Algebraic Geometry, Lecture 12

Frank-Olaf Schreyer

Saarland University, Perugia 2021

Overview

Today's topic is constructive ideal and module theory.

1. Intersection of ideals
2. Syzygies
3. I: J
4. Elimination and kernels of ring homomorphisms
5. Homomorphisms between finitely presented modules

Intersection of ideals

Let $I, J \subset S=K\left[x_{1}, \ldots, x_{n}\right]$ be ideals. We want to compute their intersection.

Algorithm.

Input. f_{1}, \ldots, f_{r} generators of the ideal I, g_{1}, \ldots, g_{s} generators of the ideal J.
Output. Generators of the ideal $I \cap J$.

1. Form the matrix

$$
\varphi=\left(\begin{array}{ccccccc}
1 & f_{1} & \ldots & f_{r} & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 & g_{1} & \ldots & g_{s}
\end{array}\right)
$$

2. Compute the syzygy matrix $\psi=\left(h_{i j}\right)$ whose columns generate the kernel

$$
\operatorname{ker}\left(\varphi: S^{r+s+1} \rightarrow S^{2}\right)
$$

3. Return the entries of the first row

$$
h_{11}, h_{12}, \ldots, h_{1 t}
$$

of the $(r+s+1) \times t$-matrix ψ.

Proof of correctness

The equation

$$
\left(\begin{array}{ccccccc}
1 & f_{1} & \ldots & f_{r} & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 & g_{1} & \ldots & g_{s}
\end{array}\right)\left(\begin{array}{c}
h_{1 j} \\
h_{2 j} \\
\vdots \\
h_{(r+s+1) . j}
\end{array}\right)=0
$$

shows that $h_{1 j}$ is both a linear combination of the f_{i} 's and the g_{i} 's. Hence $h_{1 j} \in I \cap J$. Conversely, if $h \in I \cap J$, then

$$
h=h_{1} f_{1}+\ldots+h_{r} f_{r}=h_{1}^{\prime} g_{1}+\ldots+h_{s}^{\prime} g_{s}
$$

for suitable h_{i} and h_{j}^{\prime}. Hence the vector

$$
\left(h,-h_{1}, \ldots,-h_{r},-h_{1}^{\prime}, \ldots, h_{s}^{\prime}\right)^{t} \in \operatorname{ker}(\varphi) .
$$

Since the kernel is generated by the columns of ψ we obtain that h is a linear combination of $h_{11}, h_{12}, \ldots, h_{1 t}$.

Computation of syzygies

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring and $F=S^{s}$ be a free S-module.

Algorithm.

Input. Vectors $f_{1}, \ldots, f_{r} \in F$
Output. A matrix $\psi \in S^{r \times t}$ whose columns generate the kernel of the S-module homomorphism

$$
\varphi: S^{r} \rightarrow F, e_{i} \mapsto f_{i}
$$

1. Choose a monomial order on F and compute a Gröbner basis $f_{1}, \ldots, f_{r}, f_{r+1}, \ldots, f_{r^{\prime}}$ of $\left(f_{1}, \ldots, f_{r}\right)$, while keeping track of the Buchberger test syzygies $G^{(i, \alpha)}$.
2. Sort the $G^{(i, \alpha)}$ such that the test syzygies which produced new GB elements come first.

Computation of syzygies

3. The matrix with columns $G^{(i, \alpha)}$ has now shape

$$
\psi^{\prime}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \text { with } C=\left(\begin{array}{lll}
1 & & * \\
& \ddots & \\
0 & & 1
\end{array}\right)
$$

a $\left(r^{\prime}-r\right) \times\left(r^{\prime}-r\right)$ upper triangular square matrix 1 's on the diagonal. Return

$$
\psi=B-A C^{-1} D .
$$

Note that one can compute C^{-1} by applying row operations to the matrix $(E \mid C)$ to obtain $\left(C^{\prime} \mid E\right)$. The inverse matrix $C^{\prime}=C^{-1}$ has entries in S.

Proof of correctness

ψ^{\prime} is a $r^{\prime} \times\left(r^{\prime}-r+t\right)$-matrix whose columns generate the kernel of the map

$$
\varphi^{\prime}: S^{r^{\prime}} \rightarrow F, e_{i} \mapsto f_{i}
$$

since the $G^{(i, \alpha)}$ form a Gröbner basis of $\operatorname{ker}\left(\varphi^{\prime}\right)$. Multiplying

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \text { with }\left(\begin{array}{cc}
E_{r^{\prime}-r} & -C^{-1} D \\
0 & E_{t}
\end{array}\right)
$$

yields

$$
\widetilde{\psi}^{\prime}=\left(\begin{array}{cc}
A & B-A C^{-1} D \\
C & 0
\end{array}\right)
$$

whose columns still generate $\operatorname{ker}\left(\varphi^{\prime}\right)$. Elements of $\operatorname{ker}(\varphi)$ correspond to elements of $\operatorname{ker}\left(\varphi^{\prime}\right)$ of shape

$$
\left(h_{1}, \ldots, h_{r}, 0 \ldots, 0\right)^{t}
$$

Such an element is a linear combination of the last t columns of $\widetilde{\psi^{\prime}}$ because of the upper triangular shape of C. Thus the columns of $\psi=B-A C^{-1} D$ generate $\operatorname{ker}(\varphi)$.

Algorithm.

Input. f_{1}, \ldots, f_{r} generators of the ideal I,
g_{1}, \ldots, g_{s} generators of the ideal J.
Output. Generators of the ideal $I: J$.

1. Form the $s \times(r s+1)$-matrix

$$
\varphi=\left(\begin{array}{cccccccccc}
g_{1} & f_{1} & \ldots & f_{r} & & & & & & 0 \\
g_{2} & & & & f_{1} & \ldots & f_{r} & & & \\
\vdots & & & & & & \ddots & & & \\
g_{s} & 0 & & & & & & f_{1} & \ldots & f_{r}
\end{array}\right) .
$$

2. Compute the syzygy matrix $\psi=\left(h_{i j}\right)$ whose columns generate the kernel

$$
\operatorname{ker}\left(\varphi: S^{r s+1} \rightarrow S^{s}\right)
$$

3. Return the entries of the first row $h_{11}, h_{12}, \ldots, h_{1 t}$ of the $(r s+1) \times t$-matrix ψ.

Elimination

Given an ideal $I \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ we want to compute $I \cap K\left[y_{1}, \ldots, y_{m}\right]$. This can be done by computing a GB with respect to $>_{\text {lex }}$. However this computes the whole flag of elimination ideals. Using a product order is often cheaper.
Definition. Let $>_{1}$ be a global monomial order on $K\left[x_{1}, \ldots, x_{n}\right]$ and $>_{2}$ a global monomial order on $K\left[y_{1}, \ldots, y_{m}\right]$. Then the product order $\left(>_{12}\right)$ on $K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ is defined by

$$
\begin{aligned}
x^{\alpha} y^{\beta}>_{12} x^{\alpha^{\prime}} y^{\beta^{\prime}} \text { iff } x^{\alpha} & >_{1} x^{\alpha^{\prime}} \text { or } \\
x^{\alpha} & =x^{\alpha^{\prime}} \text { and } y^{\beta}>_{2} y^{\beta^{\prime}} .
\end{aligned}
$$

This order has the key property that

$$
\operatorname{Lt}(f) \in K\left[y_{1}, \ldots, y_{m}\right] \Longrightarrow f \in K\left[y_{1}, \ldots, y_{m}\right]
$$

holds.

Elimination

Algorithm.

Input. f_{1}, \ldots, f_{r} generators of an ideal

$$
I \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right] .
$$

Output. A Gröbner basis of $I \cap K\left[y_{1}, \ldots, y_{m}\right]$.

1. Compute a Gröbner basis $f_{1} \ldots, f_{r^{\prime}}$ of $\left(f_{1}, \ldots, f_{r}\right)$ with respect to a product order.
2. Return all Gröbner basis elements f_{j} with

$$
\operatorname{Lt}\left(f_{j}\right) \in K\left[y_{1}, \ldots, y_{m}\right]
$$

Proof. An element $f \in K\left[y_{1}, \ldots, y_{m}\right]$ lies in I iff the remainder under division by $f_{1} \ldots, f_{r^{\prime}}$ is zero. This division involves only the Gröbner basis elements which we return.

Kernel of a ring homomorphism

Let $\varphi: K\left[y_{1}, \ldots, y_{m}\right] \rightarrow K\left[x_{1}, \ldots, x_{n}\right] / I, y_{i} \mapsto \bar{g}_{i}$ be a substitution homomorphism. We want to compute $\operatorname{ker}(\varphi)$.

Algorithm.

Input. f_{1}, \ldots, f_{r} generators of the ideal $/$
g_{1}, \ldots, g_{m} representatives of the \bar{g}_{i}.
Output. A Gröbner basis of $\operatorname{ker}(\varphi)$.

1. Consider the ideal J generated by f_{1}, \ldots, f_{r} and $y_{1}-g_{1}, \ldots, y_{m}-g_{m}$ in $K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$
2. Compute a Gröbner basis of J with respect to a product order and return the Gröbner basis elements with lead terms in $K\left[y_{1}, \ldots, y_{m}\right]$.
Proof. Let $F \in K\left[y_{1}, \ldots, y_{m}\right]$ be an element of the kernel, i.e.,

$$
F\left(g_{1}, \ldots, g_{m}\right) \in I \Longleftrightarrow F \in J \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right] .
$$

Thus $\operatorname{ker}(\varphi)=J \cap K\left[y_{1}, \ldots, y_{m}\right]$ and a Gröbner basis is obtained by computing a GB of J with respect to $>_{12}$.

Geometric interpretation

Suppose $K\left[x_{1}, \ldots, x_{n}\right] / I=K[A]$ is the coordinate ring of an algebraic set $A \subset \mathbb{A}^{n}$ and ($\bar{g}_{1}, \ldots, \bar{g}_{r}$) are the components of a morphism

$$
\phi: A \rightarrow \mathbb{A}^{m} .
$$

Then the kernel J of $\varphi: K\left[y_{1}, \ldots, y_{m}\right] \rightarrow K\left[x_{1}, \ldots, x_{n}\right] / /$ is a radical ideal.
Indeed,

$$
\begin{aligned}
F \in \operatorname{rad}(J) & \Longrightarrow F^{N} \in J \text { for some } N \\
& \Longrightarrow \varphi\left(F^{N}\right)=0 \\
& \Longrightarrow\left(F\left(g_{1}, \ldots, g_{m}\right)\right)^{N} \in I \\
& \Longrightarrow F\left(g_{1}, \ldots, g_{m}\right) \in I \text { because } I \text { is a radical ideal } \\
& \Longrightarrow F \in \operatorname{ker}(\varphi)=J .
\end{aligned}
$$

$B=V(J) \subset \mathbb{A}^{m}$ is the Zariski closure $B=\overline{\phi(A)}$ of the image $\phi(A)$.

Description of module homomorphisms

Let $\varphi: M \rightarrow N$ be a homomorphism between two finitely presented $R=K\left[x_{1}, \ldots, x_{n}\right]$-modules. Then φ can be lifted to a commutative diagram between the presentations

Here M is a module with r_{0} generators $m_{1}, \ldots, m_{r_{0}}$ which are the image of the basis $e_{1}, \ldots, e_{r_{0}}$ and the columns of the matrix ϕ generate the kernel $\operatorname{ker}\left(R^{r_{0}} \rightarrow M\right)$. Thus $M=\operatorname{coker}(\phi)$. Similarly, $N=\operatorname{coker}(\psi)$.
To obtain φ_{0} we choose a preimage $f_{i} \in R^{s_{0}}$ of $\varphi\left(m_{i}\right)$ and define

$$
\varphi_{0}=\left(f_{1}|\ldots| f_{r_{0}}\right)
$$

to be the $s_{0} \times r_{0}$-matrix with column vectors f_{i}.

Description of module homomorphisms

Proposition. A so $\times r_{0}$-matrix φ_{0} induces a well-defined R-module homomorphism $\varphi: M \rightarrow N$ if and only if φ_{0} can be completed to a commutative diagram

Proof. φ_{0} induces a well-defined map $\varphi: M \rightarrow N$ iff the composition $R^{r_{1}} \xrightarrow{\phi} R^{r_{0}}$

is zero. Since $R^{s_{1}} \xrightarrow{\psi} R^{s_{0}} \longrightarrow N \longrightarrow 0$
is exact at $R^{s_{0}}$, this is the case iff $\operatorname{im}\left(\varphi_{0} \circ \phi\right) \subset \operatorname{im}(\psi)$
$\Longleftrightarrow \exists \varphi_{1}$ with $\varphi_{1} \circ \psi=\varphi_{0} \circ \phi$, since $R^{r_{1}}$ is free.

Lifting

Given two matrices A and B we want to decide whether A can be factored over B, i.e., whether there exists a matrix C with $A=B C$

If C exists, then C is called a lifting of A along B.
Algorithm. Can A be factored over B ?
Input. Matrices $A \in R^{s \times r}$ and $B \in R^{s \times t}$ over $R=K\left[x_{1}, \ldots, x_{n}\right]$.
Output. A boolean value, and in case of true a matrix $C \in R^{t \times r}$ such that $A=B C$.

1. Compute a Gröbner basis of the column vectors a_{1}, \ldots, a_{r} of A.
2. Divide each column vector b_{j} of B by the Gröbner basis. If one of the remainders is non-zero return false.

Lifting

3. If all remainders are zero, express the b_{i} as a linear combination of the original generators a_{1}, \ldots, a_{r} of the image $\operatorname{im}(A)$:

$$
b_{i}=\sum_{j=1}^{r} c_{i j} a_{j}
$$

4. Return true and $C=\left(c_{i j}\right)$.

Using this algorithm we can decide whether a matrix φ_{0} induces a well-defined homomorphism $\varphi: M \rightarrow N$

by computing a lifting φ_{1} of $\varphi_{0} \phi$ along ψ.

Cokern and image of an R-module homomorphism

Given a homomorphism $\varphi: M \rightarrow N$ represented by a matrix φ_{0}

we will describe presentations of $\operatorname{coker}(\varphi), \operatorname{im}(\varphi)$ and $\operatorname{ker}(\varphi)$. We have presentations

$$
R^{r_{0}} \oplus R^{s_{1}} \xrightarrow{\left(\varphi_{0} \mid \psi\right)} R^{s_{0}} \longrightarrow \operatorname{coker}(\varphi) \longrightarrow 0
$$

and

$$
R^{t_{0}} \oplus R^{r_{1}} \xrightarrow{(A \mid \phi)} R^{r_{0}} \longrightarrow \operatorname{im}(\varphi) \longrightarrow 0
$$

where A is part of the syzygy matrix $\binom{A}{B}$ of $\left(\varphi_{0} \mid \psi\right)$:

$$
R^{t_{0}} \xrightarrow{\binom{A}{B}} R^{r_{0}} \oplus R^{s_{1}} \xrightarrow{\left(\varphi_{0} \mid \psi\right)} R^{s_{0}} .
$$

Kernel of an R-module homomorphism

The computation of the presentation of $\operatorname{ker}(\varphi)$ takes more steps:

1. Compute the syzygy matrix $\binom{A}{B}$ of $\left(\varphi_{0} \mid \psi\right)$:

$$
R^{t_{0}} \xrightarrow{\binom{A}{B}} R^{r_{0}} \oplus R^{s_{1}} \xrightarrow{\left(\varphi_{0} \mid \psi\right)} R^{s_{0}} .
$$

2. Compute the syzygy matrix $\binom{C}{D}$ of $(A \mid \phi)$:

$$
R^{t_{1}} \xrightarrow{\binom{C}{D}} R^{t_{0}} \oplus R^{r_{1}} \xrightarrow{(A \mid \phi)} R^{r_{0}}
$$

3. Then C is the presentation matrix of $\operatorname{ker}(\varphi)$:

$$
R^{t_{1}} \xrightarrow{C} R^{t_{0}} \longrightarrow \operatorname{ker}(\varphi) \longrightarrow 0 .
$$

Proof of correctness

We have a commutative diagram

The map ι induced by A maps into the $\operatorname{ker}(\varphi)$ because $\varphi_{0} A$ induces the zero map as $\varphi_{0} A=-\psi B$.
$\iota: \operatorname{coker}(C) \rightarrow \operatorname{ker}(\varphi)$ is surjective: An element of

$$
f \in R^{r_{0}} \text { maps to } 0 \in N \Longleftrightarrow \varphi_{0}(f) \in \operatorname{im}(\psi) .
$$

Such element is of the form $f=A g$ because $\binom{A}{B}$ is the syzygy matrix of $\left(\varphi_{0} \mid \psi\right)$. This also shows that the description of $\operatorname{im}(\varphi) \cong \operatorname{coker}(A \mid \phi)$ above is correct.

Proof of correctness continued

$\iota: \operatorname{coker}(C) \rightarrow \operatorname{ker}(\varphi)$ is injective: An element

$$
g \in R^{t_{0}} \text { maps to } 0 \in M \Longleftrightarrow A g \in \operatorname{im}(\phi)
$$

These elements are of the form Ch for some $h \in R^{t_{1}}$ because $\binom{C}{D}$ is the syzygy matrix of $(A \mid \phi)$. Hence $g \mapsto 0 \in \operatorname{coker}(C)$.

We conclude that

$$
\iota: \operatorname{coker}(C) \rightarrow \operatorname{ker}(\varphi)
$$

is an isomorphism.

