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Overview

Today’s topics are Bézout’s theorem, intersection multiplicities of
plane curves and multiplicity of plane curves.

1. Rational functions and regular functions on projective varieties

2. Intersection multiplicities

3. Multiplicity of points on plane curves

4. Bézout’s theorem



Rational functions on projective varieties
Definition. Let X ⊂ Pn be a projective variety, i.e., an irreducible
algebraic set. Let I(X ) ⊂ S = K [x0, . . . , xn] denote its
homogeneous ideal and SX = S/ I(X ) its homogeneous coordinate
ring. Then

K (X ) = {f =
g

h
| g ∈ SX , h ∈ SX\{0} and deg g = deg h} ⊂ Q(SX )

is called the rational function field of X . Notice that since
deg f = deg g the fraction f = g

h defines a well-defined function

X \ V (h)→ K , p = (a0 : . . . : an) 7→ f (a)

g(a)
.

f ∈ K (X ) is defined at p ∈ X if f has a representative g
h with

h(p) 6= 0. We define the local ring of X at p by

OX ,p = {f ∈ K (X ) | f =
g

h
with h(p) 6= 0}.



Comparison with the affine notion
Proposition. Let Ui

∼= An be an affine chart which intersects X .
Then

K (X ∩ Ui ) ∼= K (X )

via dehomogenisation and homogenisation.
Proof. In case i = 0 we have

f (x0, . . . , xn) =
g(x0, . . . , xn)

h(x0, . . . , xn)
7→ f a =

g(1, x1, . . . , xn)

h(1, x1, . . . , xn)

and conversely

f =
g(x1, . . . , xn)

h(x1, . . . , xn)
7→ f h =

xdeg g+deg h
0 g(x1/x0, . . . , xn/x0)

xdeg g+deg h
0 h(x1/x0, . . . , xn/x0)

.

Hence (f h)a = f is clear, and (f a)h = f holds because a possible
common x0 factors in the nominator and the denominator
cancels.



Intersection multiplicities for plane curves
Let C = V (f ) and H = V (g) ⊂ P2 be two plane algebraic curves
without a common component. For p ∈ C ∩ H we define the
intersection multiplicity of C and H at p by

i(C ,H; p) = i(f , g ; p) = dimK OP2,p/(f , h)OP2,p,

i.e., as the K vector space dimension of the quotient of the local
ring by the ideal generated by f , g .
Example. Consider the plane affine curves defined by f = y ,
g = y − xn. The intersection number at the origin is

i(f , g ; o) = dimK K [x , y ](x ,y)/(f , g) = dimK K [x , y ](x ,y)/(y , xn)

= dimK (K [x , y ]/(y , xn))(x ,y) = dimK K [x , y ]/(y , xn) = n.



Further examples

Example 2. For f = y2 − x3 and g = x2 − y3 we obtain

OA2,o/(f , g) ∼= OA2,o/(y2 − x3, x2 − yx3)

∼= OA2,o/(y2 − x3, x2(1− yx))

∼= OA2,o/(y2 − x3, x2)

∼= OA2,o/(y2, x2) = K [x , y ]/(y2, x2)

Hence i(f , g ; o) = 4.



Further examples
Example 3. For f = y2 − x3 and g = y2 − 2x3 we obtain

OA2,o/(f , g) ∼= OA2,o/(y2 − x3, y2 − 2x3)

∼= OA2,o/(y2, x3)

Hence i(f , g ; o) = 6. This makes a lot of sense because if we
perturb g a little bit gt = y2 − 2(x − 2t)2(x − t), then V (f , gt)
has six intersection points which approach the origin o for t → 0.



Ordinary m-fold points and tangent lines
Definition. Let p ∈ V (f ) ⊂ P2 be a point. After a change of
coordinates we may assume that p corresponds to the origin
o ∈ A2 ∼= U0 ⊂ P2. Suppose

f a = fm + . . .+ fd with fj ∈ K [x , y ]j ,

i.e. with fj homogeneous of degree j and fm i not the zero
polynomial. Then we say that f has multiplicity m at p,

multp(f ) = m.

If fm factors into linear forms `k :

fm =
m∏

k=1

`k .

We call the lines Lk = V (`k) the tangent lines of V (f ) at p. If
they are pairwise distinct, we call p an ordinary m-fold point of
V (f ).



Double points and smooth points
Example. The curve V (y2−x2−x3)
has an ordinary double point at o with
tangent lines L1 = V (y−x) and L2 =
V (y + x).

V (y2 − x3) is a curve with a non-
ordinary double point.

Remark. Suppose K = C. If
multp(f ) = 1, then locally in the eu-
clidean topology of A2(C) = C2 the
zero loci coincides with the graph of
an holomorphic function by the im-
plicit function theorem.

Definition. If multp(f ) = 1, then p ∈ C = V (f ) is called a
smooth point of C . Otherwise p is called a singular point of C .



Bézout’s theorem for plane curves
Theorem. Let C = V (f ) and H = V (g) ⊂ P2 be two plane
curves of degree d and e. Counted with multiplicities C and D
intersect in precisely d · e points:∑

p∈C∩H
i(C ,H; p) = d · e.

Remark. If p /∈ C ∩ H, then i(C ,H; p) = 0 because either f or g
gives a unit in OP2,p.

If i(C ,H; p) = 1, then we say C and H intersect transversally at
p. In that case both C and H are smooth at p and have different
tangent lines, because dimK [x , y ]1 = 2.



Examples
Example 2. For f = y2− x3 and g = x2− y3 we have intersection
multiplicity 4 at o ∈ A2 ∼= U2 = {z 6= 0} ⊂ P2. One further
intersection point is p = (1 : 1 : 1) ∈ U2. So there should be

4 = 3 · 3− 4− 1

further intersection points. In-
deed these are the points with
coordinates (ζ2 : ζ3 : 1), where
ζ is any of the four non-trivial
fifth roots unity in K = C.

Example 3. For f = y2 − x3 and g = y2 − 2x3 we obtain
intersection multiplicity 6 at o ∈ A2 ⊂ P2 . So we are missing 3
intersection points. They lie on the line at infinity: In the chart
U1 = {y 6= 0} we have the equations z − x3, z − 2x3, and the
intersection multiplicity at p = (0 : 1 : 0) is 3.



A lower bound on the intersection multiplicity

Theorem. Let f , g ∈ K [x , y ] be polynomials without a common
factor which vanish at the origin o ∈ A2. Then

i(f , g ; o) ≥ multo(f ) multo(g)

and equality holds if and only if V (f ) and V (g) have no common
tangent line at o.

We will prove this with a Gröber basis computation in local rings in
one of the next lectures.



An application
Consider the plane curve C defined by
f = −3 x5 − 2 x4y − 3 x3y2 + x y4 + 3 y5 + 6 x4 + 7 x3y +
3 x2y2 − 2 x y3 − 6 y4 − 3 x3 − 5 x2y + x y2 + 3 y3.

V (f ) has a triple point at the origin and double points at the
points with coordinates (0, 1), (1, 0), (1, 1).



The application continued
Consider now the pencil of conics through these four points

Dt = V (t(x2 − x) + y2 − y).

The curve Dt intersects C with intersection multiplicity 3 at the
origin and intersection multiplicity 2 at the double points.
Thus by Bézout

2 · 5− 3− 2− 2− 2 = 1,

there remains one moving intersection point p(t). Computing the
coordinates of this point gives a rational parametrization of C .
The final result is p(t) = (x(t), y(t)) with

x(t) =
9 t5 − 3 t4 − 21 t3 + 11 t2 + 10 t − 6

9 t5 + t4 − 6 t3 + 3 t2 − 14 t + 9

and

y(t) =
−3 t5 − 8 t4 + 17 t3 + 9 t2 − 24 t + 9

9 t5 + t4 − 6 t3 + 3 t2 − 14 t + 9
.

.



A more general version of Bézout’s theorem

Theorem. Let X ⊂ Pn be a projective variety and H = V (g) a
hypersurface of degree e which does not contain X . Let Z1, . . . ,Zr

be the irreducible components of X ∩ H. Then

degX · degH =
r∑

i=1

i(X ,H;Zi ) degZi .

We will see how to define the intersection multiplicty
i(X ,H;Zi ) of X and H along Zi in the course of the proof.

The proof is build upon the computation of the Hilbert polynomial
of the S/J for J = I(X ) + (g) in two ways.



First computation of pS/J(t)
Since X is a variety, I(X ) is a prime ideal and since g /∈ I(X ), it is
a non-zero-divisor in SX = S/ I(X ). Hence

0 S/Joo SXoo SX (−e)
goo 0oo

is a short exact sequence. Since

pX (t) = pSX (t) = degX
tr

r !
+ lower terms

where r = dimX , we obtain

pS/J(t) = pX (t)− pX (t − e)

= degX
retr−1

r !
+ lower terms

= degX degH
tr−1

(r − 1)!
+ lower terms.

Hence dimV (J) = r − 1 and deg J = degX · degH.



Associated primes of graded modules
For the second computation we consider the filtration of the
S-module M = S/J by quotients of prime ideals. Since M is
graded all associated primes are graded as well.

We start by proving that a non-zero graded module M has at least
one homogeneous associated prime.
Let m ∈ Md be a non-zero homogeneous element of degree d .
Then the ideal ann(m) is homogeneous as well, and the map

S(−d)→ M, f 7→ fm

induces an inclusion S/ ann(m)(−d) ↪→ M. A maximal element in
the set

M = {ann(m) | m ∈ M \ {0} | m is homogeneous}
is a prime ideal. Since S is noetherian M contains a maximal
element. Hence M has a homogeneous associated prime.



Associated primes of graded modules
Proposition. Let M be a finitely generated graded S-module.
Then M has a filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ MN = M

with quotients
Mi/Mi−1 ∼= S/pi (−di )

for homogeneous prime ideals pi and integers di .

Proof. We take M1 = Sm1 for m1 ∈ Md1 is a homogeneous
element whose annihilator is a prime p1. If Mk−1 ⊂ M is already
constructed and Mk−1 6= M, we consider an associated prime
pk = ann(mk) of an homogeneous elemet mk ∈ M/Mk−1 and take
Mk as the preimage of S/pk(−dk) ↪→ M/Mk−1 in M. This process
stops with an MN = M since M is noetherian.
Corollary. The associated primes of a finitely generated graded
S-module are homogeneous.
Proof. Ass(M) ⊂ {p1, . . . , pN}.



Second computation of pS/J(t)
Consider M = S/J and a filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ MN = M

with quotients
Mi/Mi−1 ∼= S/pi (−di )

for homogeneous prime ideals pi and integers di . The Hilbert
functions and Hilbert polynomials are additive in short exact
sequences:
Proposition. If

0→ M ′ → M → M ′′ → 0

is a short exact sequence of graded S-modules, then

hM = hM′ + hM′′ .

Hence we obtain

pM(t) =
N∑
j=1

pS/pk (t − dk).



Proof of Bézout’s theorem

Comparing both formulas we obtain dimV (pk) ≤ r − 1 for all pk
since pM(t) has degree r − 1. Only those with equality contribute
to the leading coefficient. The minimal associated primes
correspond to the irreducible components Zj of X ∩ H.
Thus

degX · degH =
∑

Zj with dimZj=r−1
i(X ,H;Zj) degZj ,

if we define
i(X ,H;Zj) = |{k | pk = I(Zj)}|.

Actually dimZj = r − 1 holds for every component of X ∩ H. This
follows from Krull’s principal ideal theorem.


