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Products of algebraic sets

For two affine algebraic sets A C A" and B C A™ the product
Ax BCA"x A™ = A"TT™
is simply the algebraic set defined by
(I(A)UI(B)) C K[x1,---Xn, Y1s--- Ym]

where I1(A) C K[x1,...,xp] and I(B) C K[y1,...,Ym] are the
vanishing ideals of A and B respectively.

For projective algebraic sets the definition of a product is not so
clear. To start with, it is not a priori clear how to give P” x P the
structure of an algebraic set. One uses the Segre embedding.



Segre embedding 1
Define
Onm PP x P — PNV with N = (n+1)(m+1)—1
by
([ao i ... am),[bo:...:bn]) = [aobo : ... aibj:...: amby].
This is a well-defined map. For any pair of points at least one
component a;b; # 0.
We will use variables x = xg,...,Xn, Y = Y0,...,¥m and

zZ=20,.--,20m, 210, - - - » Znm for the homogeneous coordinate
rings of P",P™ and PN. Moreover we call a polynomial

f= Z fosx%y? € Kx,y]
lo|=d,|8|=e

bihomogeneous (in x and y) of bidegree (d, ).



Segre embedding 2
Proposition. Let >, , C PN be the projective algebraic set
defined by the 2 x 2-minors of the (n+ 1) x (m + 1)-matrix (z;).
Then

Onm P"XP" =X,

is a bijection which induces isomorphisms U; x U; =¥, » N Uj; on
the standard charts. Moreover ¥, m, C PN s irreducible, and the
ideal of 2 x 2-minors coincides with the homogeneous ideal of

X mm-
Proof. The minor
7o e
det nj 112
Zirjt  Zinj
vanishes on the image of o, , because
Xi Vi Xi Vi
det( 7 11yJ2> _o.
XY XY

Thus the image of o, is contained in X, 5.



Segre embedding 3

The point r =[1:¢cp1:...: Cam] € Lpn.m N Ugo satisfies
Cij = CioCoj-
Thus the pair of points
(p,g)=(L:cro0:---¢cnol,[L:co1:-..: com]) € UpxUy C P"xP™

is the unique preimage point of r and X, ,, N Ugg = Uy x Up. The
same argument in other charts gives that o, : P" x P — %,
is bijective and gives isomorphisms ¥, ,, N Uj; = U; x U;.

To prove that X, , is irreducible and that the ideal J of
2 x 2-minors of (zj;) is its homogeneous ideal, it suffices to prove
that J is a prime ideal.



Segre embedding 4

Consider the ring homorphism
¢ Klz] = K[x,y], zj — xiy;

Clearly, J C ker¢. To prove equality we consider a reverse
lexicographic order >, which refines the following order on the

variables
Z00 > 201 > ... > Z0m
V V V
zZio > 211 > ... > Zim
V V V
V V V
Zno > Zpl > ... > Znm

We have

Zj i Zji i

Le(det M M2 )) = —2ij 24
Zibjy  Zij2

whenever i1 < ip and j1 < jo.



Segre embedding 5

Thus the remainder of a monomial in K[z] divided by the
2 X 2-minors has the form

Ziij1 Zisjo * " Zigja with p < <...<igandj1 <jpp<...<jq4.
Since ¢ induces a bijection between such monomials and
bihomogeneous monomials of bidegree (d, d) we conclude that the
2 x 2-minors form a Grobner basis of ker ¢. In particular J = ker ¢

and this is a prime ideal because K|z]/ ker ¢ is isomorphic to a
subring of the domain K|[x,y]. O

Definition. We give P” x P the structure of a projective variety
by identifying P" x P™ and X, .
Example. We identify P! x P! with the quadric

3
Y11 = V(200211 — z10201) C P°.



Hypersurface in P" x P™ of bidegree (d, e).
Notice that the Zariski topology on P” x P is finer than the
product of the Zariski topologies of the factors. For example, if

f= Z fopx%y" € K[x,y]
lo|=d,|8|=e
is a bihomogeneous polynomial of bidegree (d, e), then
V(f)={(a,b) € P" x P™| f(a, b) = 0}

is a Zariski closed subset, which for general f is not closed in the
product topology. To see that V/(f) is an algebraic subset of

P" x P™ we argue as follows: Suppose d > e. Then multiplying f
with monomials y? € K[y] of degree d — e we get (Y"¢"")
polynomials fy? of bidegree (d, d), each of which is the image of a
polynomial in Fg € K|z] of degree d. V/(f) coincides with the
zero-loci of ({Fs | |B| =d — e}) + ker .

V/(f) is called a hypersurface of bidegree (d, €) in P" x P™.



Algebraic subsets of P" x P™
Definition. Let A C P” x P be a subset. The bihomogeneous
vanishing ideal of A is
I(A) = ({f € K[x,y] bihomogeneous | f(a,b) = 0V(a, b) € A})

and V(I(A)) = A is its Zariski closure. For an algebraic subset
A C P" x P™ the bigraded ring K[x,y]/I(A) is called the
bihomogeneous coordinate ring of A.

Remark. For J C K|[x,y] a bihomogenous ideal we have

I(V(J) = ((rad(J) : (x0,---,%n)) : Voy--+sYm)- [

We now are ready to define the product of two arbitrary projective
algebraic sets A C P" and B C P™:

Ax BcP"xP"cPV
is the algebraic set defined by the bihomgeneous polynomials
fi € I(A) C K[x] of bidegree (d;,0) and gj € I(B) C Kly] of
bidegree (0, €;).



Quasi-projective algebraic sets and regular functions
Definition. A quasi-affine algebraic set is an open subset of an
affine algebraic set. Similarly we have the notion of a
quasi-projective algebraic set. Every quasi-affine algebraic set is
also quasi-projective because A" =P" \ V(xp).

The product of two quasi-affine (quasi-projective) algebraic sets
A= A1\ A2 and B = B; \ B; is again quasi-affine
(quasi-projective).

AXB:Alel\(A2X51UA1XBQ).

For A C IP" a quasi-projective algebraic set we define the ring of
regular functions O(A) as the ring of functions

f:A—=K
such that for every point p € A there exist an open neighbourhood
U C A and homogeneous polynomials g, h € K[xo, ..., x| of the
same degree with h(p) # 0 for all p € U such that
g\p
f(p) = £12)

h(p)



Morphism
Definition. Let A be a quasi-projective algebraic set.
1. Let B C A™ be a quasi-affine algebraic set. A morphism

@ : A— B is a map which is given by an m-tupel of regular
functions f; € O(A):

e(p) = ((p), ..., fm(p)) Vp € A.

2. Let B C P™ be a quasi-projective algebraic set. A map
@ : A— B is a morphism if ¢ is locally given by regular
functions, i.e., for each point p € A there exist an open
neighbarhood U C A and regular functions fy, ..., f,, € O(U)
such that

e(p) =[fo(p) : - : fm(p)] VP € U

Clearly, morphisms can be composed.
Definition. A morphism ¢ : A — B is an isomorphism if there
exists a morphism 1 : B — A such that ¥ o ¢ = ida and

po=idg.



Examples
1. Let A C P" be a quasi-projective algebraic set, and let

fo,...,fm € K[xo,...,xn] be homogeneous polynomials of the
same degree d such that V(fy,...,fn) NA=0. Then
0:A=P" p=[fo(p): ... fm(p)]

is a well-defined morphism. Indeed on the open set

U=An(P"\ V(f;)) the map ¢ is given by the regular functions
fo fm
AR

and these open sets cover A since V(fy,...,fm) NA=10.

In particular we see that the regular functions in O(U) which
define ¢ on U might not exist globally.
2. More specifically, consider the morphism py : P! — P9 defined
by

[to: ta] = [t§ : td ..o 8]



Examples
The image of py is the so-called rational normal curve of degree
d. It has the homogeneous ideal generated by the 2 x 2-minors of

the 2 x d-matrix
X0 X1 ... Xd_1
X1 X2 ... Xd

Remark. Morphisms ¢ : A — B between affine algebraic sets are
easier to describe because they simply correspond to K-algebra
homomorphisms ¢* : K[B] — KJ[A].

Morphisms ¢ : A — B between projective algebraic sets have a
more complicated description. However they are better behaved:

We will see in one of the next lectures that the image of a
projective algebraic set under a morphism is always an algebraic
subset of the target.

This was not the case for morphisms between affine algebraic sets.



Example
Consider A = V(xy — z?) C P2, On the affine chart U,—; we saw
that the projection

A2D V(xy —1)— Al (a,b) — a
is not surjective, because the origin o is not in the image.
The map
A\{[0:1:0]} =P [x:y:z]—[x: 2]
extends to a surjective morphism 7 : A — P! because
2= yz = 2 vz = [z ]

holds on A\ V/(yz). Thus the missing preimage point of
o=1[0:1] € Al C P! is the point p=[0:1:0] on the line V(z)
at infinity.



Linear projections
Let A C P" be a projective variety. Let ¢y, ..., ¢, € K[xo, ..., Xn]
be r + 1 linearly independent linear forms such that
L= V(l,...,¢) =P~ does not intersect A. Then

A= Pam [b(a) ... 4(a)]
is called the linear projection from L. The condition ANL=10is
equivalent to rad(l(A) + (4o, ..., %4r)) = (X0, ..., %n). If we choose
coordinates on P” such that {9 = x,_,,...,¢, = xp, then
AN L =0 is equivalent to the condition that there are

homogeneous equations f; € (A) with

_ d; .
fi=x" mod (Xp—r,...,Xxp) fori=0,....n—r—1

Thus in this case the map

¢ K[xn—r,...,xa)] = K[A] = K[x0, . .., xa]/ 1(A)
induces an integral ring extension K[A'] < K[A] where
A = V/(ker(¢)).



A dimension bound

Thus in this situation 7, induces a finite and surjective map
A — A CP'. In particular, dm A" =dimA < r.

Corollary. Let A C P” be a projective algebraic set. If there exists
a linear subspace L C P" of dimension n —r — 1 with AN L = 0,
thendim A < r. OJ

Definition. Let A C P"” be a projective algebraic set. We call a
linear projection 7w : A — P" with LN A =0 with r =dimA a
linear Noether normalization.

Corollary. Let A C P" be a projective algebraic set of dimension
dim A = r. Then every linear subspace L of dimension

dim L > n — r intersects A.

Proof. If LN A =10, thendimA < r. ]

Theorem. Let X,Y C P" be projective algebraic sets. Then
dmXNY >dimX +dimY — n.

In particular the intersection of algebraic sets of complementary
dimensions is always non-empty.



Proof of the dimension bound
Proof. Consider the projective space P>"*1 with coordinate ring
K[xo,---,Xn, Y0,---,Yn] and the algebraic set J(X, Y) defined by
[(X) +1(Y) where I(X) C K[xo,...,xn] and I(Y) C K[yo, ..., Yn]
denote the homogeneous ideals in disjoint sets of variables. The
algebraic set J(X, Y) is called the join of X and Y because it is
the union of all lines joining a point of X and with a point of Y/,

XCP "2 V(y,...,yn) CPP™ 5 Vi(xg,...,x)) ZP"D Y,

Clearly,
dimJ(X,Y)=dimX +dimY +1
as one can see by combining linear Noether normalizations of X
and Y. XNY =J(X,Y)NV(xo— Y0,---,Xn — ¥n) is the
intersection of J(X, Y) with a linear subspace of dimension n.
Thus the intersection X N Y # 0 if
n>2n+1—(dmX+dimY +1)<dimX+dimY —n>0

by the second corollary.



Proof of the dimension bound continued

Suppose dimXNY =e > 0. Let {y,...,le C K[x0,...,Xn] define
a linear Noether normalization of X N'Y. Then

JX,Y)nL=1
where L = V/(x0 — Yo,y %Xn — ¥n, Lo, ..., Le) is a linear space of
dimension 2n+1—(n+14+e+1)=2n+1—(n+1+e)—1, and
dimJ(X,Y)<n+1l+e
holds by the first corollary. Thus
dmXNY=e>dmJ(X,Y)—n—1=dimX+dimY —n.

L]
Remark. Using Krull's principal ideal theorem one can show for
projective varieties X, Y C P" that every component C of XNY
has dimension dim C > dim X +dimY — n.



Rational maps from smooth curves extend to morphisms

Proposition. Let C be a smooth irreducible quasi projective curve
and ¢’ : C --» P" a rational map. Then ¢’ extends to a morphism

p: C— P
Proof. Suppose that ¢ is given by a tuple fo, ..., f, of rational
functions. There are two reasons why [fo(p) : ... : fo(p)] might be

not defined in p € C. One of the rational functions might have a
pole at p or all rational functions might vanish at p.

Taking k = min{v,(f;) | j=0,...,n} and t emc, C Ocp a
generator then we see that [t=%fy : ... : t7kf,] is defined at p € C
and coincides ¢’ where t has no zeroes or poles. Ol

Remark. The proposition is not true for a higher dimension
source: The morphism

A%\ {o} = P, p— [x(p) : y(p)]
has no extension to A2. Instead the closure of the graph is the
blow-up of 0 € AZ.



