Algebraic Geometry, Lecture 16

Frank-Olaf Schreyer

Saarland University, Perugia 2021

Overview

1. Local rings and the Lemma of Nakayama,
2. Completions and the ring of formal power series,
3. Grauert division and the Weiertraß preparation theorem,
4. A lower bound on intersection multiplicities.

Local rings

Definition. A local ring is a ring R which has a unique maximal ideal \mathfrak{m}. The field $k=R / \mathfrak{m}$ is called the residue field of the local ring. We write (R, \mathfrak{m}) or even (R, \mathfrak{m}, k) if we want to specify the notation for the maximal ideal and residue field of a local ring.

Examples

1. Let R be a ring and \mathfrak{p} a prime ideal. Then the localization

$$
R_{\mathfrak{p}}=\left\{\left.\frac{g}{h} \right\rvert\, h \notin \mathfrak{p}\right\}
$$

is a local ring with maximal ideal

$$
\mathfrak{m}=\mathfrak{p} R_{\mathfrak{p}}=\left\{\left.\frac{g}{h} \right\rvert\, g \in \mathfrak{p}, h \notin \mathfrak{p}\right\}
$$

and residue field

$$
R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}} \cong Q(R / \mathfrak{p})
$$

the quotient field of the integral domain R / \mathfrak{p}.
2. $\mathcal{O}_{\mathbb{A}^{n}, o}=K\left[x_{1}, \ldots, x_{n}\right]_{\left(x_{1}, \ldots, x_{n}\right)}$ has a residue field isomorphic to K.
In general the residue field R / \mathfrak{m} is not a subring of R.

Lemma of Nakayama

A local noetherian ring (R, \mathfrak{m}) is easier to handle than general rings since every element $f \notin \mathfrak{m}$ is a unit in R
Lemma. Let (R, \mathfrak{m}) be a local noetherian ring and let $N \subset M$ be a submodule of a finitely generated R-module M. Then

$$
N+\mathfrak{m} M=M \text { iff } N=M
$$

Proof. By replacing M by M / N we reduce to the case $N=0$. So we have to prove $\mathfrak{m} M=M \Longrightarrow M=0$. The other direction is trivial. Let m_{1}, \ldots, m_{r} be generators of M. Since $\mathfrak{m} M=M$ we find expressions

$$
m_{i}=\sum_{j=1}^{r} g_{i j} m_{j} \text { with } g_{i j} \in \mathfrak{m}
$$

In matrix notation

$$
(E-B)\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{r}
\end{array}\right)=0 \text { with } B=\left(g_{i j}\right)
$$

Proof of Nakayama's Lemma continued

Multiplying the matrix equation with the cofactor matrix of $E-B$ yields $\operatorname{det}(E-B) m_{i}=0$ for all i. Since $\operatorname{det}(E-B) \equiv 1 \bmod \mathfrak{m}$ the determinant is a unit. Hence $m_{i}=0$ for all i and $M=0$.
Corollary. Let (R, \mathfrak{m}, k) be a local ring and let $m_{1}, \ldots, m_{r} \in M$ be elements of a finitely generated R-module M. Then m_{1}, \ldots, m_{r} generate M iff $\bar{m}_{1}, \ldots, \bar{m}_{r}$ span the k-vector space $M / \mathfrak{m} M$.
Proof. We consider the submodule $N=R m_{1}+\ldots+R m_{r} \subset M$.

$$
N+\mathfrak{m} M=M
$$

holds iff $\bar{m}_{1}, \ldots, \bar{m}_{r} \in M / \mathfrak{m} M$ generate $M / \mathfrak{m} M$. Since $M / \mathfrak{m} M$ is a $k=R / \mathfrak{m}$-vector space, the result follows. In particular, any minimal set of generators has precisely $\operatorname{dim}_{k} M / \mathfrak{m} M$ elements.

Krull' intersection theorem

Theorem. Let (R, \mathfrak{m}) be noetherian local ring. Then

$$
\bigcap_{i=1}^{\infty} \mathfrak{m}^{i}=(0)
$$

Proof. Consider the subring

$$
S=R[\mathfrak{m} t]=R \oplus \mathfrak{m} t \oplus \mathfrak{m}^{2} t^{2} \oplus \ldots \subset R[t]
$$

Since \mathfrak{m} is finitely generated ideal in R, S is a finitely generated R-algebra, hence noetherian as well. Consider now $J=\bigcap_{i=1}^{\infty} \mathfrak{m}^{i}$ and the ideal

$$
J \oplus J t \oplus J t^{2} \oplus \ldots \subset S
$$

is generated by finitely many homogeneous elements. Let r be the maximal degree of a generator. Then

$$
\mathfrak{m} t J t^{r}=J t^{r+1}
$$

Thus $\mathfrak{m J}=J$ and $J=0$ follows from Nakayma's Lemma.

Formal power series

We want to compute in $\mathcal{O}_{\mathbb{A}^{n}, o}=K\left[x_{1}, \ldots, x_{n}\right]_{\left(x_{1}, \ldots, x_{n}\right)}$. As a first step we regard $\mathcal{O}_{\mathbb{A}^{n}, o}$ as a subring of the formal power series ring

$$
K\left[\left[x_{1}, \ldots, x_{n}\right]\right]=\left\{f=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} x^{\alpha}\right\} .
$$

The product $f=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} x^{\alpha}$ of two elements $g=\sum_{\beta \in \mathbb{N}^{n}} g_{\beta} x^{\beta}$ and $h=\sum_{\gamma \in \mathbb{N}^{n}} g_{\gamma} x^{\gamma} \in K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is well-defined since the sum

$$
f_{\alpha}=\sum_{\beta+\gamma=\alpha} g_{\beta} h_{\gamma}
$$

is finite.
Every fraction $f \in \mathcal{O}_{\mathbb{A}^{n}, o}$ may be written in the form $f=\frac{g}{1-h}$ with $h \in\left(x_{1}, \ldots, x_{n}\right)$. We embed

$$
\mathcal{O}_{\mathbb{A}^{n}, o} \hookrightarrow K\left[\left[x_{1}, \ldots, x_{n}\right]\right], \frac{g}{1-h} \mapsto g \sum_{k=0}^{\infty} h^{k}
$$

To make sense out of the infinite sum $\sum_{k=0}^{\infty} h^{k} \in K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ we need a bit of topology.

The \mathfrak{m}-adic topology

Definition. Let R be a ring and $\mathfrak{m} \subset R$ an ideal. We define a system of open neighbarhoods of $0 \in R$ as the subsets $\mathfrak{m}^{k} \subset R$. A sequence of $\left(a_{n}\right)$ of elements of R converges in the \mathfrak{m}-adic topology to an element $a \in R$ if
$\forall k \in \mathbb{N} \exists n_{0} \in \mathbb{N}$ such that $a_{n}-a \in \mathfrak{m}^{k} \forall n \geq n_{0}$ holds.
A sequence $\left(a_{n}\right)$ is a Cauchy sequence with respect to the \mathfrak{m}-adic topology if
$\forall k \in \mathbb{N} \exists n_{0} \in \mathbb{N}$ such that $a_{m}-a_{n} \in \mathfrak{m}^{k} \forall m, n \geq n_{0}$ holds.
R is Hausdorff with respect to the \mathfrak{m}-adic topology if $\cap_{k=1}^{\infty} \mathfrak{m}^{k}=0 . R$ is complete with respect to the \mathfrak{m}-adic topology, if R is Hausdorff and every Cauchy sequence converges.

Completions

Definition. For a ring R and the \mathfrak{m}-adic topology the quotient ring

$$
\hat{R}=\{\text { Cauchy sequence }\} /\{\text { zero sequences }\}
$$

is called the \mathfrak{m}-adic completion. This is a ring since the set of zero-sequences is an ideal in the term wise defined ring of Cauchy sequences. The map

$$
R \rightarrow \hat{R}, a \mapsto[\text { constant sequence }(a)]
$$

is a ring homomorphism, which is injective if and only if $\bigcap_{k=1}^{\infty} \mathfrak{m}^{k}=0 . \hat{R}$ is always complete with respect to the $\hat{\mathfrak{m}}=\mathfrak{m} \hat{R}$-adic topolology.
Thus we may regard $K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ as the completion of the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ with respect to the $\left(x_{1}, \ldots, x_{n}\right)$-adic topology and

$$
f=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} x^{\alpha}=\lim _{d \rightarrow \infty} \sum_{\alpha:|\alpha| \leq d} f_{\alpha} x^{\alpha} .
$$

$R=K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is a local ring. Its maximal ideal is $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. Indeed every element $u \notin \mathfrak{m}$ has the form $u=\lambda(1-h)$ with $h \in \mathfrak{m}$ and $\lambda \in K^{*}$ and

$$
u^{-1}=\lambda^{-1} \sum_{k=0}^{\infty} h^{k}
$$

since this series converges by the following proposition.
Proposition. Let $\left(h_{k}\right)$ be a sequence of power series. Then $\sum_{k=0}^{\infty} h_{k}$ converges iff the sequence $\left(h_{k}\right)$ is a \mathfrak{m}-adic zero sequence.
Thus every $u \notin \mathfrak{m}$ is a unit.
Formal power series cannot be evaluated at points $p \neq 0$. For the origin the value $f(0) \in K \cong K\left[\left[x_{1}, \ldots, x_{n}\right]\right] / \mathfrak{m}$ is given by the constant term.

Lead terms of power series

Definition. Let $>$ be a local monomial order on $K\left[x_{1}, \ldots, x_{n}\right]$,
i.e., $1>x_{i} \forall i$. The lead term of a non-zero power series
$f=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} \alpha^{\alpha}$ with respect to $>$ is the term

$$
\operatorname{Lt}(f)=f_{\beta} x^{\beta}
$$

where $x^{\beta}=\max \left\{x^{\alpha} \mid f_{\alpha} \neq 0\right\}$. This well defined because x^{β} is one of the finitely many generators of the monomial ideal $\left(\left\{x^{\alpha} \mid f_{\alpha} \neq 0\right\}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]$ since $>$ is a local monomial order. We set $L t(0)=0$.

Grauert division

Let $P=K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ denote the power series ring.
Theorem. Let $>$ be a local monomial order, and let $f_{1}, \ldots, f_{r} \in P$ be non-zero power series. For every $f \in P$ there exists unique power series $g_{1}, \ldots, g_{r} \in P$ and a remainder $h \in P$ such that the following holds:

1) $f=g_{1} f_{1}+\ldots+g_{r} f_{r}+h$ and

2a) No term of $g_{i} L t\left(f_{i}\right)$ is divisible by $\operatorname{Lt}\left(f_{j}\right)$ for for $j<i$.
2b) No term of h is divisible by an $\operatorname{Lt}\left(f_{i}\right)$.
Proof. Uniqueness follows as before because all non-zero lead terms $\operatorname{Lt}\left(g_{i} f_{i}\right)=\operatorname{Lt}\left(g_{i}\right) \operatorname{Lt}\left(f_{i}\right)$ and $\operatorname{Lt}(h)$ have different monomial parts. For the existence, we note that the result is trivially true in case f_{1}, \ldots, f_{r} are monomials. Thus there exists a unique expression

$$
f=f^{(0)}=g_{1}^{(0)} \operatorname{Lt}\left(f_{1}\right)+\ldots+g_{r}^{(0)} \operatorname{Lt}\left(f_{r}\right)+h^{(0)}
$$

satisfying condition 2 a) and 2 b).

Proof of the Grauert division theorem continued

Define

$$
f^{(1)}=f^{(0)}-\left(g_{1}^{(0)} f_{1}+\ldots+g_{r}^{(0)} f_{r}+h^{(0)}\right)
$$

and write similarly

$$
f^{(1)}=g_{1}^{(1)} \operatorname{Lt}\left(f_{1}\right)+\ldots+g_{r}^{(1)} \operatorname{Lt}\left(f_{r}\right)+h^{(1)}
$$

Iterating we obtain sequences $\left(f^{(k)}\right),\left(g_{1}^{(k)}\right), \ldots,\left(g_{r}^{(k)}\right)$ and $\left(h^{(k)}\right)$ of power series. Define

$$
g_{i}=\sum_{k=0}^{\infty} g_{i}^{(k)} \text { and } h=\sum_{k=0}^{\infty} h^{(k)}
$$

and the existence follows if we can prove that the sequences are zero sequences in the \mathfrak{m}-adic topology. It suffices to proof that $\left(f^{(k)}\right)$ is a \mathfrak{m}-adic zero sequence.

Proof of the Grauert division theorem continued

Clearly we have

$$
\operatorname{Lt}\left(f^{(0}\right)>\operatorname{Lt}\left(f^{(1)}\right)>\ldots>\operatorname{Lt}\left(f^{(k)}\right)>\ldots
$$

This does not implies that $f^{(k)}$ is a \mathfrak{m}-adic zero sequence. However in case that $>$ is a weight order $>_{w}$ with strictly negative weights $\left(w_{1}, \ldots, w_{n}\right)$ then $\lim _{k \rightarrow \infty} \operatorname{Lt}\left(f^{(k)}\right)=0$ implies $\lim _{k \rightarrow \infty} f^{(k)}=0$.
To complete the proof we observe that the procedure only depends on knowing the lead terms $\operatorname{Lt}\left(f_{i}\right)$ and use the following fact:
Claim. There exists a weight order $>_{w}$ with strictly negative weights such $\mathrm{Lt}_{>_{w}}\left(f_{i}\right)=\operatorname{Lt} \mathrm{t}_{>}\left(f_{i}\right)$ coincides for the finitely many power series f_{1}, \ldots, f_{r}.
We leave the proof of this claim as an exercise.
Remark. In case of $K=\mathbb{C}$ perturbing the local order to a weight order is also a key to the Theorem of Grauert, which says that if $f_{1}, \ldots, f_{r} \in \mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and f are convergent power series then g_{1}, \ldots, g_{r} and h are convergent series as well.

Lead ideal and Gröbner basis in case of $K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ Definition. Let $I \subset K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be an ideal. Then

$$
\operatorname{Lt}(I)=(\{\operatorname{Lt}(f) \mid f \in I\})
$$

is called the lead ideal of $I . \operatorname{Lt}(I)$ is finitely generated, since it is a monomial ideal.
Corollary. If $f_{1}, \ldots, f_{r} \in I \subset K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ are elements such that $\left(\operatorname{Lt}\left(f_{1}\right), \ldots, \operatorname{Lt}\left(f_{r}\right)\right)=\operatorname{Lt}(I)$ then $I=\left(f_{1}, \ldots, f_{r}\right)$. In particular $K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is noetherian.
Corollary. The monomials $x^{\alpha} \notin \operatorname{Lt}(I)$ represent a linearly independent elements of $K\left[\left[x_{1}, \ldots, x_{n}\right]\right] / I$, which are dense in the \mathfrak{m}-adic topology. If $\operatorname{dim}_{K} K\left[\left[x_{1}, \ldots, x_{n}\right]\right] / I<\infty$ then these elements represent a basis.
The definition of a Gröbner basis and a version of Buchberger's criterium work as before.

The Weiserstraß preparation theorem

Definition. A power series $f \in K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is called x_{1}-general, if $f\left(x_{1}, 0, \ldots, 0\right) \in K\left[\left[x_{1}\right]\right]$ is non-zero.
Example. Let $>$ be a local monomial order. If $f \in K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is a power series with $\operatorname{Lt}(f)=a x_{1}^{m}$, then f is x_{1}-general.
Conversely, for a x_{1}-general power series f there exists a local monomial order such that $\operatorname{Lt}(f)=a x_{1}^{m}$.
Theorem. Let $f \in K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be a x_{1}-general power series. Then there exists a unit $u \in K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and a monic polynomial $p \in K\left[\left[x_{2}, \ldots, x_{n}\right]\right]\left[x_{1}\right] \subset K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ such that

$$
f=u p .
$$

Remark. The original Weierstraß preparation theorem is the case when $K=\mathbb{C}$ and when f is a convergent power series. In that case u and the coefficients of p are convergent power series as well.

Proof of the Weiserstraß preparation theorem

Proof. Let $>$ be a local monomial order such that $\operatorname{Lt}(f)=a x_{1}^{m}$ Grauert division of x_{1}^{m} by f yields an expression

$$
x_{1}^{m}=g f+r
$$

where $r \in K\left[\left[x_{2}, \ldots, x_{n}\right]\right]\left[x_{1}\right]$ is a polynomial of degree $<m$ in x_{1}. Since $x_{1}^{m}=\operatorname{Lt}(g f)=\operatorname{Lt}(g) \operatorname{Lt}(f)$ we have $\operatorname{Lt}(g)=a^{-1} \in K$. Hence g is a unit in $K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and

$$
f=u\left(x_{1}^{m}-r\right) \quad \text { with } u=g^{-1}
$$

is the desired expression.
Corollary. Let $I=(f) \subsetneq K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ a non-zero ideal. Then after a linear change of coordinates,

$$
K\left[\left[x_{2}, \ldots, x_{n}\right]\right] \subset K\left[\left[x_{1}, \ldots, x_{n}\right]\right] /(f)
$$

is an integral ring extension.
Corollary. $\operatorname{dim} K\left[\left[x_{1}, \ldots, x_{n}\right]\right]=n$.

A lower bound on intersection multiplicities

Theorem. Let $f, g \in K[x, y]$ be polynomials without a common factor which vanish at the origin $o \in \mathbb{A}^{2}$. Then

$$
i(f, g ; o) \geq \operatorname{mult}_{o}(f) \text { mult }_{o}(g)
$$

and equality holds if and only if $V(f)$ and $V(g)$ have no common tangent line at o.
Proof. We choose the local monomial order defined by

$$
\begin{aligned}
x^{\alpha}>x^{\beta} \Leftrightarrow & \operatorname{deg} x^{\alpha}<\operatorname{deg} x^{\beta} \text { or } \\
& \operatorname{deg} x^{\alpha}=\operatorname{deg} x^{\beta} \text { and } x^{\alpha}>_{\text {rlex }} x^{\beta} .
\end{aligned}
$$

Let $\operatorname{mult}_{o}(f)=m \leq$ mult $_{o}(g)=n$. So $f=f_{m}+\ldots+f_{d}$ and $g=g_{n}+\ldots+g_{e}$. We first assume that $V(f)$ and $V(g)$ have no common factor. Then after a linear change of coordinates and adjusting of the leading coefficient we may assume that $\operatorname{Lt}(f)=x^{m}$ and after we replace g by an $g_{1}=\lambda(g-h f)$ with $\lambda \in K^{*}$ that $\operatorname{Lt}\left(g_{1}\right)=x^{a_{1}} y^{b_{1}}$ with $a_{1}+b_{1}=n$ and $a_{1}<m$.

Taking the remainder of $x^{n-a_{1}} g-y^{b_{1}} f$ leads to a new Gröbner basis element g_{2} with lead term $\operatorname{Lt}\left(g_{2}\right)=x^{a_{2}} y^{b_{2}}$ with $a_{2}<a_{1}$ whose degree is $a_{2}+b_{2} \geq m+b_{1}$.

After finitely many steps our stair must reach the y-axes with a monomial $y^{b_{r}}$.

If f_{m} and g_{n} have no common factor then the new lead terms always have degree $a_{k+1}+b_{k+1}=a_{k-1}+b_{k}$, i.e., lie on the corresponding diagonal. An elementary argument shows that the area under the stair has size $m \cdot n$.

Thus $i(f, g ; o)=m \cdot n$ in this case.

An elementary argument shows that the area under the stair has size $m \cdot n$.

Thus $i(f, g ; o)=m \cdot n$ in this case.

On the other hand if f_{m} and g_{n} have a common factor then the stair for f_{m} and g_{n} ends before it reaches the y-axes. Hence the stair for f and g which reaches the y-axes has a strictly larger area.

