Algebraic Geometry, Lecture 17

Frank-Olaf Schreyer

Saarland University, Perugia 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

- 1. Mora division
- 2. The tangent space
- 3. The tangent cone
- 4. Appendix: Discrete valuation rings

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Mora's division theorem

The proof of Grauert's division theorem does not yield an algorithm because the iteration usually does not terminate. For ideals of $K[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)} \subset K[[x_1, \ldots, x_n]]$ their exists an algorithm to compute a Gröbner basis. Without loss of generality we may assume that an ideal $I \subset K[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)}$ is generated elements of $K[x_1, \ldots, x_n]$, since the denominators are units in $K[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)}$.

Theorem. Let > be a local monomial order and let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$. For every further element $g \in K[x_1, \ldots, x_n]$ there exists an element $u \in K[x_1, \ldots, x_n]$ with u(0) = 1, elements $g_1, \ldots, g_r \in K[x_1, \ldots, x_n]$ and a remainder $h \in K[x_1, \ldots, x_n]$ such that the following holds: 1) $ug = g_1f_1 + \ldots + g_rf_r + h$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2a) $Lt(g) \ge Lt(g_i f_i)$ whenever both sides are non-zero. 2b) If $h \ne 0$, then Lt(h) is not divisible by any $Lt(f_i)$.

Mora's algorithm

Definition. Let > be a monomial order. The **ecart** of a non-zero element $f \in K[x_1, ..., x_n]$ is

$$\operatorname{ecart}(f) = \operatorname{deg} f - \operatorname{deg} \operatorname{Lt}(f).$$

Algorithm.

Input. A local monomial order >, polynomials f_1, \ldots, f_r and g **Output.** A remainder h of a Mora division of g by f_1, \ldots, f_r .

1. Set
$$h := g$$
 and $D := \{f_1, \ldots, f_r\}$.

2. while $(h \neq 0 \text{ and } D(h) := \{f \in D \mid Lt(f) \text{ divides } Lt(h)\} \neq \emptyset)$ do

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Choose
$$f \in D(h)$$
 with $ecart(f)$ minimal.

• if
$$\operatorname{ecart}(f) > \operatorname{ecart}(h)$$
 then $D := D \cup \{f\}$.

•
$$h := h - \frac{\operatorname{Lt}(h)}{\operatorname{Lt}(f)} f$$
.

3. return h.

Termination of Mora's algorithm

We write h_k and D_k for the value of h and D after k iterations of the while loop. Let x_0 be a further variable. After k iterations the while loop continues iff $Lt(h_k) \in (\{Lt(f) \mid f \in D_k\} \subset K[x_1, \ldots, x_n]$ and h_k is added to D_k iff

 $x_0^{\mathsf{ecart}(h_k)} \operatorname{Lt}(h_k) \notin I_k := (\{x_0^{\mathsf{ecart}(f)} \operatorname{Lt}(f) \mid f \in D_k\}) \subset K[x_0, x_1, \dots, x_n].$ Since the chain of monomial ideals

$$I_0 \subset I_1 \subset \ldots \subset I_k \subset \ldots \subset K[x_0, \ldots, x_n]$$

becomes stationary, there exists an N such that

$$D_N=D_{N+1}=D_{N+2}=\ldots$$

no longer increases.

After this point we homogenize h_N and the elements of D_N with x_0 .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Termination of Mora's algorithm continued

$$f^h = x_0^{\deg f} f(x_1/x_0, \ldots, x_n/x_0)$$

has lead term $Lt(f^h) = x_0^{ecart(f)} Lt(f)$ with respect to the monomial order $>_g$ on $K[x_0, \ldots, x_n]$ defined by

Since D_N does not change after this point, we get a sequence $(h_k^h)_{k\geq N}$

of homogeneous elements of the same degree with lead terms

$$\mathsf{Lt}(h_N^h) = x_0^{\mathsf{ecart}(h_N)} \, \mathsf{Lt}(h_N) >_g \mathsf{Lt}(h_{N+1}^h) >_g \ldots$$

After finitely many further steps the algorithm stops with an $h_M = 0$ or an h_M with $Lt(h_M) \notin (\{Lt(f) \mid f \in D_N\})$, since there are only finitely many monomials in $K[x_0, \ldots, x_n]$ of the same degree.

Correctness of the output.

Recursively, starting with $u_0 = 1$, $g_i^{(0)} = 0$ and $h_0 = g$ suppose that we already have expressions

$$u_{\ell}g = g_1^{(\ell)}f_1 + \ldots + g_r^{(\ell)}f_r + h_{\ell}$$
 with $u_{\ell}(0) = 1$

for $\ell = 0, ..., k - 1$. Then, if the test condition for the *k*-th iteration of the while loop is fulfilled, choose a polynomial $f = f^{(k)}$ as in the algorithm and set

$$h_k = h_{k-1} - m_k f^{(k)}$$
 where $m_k = \frac{\operatorname{Lt}(h_{k-1})}{\operatorname{Lt}(f^{(k)})}$.

There are two possibilities (a) $f^{(k)}$ is one of f_1, \ldots, f_r or (b) $f^{(k)}$ is one of h_1, \ldots, h_{k-1} . Thus substituting $h_{k-1} = h_k + m_k f^{(k)}$ into the expression for $u_{k-1}g$ we obtain the desired expression for u_kg with (a) $u_k = u_{k-1}$ and $g_j^{(k)} = g_j^{(k-1)} + m_k$ if $f^{(k)} = f_j$ or (b) $u_k = u_{k-1} + m_k u_\ell$ for some ℓ and $g_j^{(k)} = g_j^{(k-1)} + m_k g_j^{(\ell)} \forall j$

Correctness of the output continued

In both cases we have $u_k(0) = u_{k-1}(0) = 1$. In case (b) this follows from

$$\operatorname{Lt}(h_{\ell}) > \operatorname{Lt}(h_k) = \operatorname{Lt}(m_k h_{\ell}) = m_k \operatorname{Lt}(h_{\ell}).$$

Hence $1 > m_k$ and $u_k(0) = u_{k-1}(0) + 0u_\ell(0) = 1$.

The final expression satisfies condition 2a) because the lead terms of the h_k decrease in each round of the while loop. Finally, condition 2b) is satisfied due to the stopping condition of the while loop.

Example. Consider g = x and $f_1 = x - x^2$ in K[x]. Mora division proceeds as follows:

$$h_0 = x, D_0 = \{x - x^2\}, 1 \cdot g = 0 \cdot f_1 + x,$$

$$f^{(1)} = x - x^2, m_1 = 1, D_1 = \{x - x^2, x\}, 1 \cdot g = 1 \cdot f_1 + x^2,$$

$$f^{(2)} = x, m_2 = x, D_2 = D_1, (1 - x) \cdot g = 1 \cdot f_1 + 0.$$

Differentiation

Let K be an arbitrary field. Differentiation in K[x] can be defined without analysis.

Definition. For $f = \sum_{n \in \mathbb{N}} a_n x^n$ we define the derivative

$$f' = \sum_{n \in \mathbb{N}} na_n x^{n-1}.$$

The usual differentiation rules hold with one exception if char K = p > 0: **Proposition.** Let $f, g \in K[x]$ be polynomials. Then 1) (f + g)' = f' + g', 2) (fg)' = f'g + fg', 3) if char K = 0, then f' = 0 iff $f = a_0$ is a constant polynomial, 4) if char K = p > 0, then $f' = 0 \iff f \in K[x^p]$. **Proof.** 1) is clear. By 1) it suffices to prove 2) for monomials: $(x^{n+m})' = (n + m)x^{n+m-1} = nx^{n-1}x^m + mx^nx^{m-1}$

$$(x^{n+m})' = (n+m)x^{n+m-1} = nx^{n-1}x^m + mx^nx^{m-1}$$

= $(x^n)'x^m + x^n(x^m)'.$

Differentiation and gradient

3) and 4) are clear from the formula because $(x^{np})' = npx^{np-1} = 0$ in case of char K = p > 0, while $(x^m)' = mx^{m-1} \neq 0$ if $p \not| m$. **Remark.** In case of a finite field or an algebraically closed field of char K = p we have

$$f \in K[x^p] \iff f = g^p$$
 for some $g \in K[x]$

because the map $K \to K$, $a \mapsto a^p$ is surjective.

For multivariate polynomials $f \in K[x_1, ..., x_n]$ partial derivatives $\frac{\partial f}{\partial x_i}$ are defined analogously. The gradient

$$(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_n})$$

of f is identically zero in char K = p iff $f \in K[x_1^p, \ldots, x_n^p]$.

(ロ)、

Differential and tangent space

Definition. Let $f \in K[x_1, ..., x_n]$. We define the **differential of** f at a point $p = (a_1, ..., a_n) \in \mathbb{A}^n$ as

$$d_p f = \sum_{i=0}^n \frac{\partial f}{\partial x_i}(p)(x_i - a_i).$$

In other words $d_p f$ is the linear part in the Taylor expansion

$$f = f(p) + d_p f + \text{ terms of degree} \ge 2 \text{ in the } x - a_i$$

of *f* .

For a hypersurface $H \subset \mathbb{A}^n$ with I(H) = (f) we define the **tangent space** of H at a point $p \in H$ as the linear subspace

$$T_pH=V(d_pf).$$

The tangent space of an algebraic set

Definition. Let $A \subset \mathbb{A}^n$ be an algebraic set. The tangent space of A at a point $p \in A$ is defined by

$$T_p(A) = V(\{d_p f \mid f \in I(A)\}).$$

The local dimension of A at p is defined as

 $\dim_p A = \max\{\dim C \mid C \text{ is an irreducible component} \\ \text{of } A \text{ passing through } p\}$

A is **smooth** at p if dim $T_pA = \dim_p A$.

Proposition. Let $A \subset \mathbb{A}^n$ be an algebraic set and let $f_1, \ldots, f_r \in I(A)$ polynomials vanishing on A. Then

$$n - \operatorname{rank}(rac{\partial f_i}{\partial x_j}(p)) \geq \dim_p A$$

and A is smooth at p if equality holds.

Implicit function theorem

Remark. If $i_1 < \ldots < i_k$, $j_1 < \ldots < j_k$ correspond to the indices of a maximal size non-vanishing minor of the jacobian matrix $(\frac{\partial f_i}{\partial x_j}(p))$, then in case of $K = \mathbb{R}$ or \mathbb{C} the implicit function theorem says that one can solve the system of equations $f_{i_1} = \ldots = f_{i_k} = 0$ locally:

One can express x_{j_1}, \ldots, x_{j_k} as differentiable or holomorphic functions of the $x'_j s$ with $j \notin \{j_1, \ldots, j_k\}$ respectively, and every solution of $f_{i_1} = \ldots = f_{i_k} = 0$ near p arises as a point on the corresponding graph.

Proof of the Jacobian criterium

Proof. We have

$$n - \operatorname{rank}(\frac{\partial f_i}{\partial x_j}(p)) \ge \dim T_p A \ge \dim_p A$$

The first inequality is true by the definition of T_pA . It could be strict since we did not assumed that f_1, \ldots, f_r generate I(A). The second inequality holds in a much more general setting, which we state below.

Krull's principal ideal theorem

Theorem. Let *R* be a noetherian ring. Every minimal prime \mathfrak{p} of a principal ideal (f) $\subset R$ has height

 $\mathsf{height}(\mathfrak{p}) \leq 1.$

Equality holds if f is a non-zero divisor. More generally, if \mathfrak{p} is a minimal prime of an ideal $(f_1, \ldots, f_c) \subset R$ generated by c elements, then

 $\operatorname{height}(\mathfrak{p}) \leq c.$

Corollary. Let (R, \mathfrak{m}, k) be a noetherian local ring. Then $\dim_k \mathfrak{m}/\mathfrak{m}^2 \ge \dim R.$

Proof. By Nakayama's Lemma \mathfrak{m} is generated by $c = \dim_k \mathfrak{m}/\mathfrak{m}^2$ elements. Since \mathfrak{m} is the unique maximal ideal of R we obtain

$$\dim R = \operatorname{height}(\mathfrak{m}) \leq c$$

from the principal ideal theorem.

Regular local rings

Definition. A regular local ring is a noetherian local ring (R, \mathfrak{m}, k) with dim_k $\mathfrak{m}/\mathfrak{m}^2 = \dim R$.

Proposition. A point $p \in A$ of an algebraic set $A \subset \mathbb{A}^n$ is a smooth point of A iff $\mathcal{O}_{A,p}$ is a regular local ring.

Proof. Since $n - \mathfrak{m}_{A,p}/\mathfrak{m}_{A,p}^2$ is the codimension of $T_p(A)$ we have dim $T_pA = \dim A_p$ iff $\mathcal{O}_{A,p}$ is a regular local ring.

The *K*-vector space $\mathfrak{m}_{A,p}/\mathfrak{m}_{A,p}^2$ can be interpreted as the vector space of linear functions on $T_p(A)$ regarded as a *K*-vector space with origin *p*. Thus the dual vector space $(\mathfrak{m}_{A,p}/\mathfrak{m}_{A,p}^2)^* \cong T_p(A)$ is called the **Zariski tangent space** of *A* at *p*. Points $p \in A$ where *A* is not smooth are called **singular points of** *A*.

Example. Let $H \subset \mathbb{A}^n$ be a hypersurface and (f) = I(A) be its ideal in $K[x_1, \ldots, x_n]$. Then the set of singular points is

$$H_{sing} = V(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}).$$

(日)((1))

Singular points

Notice that $(f) = (f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ holds iff $\frac{\partial f}{\partial x_1} = 0, \dots, \frac{\partial f}{\partial x_n} = 0$ since the partial derivative $\frac{\partial f}{\partial x_i}$ has smaller degree in x_i than f. Thus $(f) = (f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ implies that char K = p and $f \in K[x_1^p, \dots, x_n^p]$. For K algebraically closed this gives $f = g^p$ contradicting that f is square free. Thus we have

Proposition. The set of smooth points of a reduced hypersurface $H \subset \mathbb{A}^n$ is a Zariski open dense subset of H.

Generic smoothness

Theorem. Let $A \subset \mathbb{A}^n$ be a affine variety. Then the set of smooth points of A is a Zariski open dense subset of A.

Proof. One can show that every variety is birational to a hypersurface *H*. In case of char K = 0 this follows from the existence of a primitive element for the field extensions $K(x_{n-d+1}, \ldots, x_n) \subset K(A)$ where $A \to \mathbb{A}^d$ is a suitable linear projection. In positive characteristic the construction of the birational morphism is more complicated. For points *p* in the open set $U \subset A$, which is isomorphic an open

set of *H* we have

$$\mathcal{O}_{A,p} \cong \mathcal{O}_{H,p}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

and the result follows from the proposition.

The tangent cone

At a singular point of an algebraic set $p \in A \subset \mathbb{A}^n$ the tangent space T_pA is only a very rough approximation of A near p. The tangent cone, as defined below, is a better approximation. We assume that $p = o \in \mathbb{A}^n$ is the origin.

Then for $I = I(A) \subset K[x_1, \ldots, x_n]$ the ideal of initial forms of I is

 $J = (\{f_m \mid f_m \text{ is the smallest degree part of an equation} \\ f = f_m + ... + f_d \in I\}).$

V(J) is called the **tangent cone** of A at p. The ring $K[x_1, \ldots, x_n]/J$ is isomorphic to the associated graded ring

$$gr_{\mathfrak{m}}R = R/\mathfrak{m} \oplus \mathfrak{m}/\mathfrak{m}^2 \oplus \mathfrak{m}^2/\mathfrak{m}^3 \oplus \ldots = \bigoplus_{k=0}^{\infty} \mathfrak{m}^k/\mathfrak{m}^{k+1}$$

of $R = \mathcal{O}_{A,o}$ with respect to the maximal ideal $\mathfrak{m} = \mathfrak{m}_{A,o}$.

Mora's tangent cone algorithm

Algorithm.

Input. Generators of the ideal *I* of an affine algebraic set $A \subset \mathbb{A}^n$. **Output.** Generators of the ideal of initial forms of *I* at *o*.

1. Choose a local monomial order > which refines the degree:

$$\deg x^\alpha < \deg x^\beta \implies x^\alpha > x^\beta.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2. Compute a Gröbner basis G of I using Mora's algorithm.
- 3. Return the initial forms f_m of all $f = f_m + \ldots + f_d \in G$.

Hierachy of approximations

Let $R = \mathcal{O}_{A,p}$ be the local ring of an algebraic set. We have introduced the $\mathfrak{m} = \mathfrak{m}_{A,p}$ -adic completion $\widehat{\mathcal{O}}_{A,p}$, the associated graded ring $gr_{\mathfrak{m}}R$ and the Zariski tangent space $T_pA = (\mathfrak{m}/\mathfrak{m}^2)^*$.

For two local rings $\mathcal{O}_{A,p}$ and $\mathcal{O}_{B,q}$ we have the following implications:

$$\mathcal{O}_{A,p} \cong \mathcal{O}_{B,q} \implies \widehat{\mathcal{O}}_{A,p} \cong \widehat{\mathcal{O}}_{B,q},$$
$$\widehat{\mathcal{O}}_{A,p} \cong \widehat{\mathcal{O}}_{B,q} \implies gr_{\mathfrak{m}_{A,p}}\mathcal{O}_{A,p} \cong gr_{\mathfrak{m}_{B,q}}\mathcal{O}_{B,q},$$
$$gr_{\mathfrak{m}_{A,p}}\mathcal{O}_{A,p} \cong gr_{\mathfrak{m}_{B,q}}\mathcal{O}_{B,q} \implies T_pA \cong T_qB.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In general none of these implications is an equivalence.

Analytically isomorphic local rings

Example. Consider $A = V(y^2 - x^2 - x^3)$ and $B = V(y^2 - x^2)$ at the origin *o* for $K = \mathbb{C}$.

$$\widehat{\mathcal{O}}_{A,o}\cong \widehat{\mathcal{O}}_{B,o}$$

via the ring homomorphism induced by the substitution

$$\mathbb{C}[[x,y]] \to \mathbb{C}[[x,y]], (x,y) \mapsto (x,y\sqrt{1+x}).$$

Indeed

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{4} + \ldots = \sum_{k=0}^{\infty} {\binom{\frac{1}{2}}{k} x^k} \in \mathbb{C}[[x]]$$

and its square 1 + x are units.

Definition. If $\widehat{\mathcal{O}}_{A,p} \cong \widehat{\mathcal{O}}_{B,q}$, then (A, p) and (B, q) are called analytically isomorphic.

Appendix: Discrete valuation rings

Definition. Let L be a field. A **discrete valuation** on L is a surjective map

$$v: L \setminus \{0\} \to \mathbb{Z}$$

such that for all $a, b \in L \setminus \{0\}$

$$1. \ v(ab) = v(a) + v(b),$$

2. $v(a+b) \geq \min\{v(a), v(b)\}.$

Note that the first condition says that $(L \setminus \{0\}, \cdot) \to (\mathbb{Z}, +)$ is a group homomorphism. In particular v(1) = 0. By convention $v(0) = \infty$. The set

$$R = \{a \in L \mid v(a) \ge 0\}$$

is a subring of L, which is called the **valuation ring** of v. The subset of non-units in R

$$\mathfrak{m} = \{a \in L \mid v(a) > 0\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is an ideal. Hence (R, \mathfrak{m}) is a local ring.

Discrete valuation rings

Definition. A discrete valuation ring (DVR) R is an integral domain such that R is the valuation ring of a valuation v on its quotient field L = Q(R).

Example. The formal power series ring R = K[[t]] in one variable over a field K is a DVR. Indeed, the quotient field of R is

$$L = \mathcal{K}((t)) = \{\sum_{n=N}^{\infty} a_n t^n \mid N \in \mathbb{Z}\}$$

the ring of formal Laurent series, and

$$v(\sum a_n t^n) = \min\{n \mid a_n \neq 0\}$$

for a non-zero Laurent series defines a valuation on L with valuation ring K[[t]]. Following the notion for power series in one complex variable, we say that $f \in K[[t]]$ has a **zero of order** n if v(f) = n and $f \in K((t))$ with n = v(f) < 0 is said to have **pole of order** -n.

Characterization of DVR's

Proposition. Let R be a ring. TFAE:

- 1) R is a DVR.
- 2) R is a noetherian regular local ring of Krull dimension 1.

Proof. 1) \Rightarrow 2): Suppose *R* is a DVR. Let $t \in R$ be an element with v(t) = 1. Then any element $f \in R$ with v(f) = n is of the form $f = ut^n$ with *u* a unit in *R*. In particular, *t* is a generator of m, and the only proper ideals $I \neq 0$ are of the form $I = (t^n) = m^n$ with $n = \min\{v(f) \mid f \in I\}$. Hence (0) \subseteq m is the only chain of prime ideals in *R* and *R* is PID. So *R* is noetherian and a regular local ring of Krull dimension 1, because m is generated by a single element, i.e., m/m^2 is 1-dimensional by Nakayama's Lemma.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$2 \Rightarrow 1$

Conversely, let R be a noetherian regular local ring of Krull dimension 1. By Nakayama's Lemma the maximal ideal \mathfrak{m} is a principal ideal, say $\mathfrak{m} = (t)$. Hence the powers $\mathfrak{m}^k = (t^k)$ are principal ideals as well. Let $f \in R$ be a non-zero element. Since $\bigcap_{k=1}^{\infty} \mathfrak{m}^k = (0)$ by Krull's intersection theorem

$$n=\max\{k\mid f\in\mathfrak{m}^k\}$$

is the maximum of finitely many integers and $f = ut^n$ for a unit $u \in R$. We set v(f) = n. Then $v(f_1f_2) = v(f_1) + v(f_2)$. In particular R is a domain. We extend v to a map

$$v: Q(R) \setminus \{0\} o \mathbb{Z}$$
 by $v(rac{f_1}{f_2}) = v(f_1) - v(f_2).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Then v is a discrete valuation on Q(R) and R is its valuation ring.

Smooth points of curves

Corollary. Let $p \in C$ be a smooth point of an irreducible curve. Then $\mathcal{O}_{C,p}$ is a DVR.

Remark. We denote the valuation of K(C) corresponding to $\mathcal{O}_{C,p}$ with v_p . In case of a smooth projective curve C one can show that

 $p \mapsto v_p$

induces a bijection between the points of *C* and the valuations of the function field $v : K(C) \setminus \{0\} \to \mathbb{Z}$ with v(a) = 0 for all $a \in K \setminus \{0\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●