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Overview

Today’s topics are

1. Products of projective spaces

2. Morphism

3. Linear projections

4. A dimension bound

5. Rational maps from smooth curves



Products of algebraic sets

For two affine algebraic sets A ⊂ An and B ⊂ Am the product

A× B ⊂ An × Am = An+m

is simply the algebraic set defined by

(I(A) ∪ I(B)) ⊂ K [x1, . . . xn, y1, . . . ym]

where I(A) ⊂ K [x1, . . . , xn] and I(B) ⊂ K [y1, . . . , ym] are the
vanishing ideals of A and B respectively.

For projective algebraic sets the definition of a product is not so
clear. To start with, it is not a priori clear how to give Pn × Pm the
structure of an algebraic set. One uses the Segre embedding.



Segre embedding 1
Define

σn,m : Pn × Pm → PN with N = (n + 1)(m + 1)− 1

by

([a0 : . . . : am], [b0 : . . . : bn]) 7→ [a0b0 : . . . : aibj : . . . : ambn].

This is a well-defined map. For any pair of points at least one
component aibj 6= 0.
We will use variables x = x0, . . . , xn, y = y0, . . . , ym and
z = z00, . . . , z0m, z10, . . . , znm for the homogeneous coordinate
rings of Pn,Pm and PN . Moreover we call a polynomial

f =
∑

|α|=d ,|β|=e

fα,βx
αyβ ∈ K [x, y]

bihomogeneous (in x and y) of bidegree (d , e).



Segre embedding 2
Proposition. Let Σn,m ⊂ PN be the projective algebraic set
defined by the 2× 2-minors of the (n + 1)× (m + 1)-matrix (zij).
Then

σn,m : Pn × Pm → Σm,n

is a bijection which induces isomorphisms Ui × Uj
∼= Σn,m ∩ Uij on

the standard charts. Moreover Σn,m ⊂ PN is irreducible, and the
ideal of 2× 2-minors coincides with the homogeneous ideal of
Σm,m.
Proof. The minor

det

(
zi1j1 zi1j2
zi2j1 zi2j2

)
vanishes on the image of σn,m because

det

(
xi1yj1 xi1yj2
xi2yj1 xi2yj2

)
= 0.

Thus the image of σm,n is contained in Σm,n.



Segre embedding 3
The point r = [1 : c01 : . . . : cnm] ∈ Σn,m ∩ U00 satisfies

cij = ci0c0j .

Thus the pair of points

(p, q) = ([1 : c10 : . . . , cn0], [1 : c01 : . . . : c0m]) ∈ U0×U0 ⊂ Pn×Pm

is the unique preimage point of r and Σn,m ∩ U00
∼= U0 × U0. The

same argument in other charts gives that σn,m : Pn × Pm → Σn,m

is bijective and gives isomorphisms Σn,m ∩ Uij
∼= Ui × Uj .

To prove that Σm,n is irreducible and that the ideal J of
2× 2-minors of (zij) is its homogeneous ideal, it suffices to prove
that J is a prime ideal.



Segre embedding 4
Consider the ring homorphism

ϕ : K [z]→ K [x, y], zij 7→ xiyj

Clearly, J ⊂ kerϕ. To prove equality we consider a reverse
lexicographic order >rlex which refines the following order on the
variables

z00 > z01 > . . . > z0m
∨ ∨ ∨
z10 > z11 > . . . > z1m
∨ ∨ ∨
...

...
...

∨ ∨ ∨
zn0 > zn1 > . . . > znm

We have

Lt(det

(
zi1j1 zi1j2
zi2j1 zi2j2

)
) = −zi2j1zi1j2

whenever i1 < i2 and j1 < j2.



Segre embedding 5
Thus the remainder of a monomial in K [z] divided by the
2× 2-minors has the form

zi1j1zi2j2 · · · zid jd with i1 ≤ i2 ≤ . . . ≤ id and j1 ≤ j2 ≤ . . . ≤ jd .

Since ϕ induces a bijection between such monomials and
bihomogeneous monomials of bidegree (d , d) we conclude that the
2× 2-minors form a Gröbner basis of kerϕ. In particular J = kerϕ
and this is a prime ideal because K [z]/ kerϕ is isomorphic to a
subring of the domain K [x, y].

Definition. We give Pn × Pm the structure of a projective variety
by identifying Pn × Pm and Σn,m.
Example. We identify P1 × P1 with the quadric

Σ1,1 = V (z00z11 − z10z01) ⊂ P3.



Hypersurface in Pn × Pm of bidegree (d , e).
Notice that the Zariski topology on Pn × Pm is finer than the
product of the Zariski topologies of the factors. For example, if

f =
∑

|α|=d ,|β|=e

fα,βx
αyβ ∈ K [x, y]

is a bihomogeneous polynomial of bidegree (d , e), then

V (f ) = {(a, b) ∈ Pn × Pm | f (a, b) = 0}
is a Zariski closed subset, which for general f is not closed in the
product topology. To see that V (f ) is an algebraic subset of
Pn × Pm we argue as follows: Suppose d ≥ e. Then multiplying f
with monomials yβ ∈ K [y] of degree d − e we get

(d−e+m
m

)
polynomials fyβ of bidegree (d , d), each of which is the image of a
polynomial in Fβ ∈ K [z] of degree d . V (f ) coincides with the
zero-loci of ({Fβ | |β| = d − e}) + kerϕ.

V (f ) is called a hypersurface of bidegree (d , e) in Pn × Pm.



Algebraic subsets of Pn × Pm

Definition. Let A ⊂ Pn × Pm be a subset. The bihomogeneous
vanishing ideal of A is

I(A) = ({f ∈ K [x, y] bihomogeneous | f (a, b) = 0 ∀(a, b) ∈ A})
and V (I(A)) = A is its Zariski closure. For an algebraic subset
A ⊂ Pn × Pm the bigraded ring K [x, y]/ I(A) is called the
bihomogeneous coordinate ring of A.
Remark. For J ⊂ K [x, y] a bihomogenous ideal we have

I(V (J)) = ((rad(J) : (x0, . . . , xn)) : (y0, . . . , ym).

We now are ready to define the product of two arbitrary projective
algebraic sets A ⊂ Pn and B ⊂ Pm:

A× B ⊂ Pn × Pm ⊂ PN

is the algebraic set defined by the bihomgeneous polynomials
fi ∈ I(A) ⊂ K [x] of bidegree (di , 0) and gj ∈ I(B) ⊂ K [y] of
bidegree (0, ej).



Quasi-projective algebraic sets and regular functions
Definition. A quasi-affine algebraic set is an open subset of an
affine algebraic set. Similarly we have the notion of a
quasi-projective algebraic set. Every quasi-affine algebraic set is
also quasi-projective because An = Pn \ V (x0).

The product of two quasi-affine (quasi-projective) algebraic sets
A = A1 \ A2 and B = B1 \ B2 is again quasi-affine
(quasi-projective).

A× B = A1 × B1 \ (A2 × B1 ∪ A1 × B2).

For A ⊂ Pn a quasi-projective algebraic set we define the ring of
regular functions O(A) as the ring of functions

f : A→ K

such that for every point p ∈ A there exist an open neighbourhood
U ⊂ A and homogeneous polynomials g , h ∈ K [x0, . . . , xn] of the
same degree with h(p) 6= 0 for all p ∈ U such that

f (p) =
g(p)

h(p)
.



Morphism
Definition. Let A be a quasi-projective algebraic set.

1. Let B ⊂ Am be a quasi-affine algebraic set. A morphism
ϕ : A→ B is a map which is given by an m-tupel of regular
functions fj ∈ O(A):

ϕ(p) = (f1(p), . . . , fm(p)) ∀p ∈ A.

2. Let B ⊂ Pm be a quasi-projective algebraic set. A map
ϕ : A→ B is a morphism if ϕ is locally given by regular
functions, i.e., for each point p ∈ A there exist an open
neighbarhood U ⊂ A and regular functions f0, . . . , fm ∈ O(U)
such that

ϕ(p) = [f0(p) : . . . : fm(p)] ∀p ∈ U

Clearly, morphisms can be composed.
Definition. A morphism ϕ : A→ B is an isomorphism if there
exists a morphism ψ : B → A such that ψ ◦ ϕ = idA and
ϕ ◦ ψ = idB .



Examples
1. Let A ⊂ Pn be a quasi-projective algebraic set, and let
f0, . . . , fm ∈ K [x0, . . . , xn] be homogeneous polynomials of the
same degree d such that V (f0, . . . , fm) ∩ A = ∅. Then

ϕ : A→ Pm, p 7→ [f0(p) : . . . : fm(p)]

is a well-defined morphism. Indeed on the open set
U = A ∩ (Pn \ V (fi )) the map ϕ is given by the regular functions

[
f0
fi

: . . . :
fm
fi

],

and these open sets cover A since V (f0, . . . , fm) ∩ A = ∅.
In particular we see that the regular functions in O(U) which
define ϕ on U might not exist globally.
2. More specifically, consider the morphism ρd : P1 → Pd defined
by

[t0 : t1] 7→ [td0 : td−10 t1 : . . . : td1 ]



Examples
The image of ρd is the so-called rational normal curve of degree
d . It has the homogeneous ideal generated by the 2× 2-minors of
the 2× d-matrix (

x0 x1 . . . xd−1
x1 x2 . . . xd

)
Remark. Morphisms ϕ : A→ B between affine algebraic sets are
easier to describe because they simply correspond to K -algebra
homomorphisms ϕ∗ : K [B]→ K [A].
Morphisms ϕ : A→ B between projective algebraic sets have a
more complicated description. However they are better behaved:

We will see in one of the next lectures that the image of a
projective algebraic set under a morphism is always an algebraic
subset of the target.
This was not the case for morphisms between affine algebraic sets.



Example
Consider A = V (xy − z2) ⊂ P2. On the affine chart Uz=1 we saw
that the projection

A2 ⊃ V (xy − 1)→ A1, (a, b) 7→ a

is not surjective, because the origin o is not in the image.
The map

A \ {[0 : 1 : 0]} → P1, [x : y : z ] 7→ [x : z ]

extends to a surjective morphism π : A→ P1 because

[x : z ] = [xy : yz ] = [z2 : yz ] = [z : y ]

holds on A \ V (yz). Thus the missing preimage point of
o = [0 : 1] ∈ A1 ⊂ P1 is the point p = [0 : 1 : 0] on the line V (z)
at infinity.



Linear projections
Let A ⊂ Pn be a projective variety. Let `0, . . . , `r ∈ K [x0, . . . , xn]
be r + 1 linearly independent linear forms such that
L = V (`0, . . . , `r ) ∼= Pn−r−1 does not intersect A. Then

πL : A→ Pr , a 7→ [`0(a) : . . . : `r (a)]

is called the linear projection from L. The condition A ∩ L = ∅ is
equivalent to rad(I(A) + (`0, . . . , `r )) = (x0, . . . , xn). If we choose
coordinates on Pn such that `0 = xn−r , . . . , `r = xn, then
A ∩ L = ∅ is equivalent to the condition that there are
homogeneous equations fi ∈ I(A) with

fi ≡ xdii mod (xn−r , . . . , xn) for i = 0, . . . , n − r − 1.

Thus in this case the map

φ : K [xn−r , . . . , xn]→ K [A] = K [x0, . . . , xn]/ I(A)

induces an integral ring extension K [A′] ↪→ K [A] where
A′ = V (ker(φ)).



A dimension bound
Thus in this situation πL induces a finite and surjective map
A→ A′ ⊂ Pr . In particular, dimA′ = dimA ≤ r .

Corollary. Let A ⊂ Pn be a projective algebraic set. If there exists
a linear subspace L ⊂ Pn of dimension n − r − 1 with A ∩ L = ∅,
then dimA ≤ r .

Definition. Let A ⊂ Pn be a projective algebraic set. We call a
linear projection πL : A→ Pr with L ∩ A = ∅ with r = dimA a
linear Noether normalization.
Corollary. Let A ⊂ Pn be a projective algebraic set of dimension
dimA = r . Then every linear subspace L of dimension
dim L ≥ n − r intersects A.
Proof. If L ∩ A = ∅, then dimA < r .

Theorem. Let X ,Y ⊂ Pn be projective algebraic sets. Then

dimX ∩ Y ≥ dimX + dimY − n.

In particular the intersection of algebraic sets of complementary
dimensions is always non-empty.



Proof of the dimension bound
Proof. Consider the projective space P2n+1 with coordinate ring
K [x0, . . . , xn, y0, . . . , yn] and the algebraic set J(X ,Y ) defined by
I(X ) + I(Y ) where I(X ) ⊂ K [x0, . . . , xn] and I(Y ) ⊂ K [y0, . . . , yn]
denote the homogeneous ideals in disjoint sets of variables. The
algebraic set J(X ,Y ) is called the join of X and Y because it is
the union of all lines joining a point of X and with a point of Y ,

X ⊂ Pn ∼= V (y0, . . . , yn) ⊂ P2n+1 ⊃ V (x0, . . . , xn) ∼= Pn ⊃ Y .

Clearly,
dim J(X ,Y ) = dimX + dimY + 1

as one can see by combining linear Noether normalizations of X
and Y . X ∩ Y = J(X ,Y ) ∩ V (x0 − y0, . . . , xn − yn) is the
intersection of J(X ,Y ) with a linear subspace of dimension n.
Thus the intersection X ∩ Y 6= ∅ if

n ≥ 2n + 1− (dimX + dimY + 1)⇔ dimX + dimY − n ≥ 0

by the second corollary.



Proof of the dimension bound continued
Suppose dimX ∩ Y = e > 0. Let `0, . . . , `e ⊂ K [x0, . . . , xn] define
a linear Noether normalization of X ∩ Y . Then

J(X ,Y ) ∩ L = ∅
where L = V (x0 − y0, . . . , xn − yn, `0, . . . , `e) is a linear space of
dimension 2n + 1− (n + 1 + e + 1) = 2n + 1− (n + 1 + e)− 1, and

dim J(X ,Y ) ≤ n + 1 + e

holds by the first corollary. Thus

dimX ∩ Y = e ≥ dim J(X ,Y )− n − 1 = dimX + dimY − n.

Remark. Using Krull’s principal ideal theorem one can show for
projective varieties X ,Y ⊂ Pn that every component C of X ∩ Y
has dimension dimC ≥ dimX + dimY − n.



Rational maps from smooth curves extend to morphisms
Proposition. Let C be a smooth irreducible quasi projective curve
and ϕ′ : C 99K Pn a rational map. Then ϕ′ extends to a morphism

ϕ : C → Pn.

Proof. Suppose that ϕ′ is given by a tuple f0, . . . , fn of rational
functions. There are two reasons why [f0(p) : . . . : fn(p)] might be
not defined in p ∈ C . One of the rational functions might have a
pole at p or all rational functions might vanish at p.
Taking k = min{vp(fj) | j = 0, . . . , n} and t ∈ mC ,p ⊂ OC ,p a
generator then we see that [t−k f0 : . . . : t−k fn] is defined at p ∈ C
and coincides ϕ′ where t has no zeroes or poles.

Remark. The proposition is not true for a higher dimension
source: The morphism

A2 \ {o} → P1, p 7→ [x(p) : y(p)]

has no extension to A2. Instead the closure of the graph is the
blow-up of o ∈ A2.


