Algebraic Geometry, Lecture 17

Frank-Olaf Schreyer

Saarland University, Perugia 2021

Overview

1. Mora division
2. The tangent space
3. The tangent cone
4. Appendix: Discrete valuation rings

Mora's division theorem

The proof of Grauert's division theorem does not yield an algorithm because the iteration usually does not terminate. For ideals of $K\left[x_{1}, \ldots, x_{n}\right]_{\left(x_{1}, \ldots, x_{n}\right)} \subset K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ their exists an algorithm to compute a Gröbner basis. Without loss of generality we may assume that an ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]_{\left(x_{1}, \ldots, x_{n}\right)}$ is generated elements of $K\left[x_{1}, \ldots, x_{n}\right]$, since the denominators are units in $K\left[x_{1}, \ldots, x_{n}\right]_{\left(x_{1}, \ldots, x_{n}\right)}$.
Theorem. Let $>$ be a local monomial order and let $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$. For every further element $g \in K\left[x_{1}, \ldots, x_{n}\right]$ there exists an element $u \in K\left[x_{1}, \ldots, x_{n}\right]$ with $u(0)=1$, elements $g_{1}, \ldots, g_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ and a remainder $h \in K\left[x_{1}, \ldots, x_{n}\right]$ such that the following holds:

1) $u g=g_{1} f_{1}+\ldots+g_{r} f_{r}+h$.

2a) $\operatorname{Lt}(g) \geq \operatorname{Lt}\left(g_{i} f_{i}\right)$ whenever both sides are non-zero.
2b) If $h \neq 0$, then $\operatorname{Lt}(h)$ is not divisible by any $\operatorname{Lt}\left(f_{i}\right)$.

Mora's algorithm

Definition. Let $>$ be a monomial order. The ecart of a non-zero element $f \in K\left[x_{1}, \ldots, x_{n}\right]$ is

$$
\operatorname{ecart}(f)=\operatorname{deg} f-\operatorname{deg} \operatorname{Lt}(f)
$$

Algorithm.

Input. A local monomial order $>$, polynomials f_{1}, \ldots, f_{r} and g
Output. A remainder h of a Mora division of g by f_{1}, \ldots, f_{r}.

1. Set $h:=g$ and $D:=\left\{f_{1}, \ldots, f_{r}\right\}$.
2. while $(h \neq 0$ and $D(h):=\{f \in D \mid \operatorname{Lt}(f)$ divides $\operatorname{Lt}(h)\} \neq \emptyset)$ do

- Choose $f \in D(h)$ with ecart (f) minimal.
- if ecart $(f)>\operatorname{ecart}(h)$ then $D:=D \cup\{f\}$.
- $h:=h-\frac{\operatorname{Lt}(h)}{\operatorname{Lt}(f)} f$.

3. return h.

Termination of Mora's algorithm

We write h_{k} and D_{k} for the value of h and D after k iterations of the while loop. Let x_{0} be a further variable. After k iterations the while loop continues iff $\operatorname{Lt}\left(h_{k}\right) \in\left(\left\{\operatorname{Lt}(f) \mid f \in D_{k}\right\} \subset K\left[x_{1}, \ldots, x_{n}\right]\right.$ and h_{k} is added to D_{k} iff
$x_{0}^{\text {ecart }\left(h_{k}\right)} \operatorname{Lt}\left(h_{k}\right) \notin I_{k}:=\left(\left\{x_{0}^{\text {ecart }(f)} \operatorname{Lt}(f) \mid f \in D_{k}\right\}\right) \subset K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
Since the chain of monomial ideals

$$
I_{0} \subset I_{1} \subset \ldots \subset I_{k} \subset \ldots \subset K\left[x_{0}, \ldots, x_{n}\right]
$$

becomes stationary, there exists an N such that

$$
D_{N}=D_{N+1}=D_{N+2}=\ldots
$$

no longer increases.
After this point we homogenize h_{N} and the elements of D_{N} with x_{0}.

Termination of Mora's algorithm continued

$$
f^{h}=x_{0}^{\operatorname{deg} f} f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)
$$

has lead term $\operatorname{Lt}\left(f^{h}\right)=x_{0}^{\text {ecart }(f)} \operatorname{Lt}(f)$ with respect to the monomial order $>_{g}$ on $K\left[x_{0}, \ldots, x_{n}\right]$ defined by

$$
\begin{aligned}
x_{0}^{a} x^{\alpha}>g x_{0}^{b} x^{\beta} \Leftrightarrow & \operatorname{deg} x_{0}^{a} x^{\alpha}>\operatorname{deg} x_{0}^{b} x^{\beta} \text { or } \\
& \operatorname{deg} x_{0}^{a} x^{\alpha}=\operatorname{deg} x_{0}^{b} x^{\beta} \text { and } x^{\alpha}>x^{\beta} .
\end{aligned}
$$

Since D_{N} does not change after this point, we get a sequence

$$
\left(h_{k}^{h}\right)_{k \geq N}
$$

of homogeneous elements of the same degree with lead terms

$$
\operatorname{Lt}\left(h_{N}^{h}\right)=x_{0}^{\operatorname{ecart}\left(h_{N}\right)} \operatorname{Lt}\left(h_{N}\right)>_{g} \operatorname{Lt}\left(h_{N+1}^{h}\right)>_{g} \ldots
$$

After finitely many further steps the algorithm stops with an $h_{M}=0$ or an h_{M} with $\operatorname{Lt}\left(h_{M}\right) \notin\left(\left\{\operatorname{Lt}(f) \mid f \in D_{N}\right\}\right)$, since there are only finitely many monomials in $K\left[x_{0}, \ldots, x_{n}\right]$ of the same degree.

Correctness of the output.

Recursively, starting with $u_{0}=1, g_{i}^{(0)}=0$ and $h_{0}=g$ suppose that we already have expressions

$$
u_{\ell} g=g_{1}^{(\ell)} f_{1}+\ldots+g_{r}^{(\ell)} f_{r}+h_{\ell} \quad \text { with } u_{\ell}(0)=1
$$

for $\ell=0, \ldots, k-1$. Then, if the test condition for the k-th iteration of the while loop is fulfilled, choose a polynomial $f=f^{(k)}$ as in the algorithm and set

$$
h_{k}=h_{k-1}-m_{k} f^{(k)} \text { where } m_{k}=\frac{\operatorname{Lt}\left(h_{k-1}\right)}{\operatorname{Lt}(f(k))} .
$$

There are two possibilities
(a) $f^{(k)}$ is one of f_{1}, \ldots, f_{r} or
(b) $f^{(k)}$ is one of h_{1}, \ldots, h_{k-1}.

Thus substituting $h_{k-1}=h_{k}+m_{k} f^{(k)}$ into the expression for $u_{k-1} g$ we obtain the desired expression for $u_{k} g$ with
(a) $u_{k}=u_{k-1}$ and $g_{j}^{(k)}=g_{j}^{(k-1)}+m_{k}$ if $f^{(k)}=f_{j}$ or
(b) $u_{k}=u_{k-1}+m_{k} u_{\ell}$ for some ℓ and $g_{j}^{(k)}=g_{j}^{(k-1)}+m_{k} g_{j}^{(\ell)} \forall j$

Correctness of the output continued

In both cases we have $u_{k}(0)=u_{k-1}(0)=1$. In case (b) this follows from

$$
\operatorname{Lt}\left(h_{\ell}\right)>\operatorname{Lt}\left(h_{k}\right)=\operatorname{Lt}\left(m_{k} h_{\ell}\right)=m_{k} \operatorname{Lt}\left(h_{\ell}\right)
$$

Hence $1>m_{k}$ and $u_{k}(0)=u_{k-1}(0)+0 u_{\ell}(0)=1$.
The final expression satisfies condition 2a) because the lead terms of the h_{k} decrease in each round of the while loop. Finally, condition 2 b) is satisfied due to the stopping condition of the while loop.
Example. Consider $g=x$ and $f_{1}=x-x^{2}$ in $K[x]$. Mora division proceeds as follows:

$$
\begin{gathered}
h_{0}=x, D_{0}=\left\{x-x^{2}\right\}, 1 \cdot g=0 \cdot f_{1}+x, \\
f^{(1)}=x-x^{2}, m_{1}=1, D_{1}=\left\{x-x^{2}, x\right\}, 1 \cdot g=1 \cdot f_{1}+x^{2}, \\
f^{(2)}=x, m_{2}=x, D_{2}=D_{1},(1-x) \cdot g=1 \cdot f_{1}+0 .
\end{gathered}
$$

Differentiation

Let K be an arbitrary field. Differentiation in $K[x]$ can be defined without analysis.
Definition. For $f=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ we define the derivative

$$
f^{\prime}=\sum_{n \in \mathbb{N}} n a_{n} x^{n-1}
$$

The usual differentiation rules hold with one exception if char $K=p>0$:
Proposition. Let $f, g \in K[x]$ be polynomials. Then

1) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$,
2) $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$,
3) if char $K=0$, then $f^{\prime}=0$ iff $f=a_{0}$ is a constant polynomial,
4) if char $K=p>0$, then $f^{\prime}=0 \Longleftrightarrow f \in K\left[x^{p}\right]$.

Proof. 1) is clear. By 1) it suffices to prove 2) for monomials:

$$
\begin{aligned}
\left(x^{n+m}\right)^{\prime} & =(n+m) x^{n+m-1}=n x^{n-1} x^{m}+m x^{n} x^{m-1} \\
& =\left(x^{n}\right)^{\prime} x^{m}+x^{n}\left(x^{m}\right)^{\prime} .
\end{aligned}
$$

Differentiation and gradient

3) and 4) are clear from the formula because $\left(x^{n p}\right)^{\prime}=n p x^{n p-1}=0$ in case of char $K=p>0$, while $\left(x^{m}\right)^{\prime}=m x^{m-1} \neq 0$ if $p \nmid m . \quad \square$ Remark. In case of a finite field or an algebraically closed field of char $K=p$ we have

$$
f \in K\left[x^{p}\right] \Longleftrightarrow f=g^{p} \text { for some } g \in K[x]
$$

because the map $K \rightarrow K, a \mapsto a^{p}$ is surjective.

For multivariate polynomials $f \in K\left[x_{1}, \ldots, x_{n}\right]$ partial derivatives $\frac{\partial f}{\partial x_{i}}$ are defined analogously. The gradient

$$
\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

of f is identically zero in char $K=p$ iff $f \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$.

Differential and tangent space

Definition. Let $f \in K\left[x_{1}, \ldots, x_{n}\right]$. We define the differential of f at a point $p=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$ as

$$
d_{p} f=\sum_{i=0}^{n} \frac{\partial f}{\partial x_{i}}(p)\left(x_{i}-a_{i}\right)
$$

In other words $d_{p} f$ is the linear part in the Taylor expansion

$$
f=f(p)+d_{p} f+\text { terms of degree } \geq 2 \text { in the } x-a_{i}
$$

of f.
For a hypersurface $H \subset \mathbb{A}^{n}$ with $\mathrm{I}(H)=(f)$ we define the tangent space of H at a point $p \in H$ as the linear subspace

$$
T_{p} H=V\left(d_{p} f\right)
$$

The tangent space of an algebraic set

Definition. Let $A \subset \mathbb{A}^{n}$ be an algebraic set. The tangent space of A at a point $p \in A$ is defined by

$$
T_{p}(A)=V\left(\left\{d_{p} f \mid f \in \mathrm{I}(A)\right\}\right)
$$

The local dimension of A at p is defined as

$$
\begin{gathered}
\operatorname{dim}_{p} A=\max \{\operatorname{dim} C \mid \\
\hline \text { of } A \text { is an irreducible component } \\
\text { passing through } p\}
\end{gathered}
$$

A is smooth at p if $\operatorname{dim} T_{p} A=\operatorname{dim}_{p} A$.
Proposition. Let $A \subset \mathbb{A}^{n}$ be an algebraic set and let $f_{1}, \ldots, f_{r} \in \mathrm{I}(A)$ polynomials vanishing on A. Then

$$
n-\operatorname{rank}\left(\frac{\partial f_{i}}{\partial x_{j}}(p)\right) \geq \operatorname{dim}_{p} A
$$

and A is smooth at p if equality holds.

Implicit function theorem

Remark. If $i_{1}<\ldots<i_{k}, j_{1}<\ldots<j_{k}$ correspond to the indices of a maximal size non-vanishing minor of the jacobian matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}(p)\right)$, then in case of $K=\mathbb{R}$ or \mathbb{C} the implicit function theorem says that one can solve the system of equations $f_{i_{1}}=\ldots=f_{i_{k}}=0$ locally:

One can express $x_{j_{1}}, \ldots, x_{j_{k}}$ as differentiable or holomorphic functions of the $x_{j}^{\prime} s$ with $j \notin\left\{j_{1}, \ldots, j_{k}\right\}$ respectively, and every solution of $f_{i_{1}}=\ldots=f_{i_{k}}=0$ near p arises as a point on the corresponding graph.

Proof of the Jacobian criterium

Proof. We have

$$
n-\operatorname{rank}\left(\frac{\partial f_{i}}{\partial x_{j}}(p)\right) \geq \operatorname{dim} T_{p} A \geq \operatorname{dim}_{p} A
$$

The first inequality is true by the definition of $T_{p} A$. It could be strict since we did not assumed that f_{1}, \ldots, f_{r} generate $I(A)$. The second inequality holds in a much more general setting, which we state below.

Krull's principal ideal theorem

Theorem. Let R be a noetherian ring. Every minimal prime \mathfrak{p} of a principal ideal $(f) \subset R$ has height

$$
\operatorname{height}(\mathfrak{p}) \leq 1
$$

Equality holds if f is a non-zero divisor. More generally, if \mathfrak{p} is a minimal prime of an ideal $\left(f_{1}, \ldots, f_{c}\right) \subset R$ generated by c elements, then

$$
\operatorname{height}(\mathfrak{p}) \leq c
$$

Corollary. Let (R, \mathfrak{m}, k) be a noetherian local ring. Then

$$
\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2} \geq \operatorname{dim} R
$$

Proof. By Nakayama's Lemma \mathfrak{m} is generated by $c=\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$ elements. Since \mathfrak{m} is the unique maximal ideal of R we obtain

$$
\operatorname{dim} R=\operatorname{height}(\mathfrak{m}) \leq c
$$

from the principal ideal theorem.

Regular local rings

Definition. A regular local ring is a noetherian local ring (R, \mathfrak{m}, k) with $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}=\operatorname{dim} R$.
Proposition. A point $p \in A$ of an algebraic set $A \subset \mathbb{A}^{n}$ is a smooth point of A iff $\mathcal{O}_{A, p}$ is a regular local ring.
Proof. Since $n-\mathfrak{m}_{A, p} / \mathfrak{m}_{A, p}^{2}$ is the codimension of $T_{p}(A)$ we have $\operatorname{dim} T_{p} A=\operatorname{dim} A_{p}$ iff $\mathcal{O}_{A, p}$ is a regular local ring.
The K-vector space $\mathfrak{m}_{A, p} / m_{A, p}^{2}$ can be interpreted as the vector space of linear functions on $T_{p}(A)$ regarded as a K-vector space with origin p. Thus the dual vector space $\left(\mathfrak{m}_{A, p} / \mathfrak{m}_{A, p}^{2}\right)^{*} \cong T_{p}(A)$ is called the Zariski tangent space of A at p. Points $p \in A$ where A is not smooth are called singular points of A.
Example. Let $H \subset \mathbb{A}^{n}$ be a hypersurface and $(f)=I(A)$ be its ideal in $K\left[x_{1}, \ldots, x_{n}\right]$. Then the set of singular points is

$$
H_{\text {sing }}=V\left(f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

Singular points

Notice that $(f)=\left(f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$ holds iff $\frac{\partial f}{\partial x_{1}}=0, \ldots, \frac{\partial f}{\partial x_{n}}=0$ since the partial derivative $\frac{\partial f}{\partial x_{i}}$ has smaller degree in x_{i} than f. Thus $(f)=\left(f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$ implies that char $K=p$ and $f \in K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$. For K algebraically closed this gives $f=g^{p}$ contradicting that f is square free. Thus we have

Proposition. The set of smooth points of a reduced hypersurface $H \subset \mathbb{A}^{n}$ is a Zariski open dense subset of H.

Generic smoothness

Theorem. Let $A \subset \mathbb{A}^{n}$ be a affine variety. Then the set of smooth points of A is a Zariski open dense subset of A.

Proof. One can show that every variety is birational to a hypersurface H. In case of char $K=0$ this follows from the existence of a primitive element for the field extensions $K\left(x_{n-d+1}, \ldots, x_{n}\right) \subset K(A)$ where $A \rightarrow \mathbb{A}^{d}$ is a suitable linear projection. In positive characteristic the construction of the birational morphism is more complicated.
For points p in the open set $U \subset A$, which is isomorphic an open set of H we have

$$
\mathcal{O}_{A, p} \cong \mathcal{O}_{H, p}
$$

and the result follows from the proposition.

The tangent cone

At a singular point of an algebraic set $p \in A \subset \mathbb{A}^{n}$ the tangent space $T_{p} A$ is only a very rough approximation of A near p.
The tangent cone, as defined below, is a better approximation. We assume that $p=0 \in \mathbb{A}^{n}$ is the origin.
Then for $I=\mathrm{I}(A) \subset K\left[x_{1}, \ldots, x_{n}\right]$ the ideal of initial forms of I is

$$
J=\left(\left\{f_{m} \mid f_{m}\right.\right. \text { is the smallest degree part of an equation }
$$

$$
\left.\left.f=f_{m}+\ldots+f_{d} \in I\right\}\right)
$$

$V(J)$ is called the tangent cone of A at p.
The ring $K\left[x_{1}, \ldots, x_{n}\right] / J$ is isomorphic to the associated graded ring

$$
g r_{\mathfrak{m}} R=R / \mathfrak{m} \oplus \mathfrak{m} / \mathfrak{m}^{2} \oplus \mathfrak{m}^{2} / \mathfrak{m}^{3} \oplus \ldots=\bigoplus_{k=0}^{\infty} \mathfrak{m}^{k} / \mathfrak{m}^{k+1}
$$

of $R=\mathcal{O}_{A, o}$ with respect to the maximal ideal $\mathfrak{m}=\mathfrak{m}_{A, O}$.

Mora's tangent cone algorithm

Algorithm.

Input. Generators of the ideal I of an affine algebraic set $A \subset \mathbb{A}^{n}$.
Output. Generators of the ideal of initial forms of I at o.

1. Choose a local monomial order $>$ which refines the degree:

$$
\operatorname{deg} x^{\alpha}<\operatorname{deg} x^{\beta} \Longrightarrow x^{\alpha}>x^{\beta}
$$

2. Compute a Gröbner basis G of I using Mora's algorithm.
3. Return the initial forms f_{m} of all $f=f_{m}+\ldots+f_{d} \in G$.

Hierachy of approximations

Let $R=\mathcal{O}_{A, p}$ be the local ring of an algebraic set. We have introduced the $\mathfrak{m}=\mathfrak{m}_{A, p}$-adic completion $\widehat{\mathcal{O}}_{A, p}$, the associated graded ring $g r_{\mathfrak{m}} R$ and the Zariski tangent space $T_{p} A=\left(\mathfrak{m} / \mathfrak{m}^{2}\right)^{*}$.

For two local rings $\mathcal{O}_{A, p}$ and $\mathcal{O}_{B, q}$ we have the following implications:

$$
\begin{aligned}
\mathcal{O}_{A, p} \cong \mathcal{O}_{B, q} & \Longrightarrow \widehat{\mathcal{O}}_{A, p} \cong \widehat{\mathcal{O}}_{B, q}, \\
\widehat{\mathcal{O}}_{A, p} \cong \widehat{\mathcal{O}}_{B, q} & \Longrightarrow g r_{\mathfrak{m}_{A, p}} \mathcal{O}_{A, p} \cong g r_{\mathfrak{m}_{B, q}} \mathcal{O}_{B, q}, \\
g r_{\mathfrak{m}_{A, p}} \mathcal{O}_{A, p} \cong g r_{\mathfrak{m}_{B, q}} \mathcal{O}_{B, q} & \Longrightarrow T_{p} A \cong T_{q} B .
\end{aligned}
$$

In general none of these implications is an equivalence.

Analytically isomorphic local rings

Example. Consider $A=V\left(y^{2}-x^{2}-x^{3}\right)$ and $B=V\left(y^{2}-x^{2}\right)$ at the origin o for $K=\mathbb{C}$.

$$
\widehat{\mathcal{O}}_{A, O} \cong \widehat{\mathcal{O}}_{B, O}
$$

via the ring homomorphism induced by the substitution

$$
\mathbb{C}[[x, y]] \rightarrow \mathbb{C}[[x, y]],(x, y) \mapsto(x, y \sqrt{1+x}) .
$$

Indeed

$$
\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{4}+\ldots=\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k} x^{k} \in \mathbb{C}[[x]]
$$

and its square $1+x$ are units.
Definition. If $\widehat{\mathcal{O}}_{A, p} \cong \widehat{\mathcal{O}}_{B, q}$, then (A, p) and (B, q) are called analytically isomorphic.

Appendix: Discrete valuation rings

Definition. Let L be a field. A discrete valuation on L is a surjective map

$$
v: L \backslash\{0\} \rightarrow \mathbb{Z}
$$

such that for all $a, b \in L \backslash\{0\}$

$$
\begin{aligned}
& \text { 1. } v(a b)=v(a)+v(b), \\
& \text { 2. } v(a+b) \geq \min \{v(a), v(b)\} \text {. }
\end{aligned}
$$

Note that the first condition says that $(L \backslash\{0\}, \cdot) \rightarrow(\mathbb{Z},+)$ is a group homomorphism. In particular $v(1)=0$. By convention $v(0)=\infty$. The set

$$
R=\{a \in L \mid v(a) \geq 0\}
$$

is a subring of L, which is called the valuation ring of v. The subset of non-units in R

$$
\mathfrak{m}=\{a \in L \mid v(a)>0\}
$$

is an ideal. Hence (R, \mathfrak{m}) is a local ring.

Discrete valuation rings

Definition. A discrete valuation ring (DVR) R is an integral domain such that R is the valuation ring of a valuation v on its quotient field $L=Q(R)$.
Example. The formal power series ring $R=K[[t]]$ in one variable over a field K is a DVR. Indeed, the quotient field of R is

$$
L=K((t))=\left\{\sum_{n=N}^{\infty} a_{n} t^{n} \mid N \in \mathbb{Z}\right\}
$$

the ring of formal Laurent series, and

$$
v\left(\sum a_{n} t^{n}\right)=\min \left\{n \mid a_{n} \neq 0\right\}
$$

for a non-zero Laurent series defines a valuation on L with valuation ring $K[[t]]$. Following the notion for power series in one complex variable, we say that $f \in K[[t]]$ has a zero of order n if $v(f)=n$ and $f \in K((t))$ with $n=v(f)<0$ is said to have pole of order $-n$.

Characterization of DVR's

Proposition. Let R be a ring. TFAE:

1) R is a $D V R$.
2) R is a noetherian regular local ring of Krull dimension 1.

Proof. 1) $\Rightarrow 2$): Suppose R is a DVR. Let $t \in R$ be an element with $v(t)=1$. Then any element $f \in R$ with $v(f)=n$ is of the form $f=u t^{n}$ with u a unit in R. In particular, t is a generator of \mathfrak{m}, and the only proper ideals $I \neq 0$ are of the form $I=\left(t^{n}\right)=\mathfrak{m}^{n}$ with $n=\min \{v(f) \mid f \in I\}$. Hence (0$) \subsetneq \mathfrak{m}$ is the only chain of prime ideals in R and R is PID. So R is noetherian and a regular local ring of Krull dimension 1, because \mathfrak{m} is generated by a single element, i.e., $\mathfrak{m} / \mathfrak{m}^{2}$ is 1 -dimensional by Nakayama's Lemma.
$2 \Rightarrow 1$
Conversely, let R be a noetherian regular local ring of Krull dimension 1. By Nakayama's Lemma the maximal ideal \mathfrak{m} is a principal ideal, say $\mathfrak{m}=(t)$. Hence the powers $\mathfrak{m}^{k}=\left(t^{k}\right)$ are principal ideals as well. Let $f \in R$ be a non-zero element. Since $\bigcap_{k=1}^{\infty} \mathfrak{m}^{k}=(0)$ by Krull's intersection theorem

$$
n=\max \left\{k \mid f \in \mathfrak{m}^{k}\right\}
$$

is the maximum of finitely many integers and $f=u t^{n}$ for a unit $u \in R$. We set $v(f)=n$. Then $v\left(f_{1} f_{2}\right)=v\left(f_{1}\right)+v\left(f_{2}\right)$. In particular R is a domain. We extend v to a map

$$
v: Q(R) \backslash\{0\} \rightarrow \mathbb{Z} \quad \text { by } \quad v\left(\frac{f_{1}}{f_{2}}\right)=v\left(f_{1}\right)-v\left(f_{2}\right) .
$$

Then v is a discrete valuation on $Q(R)$ and R is its valuation ring.

Smooth points of curves

Corollary. Let $p \in C$ be a smooth point of an irreducible curve. Then $\mathcal{O}_{C, p}$ is a DVR.

Remark. We denote the valuation of $K(C)$ corresponding to $\mathcal{O}_{C, p}$ with v_{p}. In case of a smooth projective curve C one can show that

$$
p \mapsto v_{p}
$$

induces a bijection between the points of C and the valuations of the function field $v: K(C) \backslash\{0\} \rightarrow \mathbb{Z}$ with $v(a)=0$ for all $a \in K \backslash\{0\}$.

