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Mora’s division theorem
The proof of Grauert’s division theorem does not yield an
algorithm because the iteration usually does not terminate. For
ideals of K [x1, . . . , xn](x1,...,xn) ⊂ K [[x1, . . . , xn]] their exists an
algorithm to compute a Gröbner basis. Without loss of generality
we may assume that an ideal I ⊂ K [x1, . . . , xn](x1,...,xn) is generated
elements of K [x1, . . . , xn], since the denominators are units in
K [x1, . . . , xn](x1,...,xn).
Theorem. Let > be a local monomial order and let
f1, . . . , fr ∈ K [x1, . . . , xn]. For every further element
g ∈ K [x1, . . . , xn] there exists an element u ∈ K [x1, . . . , xn] with
u(0) = 1, elements g1, . . . , gr ∈ K [x1, . . . , xn] and a remainder
h ∈ K [x1, . . . , xn] such that the following holds:

1) ug = g1f1 + . . . + gr fr + h.
2a) Lt(g) ≥ Lt(gi fi ) whenever both sides are non-zero.
2b) If h 6= 0, then Lt(h) is not divisible by any Lt(fi ).



Mora’s algorithm
Definition. Let > be a monomial order. The ecart of a non-zero
element f ∈ K [x1, . . . , xn] is

ecart(f ) = deg f − deg Lt(f ).

Algorithm.
Input. A local monomial order >, polynomials f1, . . . , fr and g
Output. A remainder h of a Mora division of g by f1, . . . , fr .

1. Set h := g and D := {f1, . . . , fr}.
2. while (h 6= 0 and D(h) := {f ∈ D | Lt(f ) divides Lt(h)} 6= ∅)

do
I Choose f ∈ D(h) with ecart(f ) minimal.
I if ecart(f ) > ecart(h) then D := D ∪ {f }.
I h := h − Lt(h)

Lt(f ) f .

3. return h.



Termination of Mora’s algorithm
We write hk and Dk for the value of h and D after k iterations of
the while loop. Let x0 be a further variable. After k iterations the
while loop continues iff Lt(hk) ∈ ({Lt(f ) | f ∈ Dk} ⊂ K [x1, . . . , xn]
and hk is added to Dk iff

x
ecart(hk )
0 Lt(hk) /∈ Ik := ({xecart(f )0 Lt(f ) | f ∈ Dk}) ⊂ K [x0, x1, . . . , xn].

Since the chain of monomial ideals

I0 ⊂ I1 ⊂ . . . ⊂ Ik ⊂ . . . ⊂ K [x0, . . . , xn]

becomes stationary, there exists an N such that

DN = DN+1 = DN+2 = . . .

no longer increases.
After this point we homogenize hN and the elements of DN with
x0.



Termination of Mora’s algorithm continued

f h = xdeg f0 f (x1/x0, . . . , xn/x0)

has lead term Lt(f h) = x
ecart(f )
0 Lt(f ) with respect to the

monomial order >g on K [x0, . . . , xn] defined by

xa0x
α >g xb0 x

β ⇔ deg xa0x
α > deg xb0 x

β or

deg xa0x
α = deg xb0 x

β and xα > xβ.

Since DN does not change after this point, we get a sequence

(hhk)k≥N

of homogeneous elements of the same degree with lead terms

Lt(hhN) = x
ecart(hN)
0 Lt(hN) >g Lt(hhN+1) >g . . . .

After finitely many further steps the algorithm stops with an
hM = 0 or an hM with Lt(hM) /∈ ({Lt(f ) | f ∈ DN}), since there
are only finitely many monomials in K [x0, . . . , xn] of the same
degree.



Correctness of the output.
Recursively, starting with u0 = 1, g

(0)
i = 0 and h0 = g suppose

that we already have expressions

u`g = g
(`)
1 f1 + . . . + g

(`)
r fr + h` with u`(0) = 1

for ` = 0, . . . , k − 1. Then, if the test condition for the k-th
iteration of the while loop is fulfilled, choose a polynomial f = f (k)

as in the algorithm and set

hk = hk−1 −mk f
(k) where mk =

Lt(hk−1)

Lt(f (k))
.

There are two possibilities

(a) f (k) is one of f1, . . . , fr or
(b) f (k) is one of h1, . . . , hk−1.

Thus substituting hk−1 = hk + mk f
(k) into the expression for

uk−1g we obtain the desired expression for ukg with

(a) uk = uk−1 and g
(k)
j = g

(k−1)
j + mk if f (k) = fj or

(b) uk = uk−1 + mku` for some ` and g
(k)
j = g

(k−1)
j + mkg

(`)
j ∀j



Correctness of the output continued
In both cases we have uk(0) = uk−1(0) = 1. In case (b) this
follows from

Lt(h`) > Lt(hk) = Lt(mkh`) = mk Lt(h`).

Hence 1 > mk and uk(0) = uk−1(0) + 0u`(0) = 1.

The final expression satisfies condition 2a) because the lead terms
of the hk decrease in each round of the while loop. Finally,
condition 2b) is satisfied due to the stopping condition of the while
loop.
Example. Consider g = x and f1 = x − x2 in K [x ]. Mora division
proceeds as follows:

h0 = x ,D0 = {x − x2}, 1 · g = 0 · f1 + x ,

f (1) = x − x2,m1 = 1,D1 = {x − x2, x}, 1 · g = 1 · f1 + x2,

f (2) = x ,m2 = x ,D2 = D1, (1− x) · g = 1 · f1 + 0.



Differentiation
Let K be an arbitrary field. Differentiation in K [x ] can be defined
without analysis.
Definition. For f =

∑
n∈N anx

n we define the derivative

f ′ =
∑
n∈N

nanx
n−1.

The usual differentiation rules hold with one exception if
charK = p > 0:
Proposition. Let f , g ∈ K [x ] be polynomials. Then

1) (f + g)′ = f ′ + g ′,
2) (fg)′ = f ′g + fg ′,
3) if charK = 0, then f ′ = 0 iff f = a0 is a constant polynomial,
4) if charK = p > 0, then f ′ = 0 ⇐⇒ f ∈ K [xp].

Proof. 1) is clear. By 1) it suffices to prove 2) for monomials:

(xn+m)′ = (n + m)xn+m−1 = nxn−1xm + mxnxm−1

= (xn)′xm + xn(xm)′.



Differentiation and gradient
3) and 4) are clear from the formula because (xnp)′ = npxnp−1 = 0
in case of charK = p > 0, while (xm)′ = mxm−1 6= 0 if p 6 |m.
Remark. In case of a finite field or an algebraically closed field of
charK = p we have

f ∈ K [xp] ⇐⇒ f = gp for some g ∈ K [x ]

because the map K → K , a 7→ ap is surjective.

For multivariate polynomials f ∈ K [x1, . . . , xn] partial derivatives
∂f
∂xi

are defined analogously. The gradient

(
∂f

∂x1
, . . . ,

∂f

∂xn
)

of f is identically zero in charK = p iff f ∈ K [xp1 , . . . , x
p
n ].



Differential and tangent space
Definition. Let f ∈ K [x1, . . . , xn]. We define the differential of f
at a point p = (a1, . . . , an) ∈ An as

dpf =
n∑

i=0

∂f

∂xi
(p)(xi − ai ).

In other words dpf is the linear part in the Taylor expansion

f = f (p) + dpf + terms of degree ≥ 2 in the x − ai

of f .
For a hypersurface H ⊂ An with I(H) = (f ) we define the
tangent space of H at a point p ∈ H as the linear subspace

TpH = V (dpf ).



The tangent space of an algebraic set
Definition. Let A ⊂ An be an algebraic set. The tangent space of
A at a point p ∈ A is defined by

Tp(A) = V ({dpf | f ∈ I(A)}).
The local dimension of A at p is defined as

dimp A = max{dimC |C is an irreducible component

of A passing through p}
A is smooth at p if dimTpA = dimp A.

Proposition. Let A ⊂ An be an algebraic set and let
f1, . . . , fr ∈ I(A) polynomials vanishing on A. Then

n − rank(
∂fi
∂xj

(p)) ≥ dimp A

and A is smooth at p if equality holds.



Implicit function theorem
Remark. If i1 < . . . < ik , j1 < . . . < jk correspond to the indices
of a maximal size non-vanishing minor of the jacobian matrix
( ∂fi∂xj

(p)), then in case of K = R or C the implicit function theorem

says that one can solve the system of equations fi1 = . . . = fik = 0
locally:

One can express xj1 , . . . , xjk as differentiable or holomorphic
functions of the x ′j s with j /∈ {j1, . . . , jk} respectively, and every
solution of fi1 = . . . = fik = 0 near p arises as a point on the
corresponding graph.



Proof of the Jacobian criterium

Proof. We have

n − rank(
∂fi
∂xj

(p)) ≥ dimTpA ≥ dimp A

The first inequality is true by the definition of TpA. It could be
strict since we did not assumed that f1, . . . , fr generate I(A). The
second inequality holds in a much more general setting, which we
state below.



Krull’s principal ideal theorem
Theorem. Let R be a noetherian ring. Every minimal prime p of a
principal ideal (f ) ⊂ R has height

height(p) ≤ 1.

Equality holds if f is a non-zero divisor. More generally, if p is a
minimal prime of an ideal (f1, . . . , fc) ⊂ R generated by c
elements, then

height(p) ≤ c .

Corollary. Let (R,m, k) be a noetherian local ring. Then

dimk m/m2 ≥ dimR.

Proof. By Nakayama’s Lemma m is generated by c = dimk m/m2

elements. Since m is the unique maximal ideal of R we obtain

dimR = height(m) ≤ c

from the principal ideal theorem.



Regular local rings
Definition. A regular local ring is a noetherian local ring
(R,m, k) with dimk m/m2 = dimR.
Proposition. A point p ∈ A of an algebraic set A ⊂ An is a
smooth point of A iff OA,p is a regular local ring.
Proof. Since n −mA,p/m

2
A,p is the codimension of Tp(A) we have

dimTpA = dimAp iff OA,p is a regular local ring.

The K -vector space mA,p/m
2
A,p can be interpreted as the vector

space of linear functions on Tp(A) regarded as a K -vector space
with origin p. Thus the dual vector space (mA,p/m

2
A,p)∗ ∼= Tp(A)

is called the Zariski tangent space of A at p. Points p ∈ A where
A is not smooth are called singular points of A.

Example. Let H ⊂ An be a hypersurface and (f ) = I(A) be its
ideal in K [x1, . . . , xn]. Then the set of singular points is

Hsing = V (f ,
∂f

∂x1
, . . . ,

∂f

∂xn
).



Singular points

Notice that (f ) = (f , ∂f∂x1 , . . . ,
∂f
∂xn

) holds iff ∂f
∂x1

= 0, . . . , ∂f∂xn = 0

since the partial derivative ∂f
∂xi

has smaller degree in xi than f .

Thus (f ) = (f , ∂f∂x1 , . . . ,
∂f
∂xn

) implies that charK = p and

f ∈ K [xp1 , . . . , x
p
n ]. For K algebraically closed this gives f = gp

contradicting that f is square free. Thus we have

Proposition. The set of smooth points of a reduced hypersurface
H ⊂ An is a Zariski open dense subset of H.



Generic smoothness
Theorem. Let A ⊂ An be a affine variety. Then the set of smooth
points of A is a Zariski open dense subset of A.

Proof. One can show that every variety is birational to a
hypersurface H. In case of charK = 0 this follows from the
existence of a primitive element for the field extensions
K (xn−d+1, . . . , xn) ⊂ K (A) where A→ Ad is a suitable linear
projection. In positive characteristic the construction of the
birational morphism is more complicated.
For points p in the open set U ⊂ A, which is isomorphic an open
set of H we have

OA,p
∼= OH,p

and the result follows from the proposition.



The tangent cone
At a singular point of an algebraic set p ∈ A ⊂ An the tangent
space TpA is only a very rough approximation of A near p.
The tangent cone, as defined below, is a better approximation. We
assume that p = o ∈ An is the origin.
Then for I = I(A) ⊂ K [x1, . . . , xn] the ideal of initial forms of I is

J = ({fm | fm is the smallest degree part of an equation

f = fm + ... + fd ∈ I}).
V (J) is called the tangent cone of A at p.
The ring K [x1, . . . , xn]/J is isomorphic to the associated graded
ring

grmR = R/m⊕m/m2 ⊕m2/m3 ⊕ . . . =
∞⊕
k=0

mk/mk+1.

of R = OA,o with respect to the maximal ideal m = mA,o .



Mora’s tangent cone algorithm

Algorithm.
Input. Generators of the ideal I of an affine algebraic set A ⊂ An.
Output. Generators of the ideal of initial forms of I at o.

1. Choose a local monomial order > which refines the degree:

deg xα < deg xβ =⇒ xα > xβ.

2. Compute a Gröbner basis G of I using Mora’s algorithm.

3. Return the initial forms fm of all f = fm + . . . + fd ∈ G .



Hierachy of approximations

Let R = OA,p be the local ring of an algebraic set. We have

introduced the m = mA,p-adic completion ÔA,p, the associated
graded ring grmR and the Zariski tangent space TpA = (m/m2)∗.

For two local rings OA,p and OB,q we have the following
implications:

OA,p
∼= OB,q =⇒ ÔA,p

∼= ÔB,q,

ÔA,p
∼= ÔB,q =⇒ grmA,p

OA,p
∼= grmB,q

OB,q,

grmA,p
OA,p

∼= grmB,q
OB,q =⇒ TpA ∼= TqB.

In general none of these implications is an equivalence.



Analytically isomorphic local rings
Example. Consider A = V (y2 − x2 − x3) and B = V (y2 − x2) at
the origin o for K = C.

ÔA,o
∼= ÔB,o

via the ring homomorphism induced by the substitution

C[[x , y ]]→ C[[x , y ]], (x , y) 7→ (x , y
√

1 + x).

Indeed

√
1 + x = 1 +

x

2
− x2

4
+ . . . =

∞∑
k=0

(1
2

k

)
xk ∈ C[[x ]]

and its square 1 + x are units.

Definition. If ÔA,p
∼= ÔB,q, then (A, p) and (B, q) are called

analytically isomorphic.



Appendix: Discrete valuation rings
Definition. Let L be a field. A discrete valuation on L is a
surjective map

v : L \ {0} → Z
such that for all a, b ∈ L \ {0}

1. v(ab) = v(a) + v(b),
2. v(a + b) ≥ min{v(a), v(b)}.

Note that the first condition says that (L \ {0}, ·)→ (Z,+) is a
group homomorphism. In particular v(1) = 0. By convention
v(0) =∞. The set

R = {a ∈ L | v(a) ≥ 0}
is a subring of L, which is called the valuation ring of v . The
subset of non-units in R

m = {a ∈ L | v(a) > 0}
is an ideal. Hence (R,m) is a local ring.



Discrete valuation rings
Definition. A discrete valuation ring (DVR) R is an integral
domain such that R is the valuation ring of a valuation v on its
quotient field L = Q(R).

Example. The formal power series ring R = K [[t]] in one variable
over a field K is a DVR. Indeed, the quotient field of R is

L = K ((t)) = {
∞∑

n=N

ant
n | N ∈ Z}

the ring of formal Laurent series, and

v(
∑

ant
n) = min{n | an 6= 0}

for a non-zero Laurent series defines a valuation on L with
valuation ring K [[t]]. Following the notion for power series in one
complex variable, we say that f ∈ K [[t]] has a zero of order n if
v(f ) = n and f ∈ K ((t)) with n = v(f ) < 0 is said to have pole
of order −n.



Characterization of DVR’s

Proposition. Let R be a ring. TFAE:

1) R is a DVR.

2) R is a noetherian regular local ring of Krull dimension 1.

Proof. 1)⇒ 2): Suppose R is a DVR. Let t ∈ R be an element
with v(t) = 1. Then any element f ∈ R with v(f ) = n is of the
form f = utn with u a unit in R. In particular, t is a generator of
m, and the only proper ideals I 6= 0 are of the form I = (tn) = mn

with n = min{v(f ) | f ∈ I}. Hence (0) ( m is the only chain of
prime ideals in R and R is PID. So R is noetherian and a regular
local ring of Krull dimension 1, because m is generated by a single
element, i.e., m/m2 is 1-dimensional by Nakayama’s Lemma.



2⇒ 1
Conversely, let R be a noetherian regular local ring of Krull
dimension 1. By Nakayama’s Lemma the maximal ideal m is a
principal ideal, say m = (t). Hence the powers mk = (tk) are
principal ideals as well. Let f ∈ R be a non-zero element. Since⋂∞

k=1m
k = (0) by Krull’s intersection theorem

n = max{k | f ∈ mk}
is the maximum of finitely many integers and f = utn for a unit
u ∈ R. We set v(f ) = n. Then v(f1f2) = v(f1) + v(f2). In
particular R is a domain. We extend v to a map

v : Q(R) \ {0} → Z by v(
f1
f2

) = v(f1)− v(f2).

Then v is a discrete valuation on Q(R) and R is its valuation
ring.



Smooth points of curves

Corollary. Let p ∈ C be a smooth point of an irreducible curve.
Then OC ,p is a DVR.

Remark. We denote the valuation of K (C ) corresponding to OC ,p

with vp. In case of a smooth projective curve C one can show that

p 7→ vp

induces a bijection between the points of C and the valuations of
the function field v : K (C ) \ {0} → Z with v(a) = 0 for all
a ∈ K \ {0}.


