Algebraic Geometry, Lecture 18

Frank-Olaf Schreyer

Saarland University, Perugia 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

Today's topics are

- 1. Products of projective spaces
- 2. Morphism
- 3. Linear projections
- 4. A dimension bound
- 5. Rational maps from smooth curves

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Products of algebraic sets

For two affine algebraic sets $A \subset \mathbb{A}^n$ and $B \subset \mathbb{A}^m$ the product

$$A \times B \subset \mathbb{A}^n \times \mathbb{A}^m = \mathbb{A}^{n+m}$$

is simply the algebraic set defined by

$$(\mathsf{I}(A) \cup \mathsf{I}(B)) \subset K[x_1, \ldots x_n, y_1, \ldots y_m]$$

where $I(A) \subset K[x_1, ..., x_n]$ and $I(B) \subset K[y_1, ..., y_m]$ are the vanishing ideals of A and B respectively.

For projective algebraic sets the definition of a product is not so clear. To start with, it is not a priori clear how to give $\mathbb{P}^n \times \mathbb{P}^m$ the structure of an algebraic set. One uses the **Segre embedding**.

Define

$$\sigma_{n,m}: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$$
 with $N = (n+1)(m+1) - 1$

by

 $([a_0:\ldots:a_m],[b_0:\ldots:b_n]) \mapsto [a_0b_0:\ldots:a_ib_j:\ldots:a_mb_n].$ This is a well-defined map. For any pair of points at least one component $a_ib_j \neq 0$. We will use variables $\mathbf{x} = x_0, \ldots, x_n$, $\mathbf{y} = y_0, \ldots, y_m$ and $\mathbf{z} = z_{00}, \ldots, z_{0m}, z_{10}, \ldots, z_{nm}$ for the homogeneous coordinate rings of $\mathbb{P}^n, \mathbb{P}^m$ and \mathbb{P}^N . Moreover we call a polynomial

$$f = \sum_{|lpha| = d, |eta| = e} f_{lpha,eta} x^{lpha} y^{eta} \in \mathcal{K}[\mathbf{x},\mathbf{y}]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

bihomogeneous (in x and y) of bidegree (d, e).

Proposition. Let $\Sigma_{n,m} \subset \mathbb{P}^N$ be the projective algebraic set defined by the 2 × 2-minors of the $(n + 1) \times (m + 1)$ -matrix (z_{ij}) . Then

$$\sigma_{n,m}: \mathbb{P}^n \times \mathbb{P}^m \to \Sigma_{m,m}$$

is a bijection which induces isomorphisms $U_i \times U_j \cong \Sigma_{n,m} \cap U_{ij}$ on the standard charts. Moreover $\Sigma_{n,m} \subset \mathbb{P}^N$ is irreducible, and the ideal of 2×2 -minors coincides with the homogeneous ideal of $\Sigma_{m,m}$. **Proof.** The minor

$$\det \begin{pmatrix} z_{i_1j_1} & z_{i_1j_2} \\ z_{i_2j_1} & z_{i_2j_2} \end{pmatrix}$$

vanishes on the image of $\sigma_{n,m}$ because

$$\det \begin{pmatrix} x_{i_1}y_{j_1} & x_{i_1}y_{j_2} \\ x_{i_2}y_{j_1} & x_{i_2}y_{j_2} \end{pmatrix} = 0.$$

Thus the image of $\sigma_{m,n}$ is contained in $\Sigma_{m,n}$.

The point $r = [1 : c_{01} : \ldots : c_{nm}] \in \Sigma_{n,m} \cap U_{00}$ satisfies

$$c_{ij}=c_{i0}c_{0j}.$$

Thus the pair of points

 $(p,q) = ([1:c_{10}:\ldots,c_{n0}],[1:c_{01}:\ldots:c_{0m}]) \in U_0 \times U_0 \subset \mathbb{P}^n \times \mathbb{P}^m$

is the unique preimage point of r and $\sum_{n,m} \cap U_{00} \cong U_0 \times U_0$. The same argument in other charts gives that $\sigma_{n,m} : \mathbb{P}^n \times \mathbb{P}^m \to \sum_{n,m}$ is bijective and gives isomorphisms $\sum_{n,m} \cap U_{ij} \cong U_i \times U_j$.

To prove that $\Sigma_{m,n}$ is irreducible and that the ideal J of 2×2 -minors of (z_{ij}) is its homogeneous ideal, it suffices to prove that J is a prime ideal.

Consider the ring homorphism

$$\varphi: \mathcal{K}[\mathbf{z}] \to \mathcal{K}[\mathbf{x},\mathbf{y}], z_{ij} \mapsto x_i y_j$$

Clearly, $J \subset \ker \varphi$. To prove equality we consider a reverse lexicographic order $>_{\rm rlex}$ which refines the following order on the variables

<i>z</i> 00 ∨	>	<i>z</i> 01 V	>	 >	<i>z</i> ₀ <i>m</i> ∨
<i>z</i> 10 ∨	>	<i>z</i> ₁₁ ∨	>	 >	z_{1m}
:		÷			÷
ν Ζ _n 0	>	z _{n1}	>	 >	z _{nm}

We have

$$\mathsf{Lt}(\mathsf{det}\begin{pmatrix} z_{i_{1}j_{1}} & z_{i_{1}j_{2}} \\ z_{i_{2}j_{1}} & z_{i_{2}j_{2}} \end{pmatrix}) = -z_{i_{2}j_{1}}z_{i_{1}j_{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

whenever $i_1 < i_2$ and $j_1 < j_2$.

Thus the remainder of a monomial in $\mathcal{K}[\mathbf{z}]$ divided by the $2\times 2\text{-minors}$ has the form

 $z_{i_1j_1}z_{i_2j_2}\cdots z_{i_dj_d}$ with $i_1 \leq i_2 \leq \ldots \leq i_d$ and $j_1 \leq j_2 \leq \ldots \leq j_d$.

Since φ induces a bijection between such monomials and bihomogeneous monomials of bidegree (d, d) we conclude that the 2×2 -minors form a Gröbner basis of ker φ . In particular $J = \ker \varphi$ and this is a prime ideal because $K[\mathbf{z}]/\ker \varphi$ is isomorphic to a subring of the domain $K[\mathbf{x}, \mathbf{y}]$.

Definition. We give $\mathbb{P}^n \times \mathbb{P}^m$ the structure of a projective variety by identifying $\mathbb{P}^n \times \mathbb{P}^m$ and $\Sigma_{n,m}$. **Example.** We identify $\mathbb{P}^1 \times \mathbb{P}^1$ with the quadric

$$\Sigma_{1,1} = V(z_{00}z_{11} - z_{10}z_{01}) \subset \mathbb{P}^3.$$

Hypersurface in $\mathbb{P}^n \times \mathbb{P}^m$ of bidegree (d, e).

Notice that the Zariski topology on $\mathbb{P}^n \times \mathbb{P}^m$ is finer than the product of the Zariski topologies of the factors. For example, if

$$f = \sum_{|lpha| = d, |eta| = e} f_{lpha, eta} x^{lpha} y^{eta} \in \mathcal{K}[\mathbf{x}, \mathbf{y}]$$

is a bihomogeneous polynomial of bidegree (d, e), then

$$V(f) = \{(a,b) \in \mathbb{P}^n \times \mathbb{P}^m \mid f(a,b) = 0\}$$

is a Zariski closed subset, which for general f is not closed in the product topology. To see that V(f) is an algebraic subset of $\mathbb{P}^n \times \mathbb{P}^m$ we argue as follows: Suppose $d \ge e$. Then multiplying f with monomials $y^{\beta} \in K[\mathbf{y}]$ of degree d - e we get $\binom{d-e+m}{m}$ polynomials fy^{β} of bidegree (d, d), each of which is the image of a polynomial in $F_{\beta} \in K[\mathbf{z}]$ of degree d. V(f) coincides with the zero-loci of $(\{F_{\beta} \mid |\beta| = d - e\}) + \ker \varphi$.

V(f) is called a hypersurface of bidegree (d, e) in $\mathbb{P}^n \times \mathbb{P}^m$.

Algebraic subsets of $\mathbb{P}^n \times \mathbb{P}^m$

Definition. Let $A \subset \mathbb{P}^n \times \mathbb{P}^m$ be a subset. The **bihomogeneous** vanishing ideal of A is

 $I(A) = (\{f \in K[\mathbf{x}, \mathbf{y}] \text{ bihomogeneous } | f(a, b) = 0 \forall (a, b) \in A\})$

and $V(I(A)) = \overline{A}$ is its Zariski closure. For an algebraic subset $A \subset \mathbb{P}^n \times \mathbb{P}^m$ the bigraded ring $K[\mathbf{x}, \mathbf{y}]/I(A)$ is called the **bihomogeneous coordinate ring** of A.

Remark. For $J \subset K[\mathbf{x}, \mathbf{y}]$ a bihomogenous ideal we have

$$\mathsf{I}(V(J)) = ((\mathsf{rad}(J) : (x_0, \ldots, x_n)) : (y_0, \ldots, y_m). \square$$

We now are ready to define the product of two arbitrary projective algebraic sets $A \subset \mathbb{P}^n$ and $B \subset \mathbb{P}^m$:

$$A \times B \subset \mathbb{P}^n \times \mathbb{P}^m \subset \mathbb{P}^N$$

is the algebraic set defined by the bihomgeneous polynomials $f_i \in I(A) \subset K[\mathbf{x}]$ of bidegree $(d_i, 0)$ and $g_j \in I(B) \subset K[\mathbf{y}]$ of bidegree $(0, e_j)$.

Quasi-projective algebraic sets and regular functions

Definition. A **quasi-affine algebraic set** is an open subset of an affine algebraic set. Similarly we have the notion of a **quasi-projective algebraic set**. Every quasi-affine algebraic set is also quasi-projective because $\mathbb{A}^n = \mathbb{P}^n \setminus V(x_0)$.

The product of two quasi-affine (quasi-projective) algebraic sets $A = A_1 \setminus A_2$ and $B = B_1 \setminus B_2$ is again quasi-affine (quasi-projective).

$$A \times B = A_1 \times B_1 \setminus (A_2 \times B_1 \cup A_1 \times B_2).$$

For $A \subset \mathbb{P}^n$ a quasi-projective algebraic set we define the **ring of regular functions** $\mathcal{O}(A)$ as the ring of functions

$$f: A \to K$$

such that for every point $p \in A$ there exist an open neighbourhood $U \subset A$ and homogeneous polynomials $g, h \in K[x_0, \ldots, x_n]$ of the same degree with $h(p) \neq 0$ for all $p \in U$ such that

$$f(p) = \frac{g(p)}{h(p)}.$$

Morphism

Definition. Let *A* be a quasi-projective algebraic set.

1. Let $B \subset \mathbb{A}^m$ be a quasi-affine algebraic set. A morphism $\varphi : A \to B$ is a map which is given by an *m*-tupel of regular functions $f_j \in \mathcal{O}(A)$:

$$\varphi(p) = (f_1(p), \ldots, f_m(p)) \ \forall p \in A.$$

 Let B ⊂ ℙ^m be a quasi-projective algebraic set. A map φ : A → B is a morphism if φ is locally given by regular functions, i.e., for each point p ∈ A there exist an open neighbarhood U ⊂ A and regular functions f₀,..., f_m ∈ O(U) such that

$$\varphi(p) = [f_0(p) : \ldots : f_m(p)] \forall p \in U$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Clearly, morphisms can be composed.

Definition. A morphism $\varphi : A \to B$ is an isomorphism if there exists a morphism $\psi : B \to A$ such that $\psi \circ \varphi = id_A$ and $\varphi \circ \psi = id_B$.

Examples

1. Let $A \subset \mathbb{P}^n$ be a quasi-projective algebraic set, and let $f_0, \ldots, f_m \in K[x_0, \ldots, x_n]$ be homogeneous polynomials of the same degree d such that $V(f_0, \ldots, f_m) \cap A = \emptyset$. Then

$$\varphi: A \to \mathbb{P}^m, p \mapsto [f_0(p): \ldots: f_m(p)]$$

is a well-defined morphism. Indeed on the open set $U = A \cap (\mathbb{P}^n \setminus V(f_i))$ the map φ is given by the regular functions

$$[\frac{f_0}{f_i}:\ldots:\frac{f_m}{f_i}],$$

and these open sets cover A since $V(f_0, \ldots, f_m) \cap A = \emptyset$.

In particular we see that the regular functions in $\mathcal{O}(U)$ which define φ on U might not exist globally.

2. More specifically, consider the morphism $\rho_d:\mathbb{P}^1\to\mathbb{P}^d$ defined by

$$[t_0:t_1]\mapsto [t_0^d:t_0^{d-1}t_1:\ldots:t_1^d]$$

Examples

The image of ρ_d is the so-called **rational normal curve of degree** d. It has the homogeneous ideal generated by the 2 × 2-minors of the 2 × d-matrix

 $\begin{pmatrix} x_0 & x_1 & \dots & x_{d-1} \\ x_1 & x_2 & \dots & x_d \end{pmatrix}$

Remark. Morphisms $\varphi : A \to B$ between affine algebraic sets are easier to describe because they simply correspond to *K*-algebra homomorphisms $\varphi^* : K[B] \to K[A]$.

Morphisms $\varphi : A \rightarrow B$ between projective algebraic sets have a more complicated description. However they are better behaved:

We will see in one of the next lectures that the image of a projective algebraic set under a morphism is always an algebraic subset of the target.

This was not the case for morphisms between affine algebraic sets.

Example

Consider $A = V(xy - z^2) \subset \mathbb{P}^2$. On the affine chart $U_{z=1}$ we saw that the projection

$$\mathbb{A}^2 \supset V(xy-1)
ightarrow \mathbb{A}^1, (a,b) \mapsto a$$

is not surjective, because the origin o is not in the image. The map

$$A \setminus \{[0:1:0]\} \to \mathbb{P}^1, [x:y:z] \mapsto [x:z]$$

extends to a surjective morphism $\pi: A \to \mathbb{P}^1$ because

$$[x : z] = [xy : yz] = [z^2 : yz] = [z : y]$$

holds on $A \setminus V(yz)$. Thus the missing preimage point of $o = [0:1] \in \mathbb{A}^1 \subset \mathbb{P}^1$ is the point p = [0:1:0] on the line V(z) at infinity.

Linear projections

Let $A \subset \mathbb{P}^n$ be a projective variety. Let $\ell_0, \ldots, \ell_r \in K[x_0, \ldots, x_n]$ be r + 1 linearly independent linear forms such that $L = V(\ell_0, \ldots, \ell_r) \cong \mathbb{P}^{n-r-1}$ does not intersect A. Then

$$\pi_L: A \to \mathbb{P}^r, a \mapsto [\ell_0(a): \ldots: \ell_r(a)]$$

is called the **linear projection from** *L*. The condition $A \cap L = \emptyset$ is equivalent to $rad(I(A) + (\ell_0, \ldots, \ell_r)) = (x_0, \ldots, x_n)$. If we choose coordinates on \mathbb{P}^n such that $\ell_0 = x_{n-r}, \ldots, \ell_r = x_n$, then $A \cap L = \emptyset$ is equivalent to the condition that there are homogeneous equations $f_i \in I(A)$ with

$$f_i \equiv x_i^{d_i} \mod (x_{n-r},\ldots,x_n)$$
 for $i=0,\ldots,n-r-1$.

Thus in this case the map

$$\phi: \mathcal{K}[x_{n-r},\ldots,x_n] \to \mathcal{K}[A] = \mathcal{K}[x_0,\ldots,x_n]/I(A)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

induces an integral ring extension $K[A'] \hookrightarrow K[A]$ where $A' = V(\ker(\phi))$.

A dimension bound

Thus in this situation π_L induces a finite and surjective map $A \to A' \subset \mathbb{P}^r$. In particular, dim $A' = \dim A \leq r$.

Corollary. Let $A \subset \mathbb{P}^n$ be a projective algebraic set. If there exists a linear subspace $L \subset \mathbb{P}^n$ of dimension n - r - 1 with $A \cap L = \emptyset$, then dim $A \leq r$.

Definition. Let $A \subset \mathbb{P}^n$ be a projective algebraic set. We call a linear projection $\pi_L : A \to \mathbb{P}^r$ with $L \cap A = \emptyset$ with $r = \dim A$ a **linear Noether normalization**.

Corollary. Let $A \subset \mathbb{P}^n$ be a projective algebraic set of dimension dim A = r. Then every linear subspace *L* of dimension dim $L \ge n - r$ intersects *A*.

Proof. If $L \cap A = \emptyset$, then dim A < r.

Theorem. Let $X, Y \subset \mathbb{P}^n$ be projective algebraic sets. Then

 $\dim X \cap Y \geq \dim X + \dim Y - n.$

In particular the intersection of algebraic sets of complementary dimensions is always non-empty.

Proof of the dimension bound

Proof. Consider the projective space \mathbb{P}^{2n+1} with coordinate ring $K[x_0, \ldots, x_n, y_0, \ldots, y_n]$ and the algebraic set J(X, Y) defined by I(X) + I(Y) where $I(X) \subset K[x_0, \ldots, x_n]$ and $I(Y) \subset K[y_0, \ldots, y_n]$ denote the homogeneous ideals in disjoint sets of variables. The algebraic set J(X, Y) is called the **join** of X and Y because it is the union of all lines joining a point of X and with a point of Y,

$$X \subset \mathbb{P}^n \cong V(y_0, \ldots, y_n) \subset \mathbb{P}^{2n+1} \supset V(x_0, \ldots, x_n) \cong \mathbb{P}^n \supset Y.$$

Clearly,

$$\dim J(X, Y) = \dim X + \dim Y + 1$$

as one can see by combining linear Noether normalizations of X and Y. $X \cap Y = J(X, Y) \cap V(x_0 - y_0, ..., x_n - y_n)$ is the intersection of J(X, Y) with a linear subspace of dimension n. Thus the intersection $X \cap Y \neq \emptyset$ if

 $n \ge 2n + 1 - (\dim X + \dim Y + 1) \Leftrightarrow \dim X + \dim Y - n \ge 0$ by the second corollary.

Proof of the dimension bound continued

Suppose dim $X \cap Y = e > 0$. Let $\ell_0, \ldots, \ell_e \subset K[x_0, \ldots, x_n]$ define a linear Noether normalization of $X \cap Y$. Then

$$J(X,Y)\cap L=\emptyset$$

where $L = V(x_0 - y_0, \dots, x_n - y_n, \ell_0, \dots, \ell_e)$ is a linear space of dimension 2n + 1 - (n + 1 + e + 1) = 2n + 1 - (n + 1 + e) - 1, and dim $J(X, Y) \le n + 1 + e$

holds by the first corollary. Thus

 $\dim X \cap Y = e \ge \dim J(X, Y) - n - 1 = \dim X + \dim Y - n.$

Remark. Using Krull's principal ideal theorem one can show for projective varieties $X, Y \subset \mathbb{P}^n$ that every component C of $X \cap Y$ has dimension dim $C \ge \dim X + \dim Y - n$.

Rational maps from smooth curves extend to morphisms

Proposition. Let C be a smooth irreducible quasi projective curve and $\varphi' : C \dashrightarrow \mathbb{P}^n$ a rational map. Then φ' extends to a morphism

$$\varphi: \mathcal{C} \to \mathbb{P}^n.$$

Proof. Suppose that φ' is given by a tuple f_0, \ldots, f_n of rational functions. There are two reasons why $[f_0(p) : \ldots : f_n(p)]$ might be not defined in $p \in C$. One of the rational functions might have a pole at p or all rational functions might vanish at p. Taking $k = \min\{v_p(f_j) \mid j = 0, \ldots, n\}$ and $t \in \mathfrak{m}_{C,p} \subset \mathcal{O}_{C,p}$ a generator then we see that $[t^{-k}f_0 : \ldots : t^{-k}f_n]$ is defined at $p \in C$ and coincides φ' where t has no zeroes or poles.

Remark. The proposition is not true for a higher dimension source: The morphism

$$\mathbb{A}^2 \setminus \{o\} \to \mathbb{P}^1, p \mapsto [x(p) : y(p)]$$

has no extension to \mathbb{A}^2 . Instead the closure of the graph is the blow-up of $o \in \mathbb{A}^2$.