Algebraic Geometry, Lecture 13

Frank-Olaf Schreyer

Saarland University, Perugia 2021

Overview

Today's topic is the projective space. Higher-dimensional affine varieties $A \subset \mathbb{A}^{n}(\mathbb{C})$ are never compact in the euclidean topology. $\mathbb{P}^{n}(\mathbb{C})$ is a compactification.

1. \mathbb{P}^{n}
2. Graded rings and the homogeneous coordinate ring of projective varieties
3. The projective closure

For affine zero-dimensional algebraic sets the number of solutions is a numerical invariant. Introducing projective algebraic sets will allow us to generalise the number of points on one side and the degree of a hypersurface defined as the degree of the defining equation into a concept of a degree for arbitrary algebraic sets.

Perspective drawings

Two parallel lines in \mathbb{A}^{2} do not intersect. However in perspective drawing they do intersect in a point in the horizon.

To put this into the right frame work, we define $\mathbb{P}^{2}(\mathbb{R})$ as the lines through the origin of \mathbb{R}^{3}. Then each point in the plane $\{z=1\}$ gives a point of $\mathbb{P}^{2}(\mathbb{R})$, and in addition we have the horizon corresponding to one-dimensional subvector spaces of \mathbb{R}^{3} contained in $\{z=0\}$.

The projective space as a set

Definition. Let k be any field and W be a finite-dimensional k vector space. The projective space of W is

$$
\mathbb{P}(W)=\{1 \text {-dimensional subvector spaces of } W\}
$$

In particular

$$
\mathbb{P}^{n}(k)=\mathbb{P}\left(k^{n+1}\right)
$$

\mathbb{P}^{n} refers to $\mathbb{P}^{n}(K)$ over an algebraic closed extension field K of k, and we call $\mathbb{P}^{n}(k)$ also the set of k-rational points of \mathbb{P}^{n}.
A different way to define \mathbb{P}^{n} is via an equivalence relation: Two points $a=\left(a_{0}, \ldots, a_{n}\right), b=\left(b_{0}, \ldots, b_{n}\right) \in K^{n+1} \backslash\{0\}$ are equivalent, i.e., $a \sim b$, iff $\exists \lambda \in K^{*}$ with $\lambda a=b$. Then

$$
\mathbb{P}^{n}=\left(K^{n+1} \backslash\{0\}\right) / \sim
$$

identifies the equivalence class [a] with the one-dimensional subspace spanned by a.

Homogeneous coordinates and projective algebraic sets

We refer to $\left[a_{0}: a_{1}: \ldots: a_{n}\right]$ as the homogeneous coordinates of the point $p=[a] \in \mathbb{P}^{n}$. Note that the ratios $a_{i}: a_{j}$ for $a_{j} \neq 0$ are well-defined.
Given a polynomial $f \in K\left[x_{0}, \ldots, x_{n}\right]$ the value $f(p)$ does not make sense. However for a homogeneous polynomial of degree d we have

$$
f(\lambda a)=\lambda^{d} f(a) .
$$

Here f is called homogeneous if each term of f has the same total degree d. Thus

$$
V(f)=\left\{p \in \mathbb{P}^{n} \mid f(p)=0\right\}
$$

where f is homogeneous is a well-defined subset of \mathbb{P}^{n}.
Definition. A projective algebraic set is a subset of the form

$$
V\left(f_{1}, \ldots, f_{r}\right)=\bigcap V\left(f_{i}\right)
$$

where the f_{i} are homogeneous of degree d_{i}. These sets form the closed sets of the Zariski topology of \mathbb{P}^{n}.

The standard atlas of \mathbb{P}^{n}.

The (Zariski) open subsets

$$
U_{i}=\left\{\left[a_{0}: \ldots: a_{n}\right] \in \mathbb{P}^{n} \mid a_{i} \neq 0\right\}=\mathbb{P}^{n} \backslash V\left(x_{i}\right)
$$

cover \mathbb{P}^{n} because each point in \mathbb{P}^{n} has homogeneous coordinates [$a_{0}: \ldots: a_{n}$] with at least one $a_{i} \neq 0$. The maps

$$
\varphi_{i}: U_{i} \rightarrow \mathbb{A}^{n},\left[a_{0}: \ldots: a_{i}: \ldots a_{n}\right] \mapsto\left(\frac{a_{0}}{a_{i}}, \ldots, \frac{a_{i-1}}{a_{i}}, \frac{a_{i+1}}{a_{i}}, \ldots, \frac{a_{n}}{a_{i}}\right)
$$

are well-defined bijections. For example, the inverse of φ_{0} is

$$
\varphi_{0}^{-1}: \mathbb{A}^{n} \rightarrow U_{0} \subset \mathbb{P}^{n},\left(b_{1}, \ldots, b_{n}\right) \mapsto\left[1: b_{1}: \ldots: b_{n}\right]
$$

More generally, φ_{i}^{-1} inserts 1 into the i-th position. The change of charts maps

$$
\varphi_{i j}=\varphi_{i} \circ \varphi_{j}^{-1}: \varphi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{i}\left(U_{i} \cap U_{j}\right)
$$

are given by rational maps. For example

$$
\varphi_{i 0}: \mathbb{A}^{n} \longrightarrow \mathbb{A}^{n},\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(\frac{1}{a_{i}}, \ldots, \frac{a_{i-1}}{a_{i}}, \frac{a_{i+1}}{a_{i}}, \ldots, \frac{a_{n}}{a_{i}}\right)
$$

\mathbb{P}^{n} as a manifold.

The atlas

$$
\mathcal{A}=\left\{\left(U_{i}, \varphi_{i}\right) \mid i=0, \ldots, n\right\}
$$

gives $\mathbb{P}^{n}(\mathbb{R})$ and $\mathbb{P}^{n}(\mathbb{C})$ the structure of a compact differentiable or compact complex manifold respectively, because rational functions are differentiable and holomorphic on their domain of definition.

$$
\mathbb{P}^{n}(\mathbb{R})=S^{n} / \sim
$$

identifies antipodal points of the unit sphere $S^{n} \subset \mathbb{R}^{n+1} . \mathbb{P}^{2}(\mathbb{R})$ is a nonorientable surface which is the union of a Möbius strip M and a disc D glued along their common boundary $\partial M \cong \partial D=S^{1}$.

The Hopf fibration

$\mathbb{P}^{n}(\mathbb{C})$ with the euclidean topology is compact since the map from the unit sphere $S^{2 n+1} \subset \mathbb{C}^{n+1} \backslash\{0\}$ to $\mathbb{P}^{n}(\mathbb{C})$ is continuous.

$$
h: S^{2 n+1} \rightarrow \mathbb{P}^{n}(\mathbb{C})
$$

is called the Hopf fibration. The fibers of h are isomorphic to circles

$$
S^{1}=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}
$$

As a real manifold $\mathbb{P}^{1}(\mathbb{C}) \cong S^{2}$ since both spaces are one point compactifications of $U_{0} \cong \mathbb{C} \cong \mathbb{R}^{2}$. Identifying S^{3} with the one point compactification of \mathbb{R}^{3} we see that \mathbb{R}^{3} is a disjoint union of linked circles and one line.

\mathbb{P}^{n} as a compactification

$$
\mathbb{P}^{n}=\mathbb{A}^{n} \cup \mathbb{P}^{n-1}=\mathbb{A}^{n} \cup \mathbb{A}^{n-1} \cup \ldots \cup \mathbb{A}^{0}
$$

where we identify $\mathbb{A}^{n} \cong U_{0}$ with a Zariski open subset via φ_{0}. For this reason we call $\mathbb{P}^{n-1}=V\left(x_{0}\right) \subset \mathbb{P}^{n}$ the hyperplane at infinity.
Let $A=V(f) \subset \mathbb{A}^{n}$ for $f \in K\left[x_{1}, \ldots, x_{n}\right]$ be a hypersurface. Then the Zariski closure $\bar{A} \subset \mathbb{P}^{n}$ is defined by $\bar{A}=V\left(f^{h}\right)$ where

$$
f^{h}=x_{0}^{\operatorname{deg} f} f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in K\left[x_{0}, \ldots, x_{n}\right]
$$

denotes the homogenisation of f. Conversely for a homogeneous polynomial $f \in K\left[x_{0}, \ldots, x_{n}\right]$ we denote by

$$
f^{a}=f\left(1, x_{1}, \ldots, x_{n}\right)
$$

the corresponding affine polynomial. Clearly $\left(f^{h}\right)^{a}=f$. However

$$
\left(f^{a}\right)^{h}=x_{0}^{\operatorname{deg} f-\operatorname{deg} f^{a}} f
$$

coincides with f if and only if x_{0} is not a factor of f.

A plane cubic curve in all three charts

Consider the curve $C=V\left(y^{2} z-x^{3}-x^{2} z\right) \subset \mathbb{P}^{2}$ with homogeneous coordinates $[x: y: z]$.

$$
\begin{aligned}
y^{2} & =x^{3}+x^{2} \\
\text { in } U_{2} & =\{z=1\} \\
z & =\frac{x^{3}}{1-x^{2}} \\
\text { in } U_{1} & =\{y=1\} \\
z & =\frac{1}{y^{2}-1}
\end{aligned}
$$

$$
\text { in } U_{0}=\{x=1\}
$$

Graded rings

Definition. A graded ring R is a ring together with a decomposition

$$
R=\bigoplus_{d \in \mathbb{Z}} R_{d}
$$

as abelian groups satisfying

$$
R_{d} \cdot R_{e} \subset R_{d+e}
$$

for the multiplication. An ideal J in a graded ring is called homogeneous if

$$
J=\bigoplus_{d \in \mathbb{Z}} J_{d} \text { with } J_{d}=J \cap R_{d}
$$

equivalently if J is generated by homogeneous elements. In that case

$$
R / J=\bigoplus R_{d} / J_{d}
$$

is again a graded ring.

Homogeneous coordinate ring

$S=K\left[x_{0}, \ldots, x_{n}\right]$ with

$$
S_{d}=\{f \in S \mid f \text { is homogeneous of degree } d\}
$$

is a graded ring. We call this the standard graded polynomial ring in $n+1$ variables.
Definition. Let $A \subset \mathbb{P}^{n}$. Then

$$
\mathrm{I}(A)=\left(\left\{f \in S_{d} \mid f(p)=0 \forall p \in A\right\}\right)
$$

is called the homogeneous ideal of A and

$$
S / I(A)=\bigoplus_{d \geq 0}(S / I(A))_{d}=\bigoplus_{d \geq 0} S_{d} / I(A)_{d}
$$

is called the homogeneous coordinate ring of A.
Conversely, for a homogeneous ideal $J \subset S$ we define

$$
V(J)=\left\{p \in \mathbb{P}^{n} \mid f(p)=0 \forall \text { homogeneous } f \in J\right\}
$$

The algebra-geometry dictionary in the projective case

The correspondences
$\left\{\right.$ subsets of $\left.\mathbb{P}^{n}\right\} \leftrightarrow\left\{\right.$ homogeneous ideals of $\left.S=K\left[x_{0}, \ldots, x_{n}\right]\right\}$

$$
A \mapsto \mathrm{I}(A), V(J) \leftarrow J
$$

induce a bijection between
\{algebraic subsets of $\left.\mathbb{P}^{n}\right\} \leftrightarrow\{$ homogeneous radical ideals of $S\}$ and
\{projective subvarieties of $\left.\mathbb{P}^{n}\right\} \leftrightarrow\{$ homogeneous prime ideals of $S\}$.
The homogeneous maximal ideal $\mathfrak{m}=\left(x_{0}, \ldots, x_{n}\right)$ corresponds to the empty set \emptyset. For this reason \mathfrak{m} is sometimes called the irrelevant ideal.

The projective Nullstellensatz

Proposition. Let $J \subsetneq S$ be a homogeneous ideal of the standard graded polynomial ring $S=K\left[x_{0}, \ldots, x_{n}\right]$ over an algebraically closed field K.Then

$$
V(J)=\emptyset \subset \mathbb{P}^{n} \Longleftrightarrow \operatorname{rad}(J)=\left(x_{0}, \ldots, x_{n}\right)
$$

Proof. We denote by

$$
C(J)=\left\{a \in \mathbb{A}^{n+1} \mid f(a)=0 \forall f \in J\right\}
$$

the zero loci of J in \mathbb{A}^{n+1}. This is a cone whose vertex is the origin $o=(0, \ldots, 0) . C(J) \neq \emptyset$ because J is a proper homogeneous ideal. If $C(J)$ contains a point $a=\left(a_{0}, \ldots, a_{n}\right)$ different from the origin, then $\left[a_{0}: \ldots: a_{n}\right] \in V(J) \subset \mathbb{P}^{n}$. Thus

$$
\begin{aligned}
V(J)=\emptyset & \Longleftrightarrow C(J)=\{o\} \\
& \Longleftrightarrow \operatorname{rad}(J)=\mathrm{I}(\{0\})=\left(x_{0}, \ldots, x_{n}\right)
\end{aligned}
$$

by the Nullstellensatz for \mathbb{A}^{n+1}.

The projective closure of the twisted cubic

Consider $A=V\left(y-x^{2}, z-x y\right) \subset \mathbb{A}^{3}$ the image of

$$
\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}, t \mapsto\left(t, t^{2}, t^{3}\right)
$$

Using homogeneous coordinates $\left[w: x: y: z\right.$] on \mathbb{P}^{3} we obtain by homogenizing both equations

$$
\left(w y-x^{2}, w z-x y\right)=\left(w y-x^{2}, w z-x y, y^{2}-x z\right) \cap(w, x) .
$$

The line $V(w, z) \cong \mathbb{P}^{1}$ is completely contained in the hyperplane at infinity $\mathbb{P}^{2}=V(w)$. It does not belong to the projective closure

$$
\bar{A}=V\left(w y-x^{2}, w z-x y, y^{2}-x z\right)
$$

of A in \mathbb{P}^{3}. \bar{A} intersects the hyperplane at infinity in a single point:

$$
\begin{aligned}
V\left(w y-x^{2}, w z-x y, y^{2}-x z, w\right) & =V\left(w, x^{2}, x y, y^{2}-x z\right) \\
& =V(w, x, y)=\{[0: 0: 0: 1]
\end{aligned}
$$

which is the limit of the points

$$
\left[1: t: t^{2}: t^{3}\right]=\left[\frac{1}{t^{3}}: \frac{1}{t^{2}}: \frac{1}{t}: 1\right] \text { for } t \rightarrow \infty
$$

Computation of the projective closure

Let $J \subset K\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
J^{h}=\left(\left\{f^{h} \mid f \in J\right\}\right) \subset K\left[x_{0}, \ldots, x_{n}\right]
$$

is called the homogenization of J.

Algorithm.

Input. Generators f_{1}, \ldots, f_{r} of an ideal $J \subset K\left[x_{1}, \ldots, x_{n}\right]$.
Output. Generators of $J^{h} \subset K\left[x_{0}, \ldots, x_{n}\right]$.

1. Choose a global monomial order $>$ in $K\left[x_{1}, \ldots, x_{n}\right]$ which refines the total degree, for example, $>_{\text {rlex }}$.
2. Compute a Gröbner basis $f_{1}, \ldots f_{r^{\prime}}$ of $\left(f_{1}, \ldots, f_{r}\right)$ with respect to this order.
3. Return $f_{1}^{h}, \ldots, f_{r^{\prime}}^{h}$.

Correctness

Example. The computation

$x^{2}-y$	-y	z	shows that $x^{2}-y, x y-z, y^{2}-x z$ is a
$x y-z$	x	-y	Gröbner basis. Thus $\left(y-x^{2}, z-x y\right)^{h}=$
$y^{2}-x z$	-1	x	($\left.x^{2}-w y, x y-w z, y^{2}-x z\right)$.

Proof. Let $f_{1}, \ldots, f_{r^{\prime}}$ be a Gröbner basis with respect to $>$ and $f \in J$ an arbitrary element. Consider the division expression

$$
f=g_{1} f_{1}+\ldots+g_{r^{\prime}} f_{r^{\prime}}
$$

for f. Since the lead terms $\operatorname{Lt}\left(g_{i} f_{i}\right)$ are disjoint and $>$ refines the total degree we have $d=\operatorname{deg} f \geq \operatorname{deg}\left(g_{i} f_{i}\right)=d_{i}$ and equality holds for at least one j. Thus

$$
f^{h}=x_{0}^{d-d_{0}} g_{0}^{h} f_{0}^{h}+\ldots+x_{0}^{d-d_{r^{\prime}}} g_{r^{\prime}}^{h} f_{r^{\prime}}^{h}
$$

lies in $\left(f_{1}^{h}, \ldots, f_{r^{\prime}}^{h}\right)$.

