbb{A}^n = \mathbb{A}^n(\overline{F})$  the corresponding algebraic set. Prove: TFAE:

- (1) A is finite.
- (2) The set of monomials  $\{m \notin L(I)\}$  is finite.
- (3)  $F[x_1, \ldots, x_n]/I$  is finite-dimensional as an F-vector space.

If this is the case, then  $|\{m \notin L(I)\}|$  bounds the number of solutions |A|, with equality, if  $F = \overline{F}$  and I = I(A).

### Exercise 4

Show that the parabola  $V(y-x^2)\subset \mathbb{A}^2$  and the hyperbola  $V(xy-1)\subset \mathbb{A}^2$  are not isomorphic.