Algebraic Geometry, Lecture 18

Frank-Olaf Schreyer

Saarland University, Perugia 2021

Overview

Today's topics are

1. Products of projective spaces
2. Morphism
3. Linear projections
4. A dimension bound
5. Rational maps from smooth curves

Products of algebraic sets

For two affine algebraic sets $A \subset \mathbb{A}^{n}$ and $B \subset \mathbb{A}^{m}$ the product

$$
A \times B \subset \mathbb{A}^{n} \times \mathbb{A}^{m}=\mathbb{A}^{n+m}
$$

is simply the algebraic set defined by

$$
(\mathrm{I}(A) \cup \mathrm{I}(B)) \subset K\left[x_{1}, \ldots x_{n}, y_{1}, \ldots y_{m}\right]
$$

where $\mathrm{I}(A) \subset K\left[x_{1}, \ldots, x_{n}\right]$ and $\mathrm{I}(B) \subset K\left[y_{1}, \ldots, y_{m}\right]$ are the vanishing ideals of A and B respectively.

For projective algebraic sets the definition of a product is not so clear. To start with, it is not a priori clear how to give $\mathbb{P}^{n} \times \mathbb{P}^{m}$ the structure of an algebraic set. One uses the Segre embedding.

Segre embedding 1

Define

$$
\sigma_{n, m}: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{N} \text { with } N=(n+1)(m+1)-1
$$

by

$$
\left(\left[a_{0}: \ldots: a_{m}\right],\left[b_{0}: \ldots: b_{n}\right]\right) \mapsto\left[a_{0} b_{0}: \ldots: a_{i} b_{j}: \ldots: a_{m} b_{n}\right] .
$$

This is a well-defined map. For any pair of points at least one component $a_{i} b_{j} \neq 0$.
We will use variables $\mathbf{x}=x_{0}, \ldots, x_{n}, \mathbf{y}=y_{0}, \ldots, y_{m}$ and
$\mathbf{z}=z_{00}, \ldots, z_{0 m}, z_{10}, \ldots, z_{n m}$ for the homogeneous coordinate rings of $\mathbb{P}^{n}, \mathbb{P}^{m}$ and \mathbb{P}^{N}. Moreover we call a polynomial

$$
f=\sum_{|\alpha|=d,|\beta|=e} f_{\alpha, \beta} x^{\alpha} y^{\beta} \in K[\mathbf{x}, \mathbf{y}]
$$

bihomogeneous (in \mathbf{x} and \mathbf{y}) of bidegree (d, e).

Segre embedding 2

Proposition. Let $\Sigma_{n, m} \subset \mathbb{P}^{N}$ be the projective algebraic set defined by the 2×2-minors of the $(n+1) \times(m+1)$-matrix $\left(z_{i j}\right)$. Then

$$
\sigma_{n, m}: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \Sigma_{m, n}
$$

is a bijection which induces isomorphisms $U_{i} \times U_{j} \cong \Sigma_{n, m} \cap U_{i j}$ on the standard charts. Moreover $\Sigma_{n, m} \subset \mathbb{P}^{N}$ is irreducible, and the ideal of 2×2-minors coincides with the homogeneous ideal of $\Sigma_{m, m}$.
Proof. The minor

$$
\operatorname{det}\left(\begin{array}{ll}
z_{i j_{1}} & z_{i j_{2}} \\
z_{i j_{1}} & z_{i_{2} j_{2}}
\end{array}\right)
$$

vanishes on the image of $\sigma_{n, m}$ because

$$
\operatorname{det}\left(\begin{array}{ll}
x_{i_{1}} y_{j_{1}} & x_{i_{1}} y_{j_{2}} \\
x_{i_{2}} y_{j_{1}} & x_{i_{2}} y_{j_{2}}
\end{array}\right)=0
$$

Thus the image of $\sigma_{m, n}$ is contained in $\Sigma_{m, n}$.

Segre embedding 3

The point $r=\left[1: c_{01}: \ldots: c_{n m}\right] \in \Sigma_{n, m} \cap U_{00}$ satisfies

$$
c_{i j}=c_{i 0} c_{0 j}
$$

Thus the pair of points
$(p, q)=\left(\left[1: c_{10}: \ldots, c_{n 0}\right],\left[1: c_{01}: \ldots: c_{0 m}\right]\right) \in U_{0} \times U_{0} \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$
is the unique preimage point of r and $\Sigma_{n, m} \cap U_{00} \cong U_{0} \times U_{0}$. The same argument in other charts gives that $\sigma_{n, m}: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \Sigma_{n, m}$ is bijective and gives isomorphisms $\Sigma_{n, m} \cap U_{i j} \cong U_{i} \times U_{j}$.
To prove that $\Sigma_{m, n}$ is irreducible and that the ideal J of 2×2-minors of $\left(z_{i j}\right)$ is its homogeneous ideal, it suffices to prove that J is a prime ideal.

Segre embedding 4

Consider the ring homorphism

$$
\varphi: K[\mathbf{z}] \rightarrow K[\mathbf{x}, \mathbf{y}], z_{i j} \mapsto x_{i} y_{j}
$$

Clearly, $J \subset \operatorname{ker} \varphi$. To prove equality we consider a reverse lexicographic order $>_{\text {rlex }}$ which refines the following order on the variables

We have

$$
\operatorname{Lt}\left(\operatorname{det}\left(\begin{array}{ll}
z_{1 j_{1}} & z_{i_{1} j_{2}} \\
z_{i_{2} j_{1}} & z_{i_{2} j_{2}}
\end{array}\right)\right)=-z_{i j_{1}} z_{i_{1} j_{2}}
$$

whenever $i_{1}<i_{2}$ and $j_{1}<j_{2}$.

Segre embedding 5

Thus the remainder of a monomial in $K[z]$ divided by the 2×2-minors has the form

$$
z_{i j_{1}} z_{i j_{2}} \cdots z_{i_{d} j_{d}} \text { with } i_{1} \leq i_{2} \leq \ldots \leq i_{d} \text { and } j_{1} \leq j_{2} \leq \ldots \leq j_{d}
$$

Since φ induces a bijection between such monomials and bihomogeneous monomials of bidegree (d, d) we conclude that the 2×2-minors form a Gröbner basis of $\operatorname{ker} \varphi$. In particular $J=\operatorname{ker} \varphi$ and this is a prime ideal because $K[\mathbf{z}] / \operatorname{ker} \varphi$ is isomorphic to a subring of the domain $K[\mathbf{x}, \mathbf{y}]$.
Definition. We give $\mathbb{P}^{n} \times \mathbb{P}^{m}$ the structure of a projective variety by identifying $\mathbb{P}^{n} \times \mathbb{P}^{m}$ and $\Sigma_{n, m}$.
Example. We identify $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with the quadric

$$
\Sigma_{1,1}=V\left(z_{00} z_{11}-z_{10} z_{01}\right) \subset \mathbb{P}^{3}
$$

Hypersurface in $\mathbb{P}^{n} \times \mathbb{P}^{m}$ of bidegree (d, e).

Notice that the Zariski topology on $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is finer than the product of the Zariski topologies of the factors. For example, if

$$
f=\sum_{|\alpha|=d,|\beta|=e} f_{\alpha, \beta} x^{\alpha} y^{\beta} \in K[\mathbf{x}, \mathbf{y}]
$$

is a bihomogeneous polynomial of bidegree (d, e), then

$$
V(f)=\left\{(a, b) \in \mathbb{P}^{n} \times \mathbb{P}^{m} \mid f(a, b)=0\right\}
$$

is a Zariski closed subset, which for general f is not closed in the product topology. To see that $V(f)$ is an algebraic subset of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ we argue as follows: Suppose $d \geq e$. Then multiplying f with monomials $y^{\beta} \in K[\mathbf{y}]$ of degree $d-e$ we get $\binom{d-e+m}{m}$ polynomials $f y^{\beta}$ of bidegree (d, d), each of which is the image of a polynomial in $F_{\beta} \in K[\mathbf{z}]$ of degree $d . V(f)$ coincides with the zero-loci of $\left(\left\{F_{\beta}| | \beta \mid=d-e\right\}\right)+\operatorname{ker} \varphi$.
$V(f)$ is called a hypersurface of bidegree (d, e) in $\mathbb{P}^{n} \times \mathbb{P}^{m}$.

Algebraic subsets of $\mathbb{P}^{n} \times \mathbb{P}^{m}$

Definition. Let $A \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$ be a subset. The bihomogeneous vanishing ideal of A is

$$
\mathrm{I}(A)=(\{f \in K[\mathbf{x}, \mathbf{y}] \text { bihomogeneous } \mid f(a, b)=0 \forall(a, b) \in A\})
$$

and $V(\mathrm{I}(A))=\bar{A}$ is its Zariski closure. For an algebraic subset $A \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$ the bigraded ring $K[\mathbf{x}, \mathbf{y}] / I(A)$ is called the bihomogeneous coordinate ring of A.
Remark. For $J \subset K[\mathbf{x}, \mathbf{y}]$ a bihomogenous ideal we have

$$
\mathrm{I}(V(J))=\left(\left(\operatorname{rad}(J):\left(x_{0}, \ldots, x_{n}\right)\right):\left(y_{0}, \ldots, y_{m}\right)\right.
$$

We now are ready to define the product of two arbitrary projective algebraic sets $A \subset \mathbb{P}^{n}$ and $B \subset \mathbb{P}^{m}$:

$$
A \times B \subset \mathbb{P}^{n} \times \mathbb{P}^{m} \subset \mathbb{P}^{N}
$$

is the algebraic set defined by the bihomgeneous polynomials $f_{i} \in \mathrm{I}(A) \subset K[\mathbf{x}]$ of bidegree $\left(d_{i}, 0\right)$ and $g_{j} \in \mathrm{I}(B) \subset K[\mathbf{y}]$ of bidegree $\left(0, e_{j}\right)$.

Quasi-projective algebraic sets and regular functions

Definition. A quasi-affine algebraic set is an open subset of an affine algebraic set. Similarly we have the notion of a quasi-projective algebraic set. Every quasi-affine algebraic set is also quasi-projective because $\mathbb{A}^{n}=\mathbb{P}^{n} \backslash V\left(x_{0}\right)$.
The product of two quasi-affine (quasi-projective) algebraic sets $A=A_{1} \backslash A_{2}$ and $B=B_{1} \backslash B_{2}$ is again quasi-affine (quasi-projective).

$$
A \times B=A_{1} \times B_{1} \backslash\left(A_{2} \times B_{1} \cup A_{1} \times B_{2}\right)
$$

For $A \subset \mathbb{P}^{n}$ a quasi-projective algebraic set we define the ring of regular functions $\mathcal{O}(A)$ as the ring of functions

$$
f: A \rightarrow K
$$

such that for every point $p \in A$ there exist an open neighbourhood $U \subset A$ and homogeneous polynomials $g, h \in K\left[x_{0}, \ldots, x_{n}\right]$ of the same degree with $h(p) \neq 0$ for all $p \in U$ such that

$$
f(p)=\frac{g(p)}{h(p)}
$$

Morphism

Definition. Let A be a quasi-projective algebraic set.

1. Let $B \subset \mathbb{A}^{m}$ be a quasi-affine algebraic set. A morphism $\varphi: A \rightarrow B$ is a map which is given by an m-tupel of regular functions $f_{j} \in \mathcal{O}(A)$:

$$
\varphi(p)=\left(f_{1}(p), \ldots, f_{m}(p)\right) \forall p \in A .
$$

2. Let $B \subset \mathbb{P}^{m}$ be a quasi-projective algebraic set. A map $\varphi: A \rightarrow B$ is a morphism if φ is locally given by regular functions, i.e., for each point $p \in A$ there exist an open neighbarhood $U \subset A$ and regular functions $f_{0}, \ldots, f_{m} \in \mathcal{O}(U)$ such that

$$
\varphi(p)=\left[f_{0}(p): \ldots: f_{m}(p)\right] \forall p \in U
$$

Clearly, morphisms can be composed.
Definition. A morphism $\varphi: A \rightarrow B$ is an isomorphism if there exists a morphism $\psi: B \rightarrow A$ such that $\psi \circ \varphi=i d_{A}$ and $\varphi \circ \psi=i d_{B}$.

Examples

1. Let $A \subset \mathbb{P}^{n}$ be a quasi-projective algebraic set, and let $f_{0}, \ldots, f_{m} \in K\left[x_{0}, \ldots, x_{n}\right]$ be homogeneous polynomials of the same degree d such that $V\left(f_{0}, \ldots, f_{m}\right) \cap A=\emptyset$. Then

$$
\varphi: A \rightarrow \mathbb{P}^{m}, p \mapsto\left[f_{0}(p): \ldots: f_{m}(p)\right]
$$

is a well-defined morphism. Indeed on the open set $U=A \cap\left(\mathbb{P}^{n} \backslash V\left(f_{i}\right)\right)$ the map φ is given by the regular functions

$$
\left[\frac{f_{0}}{f_{i}}: \ldots: \frac{f_{m}}{f_{i}}\right]
$$

and these open sets cover A since $V\left(f_{0}, \ldots, f_{m}\right) \cap A=\emptyset$.
In particular we see that the regular functions in $\mathcal{O}(U)$ which define φ on U might not exist globally.
2. More specifically, consider the morphism $\rho_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ defined by

$$
\left[t_{0}: t_{1}\right] \mapsto\left[t_{0}^{d}: t_{0}^{d-1} t_{1}: \ldots: t_{1}^{d}\right]
$$

Examples

The image of ρ_{d} is the so-called rational normal curve of degree d. It has the homogeneous ideal generated by the 2×2-minors of the $2 \times d$-matrix

$$
\left(\begin{array}{cccc}
x_{0} & x_{1} & \ldots & x_{d-1} \\
x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right)
$$

Remark. Morphisms $\varphi: A \rightarrow B$ between affine algebraic sets are easier to describe because they simply correspond to K-algebra homomorphisms $\varphi^{*}: K[B] \rightarrow K[A]$. Morphisms $\varphi: A \rightarrow B$ between projective algebraic sets have a more complicated description. However they are better behaved:
We will see in one of the next lectures that the image of a projective algebraic set under a morphism is always an algebraic subset of the target.
This was not the case for morphisms between affine algebraic sets.

Example

Consider $A=V\left(x y-z^{2}\right) \subset \mathbb{P}^{2}$. On the affine chart $U_{z=1}$ we saw that the projection

$$
\mathbb{A}^{2} \supset V(x y-1) \rightarrow \mathbb{A}^{1},(a, b) \mapsto a
$$

is not surjective, because the origin o is not in the image. The map

$$
A \backslash\{[0: 1: 0]\} \rightarrow \mathbb{P}^{1},[x: y: z] \mapsto[x: z]
$$

extends to a surjective morphism $\pi: A \rightarrow \mathbb{P}^{1}$ because

$$
[x: z]=[x y: y z]=\left[z^{2}: y z\right]=[z: y]
$$

holds on $A \backslash V(y z)$. Thus the missing preimage point of $o=[0: 1] \in \mathbb{A}^{1} \subset \mathbb{P}^{1}$ is the point $p=[0: 1: 0]$ on the line $V(z)$ at infinity.

Linear projections

Let $A \subset \mathbb{P}^{n}$ be a projective variety. Let $\ell_{0}, \ldots, \ell_{r} \in K\left[x_{0}, \ldots, x_{n}\right]$ be $r+1$ linearly independent linear forms such that $L=V\left(\ell_{0}, \ldots, \ell_{r}\right) \cong \mathbb{P}^{n-r-1}$ does not intersect A. Then

$$
\pi_{L}: A \rightarrow \mathbb{P}^{r}, a \mapsto\left[\ell_{0}(a): \ldots: \ell_{r}(a)\right]
$$

is called the linear projection from L. The condition $A \cap L=\emptyset$ is equivalent to $\operatorname{rad}\left(\mathrm{I}(A)+\left(\ell_{0}, \ldots, \ell_{r}\right)\right)=\left(x_{0}, \ldots, x_{n}\right)$. If we choose coordinates on \mathbb{P}^{n} such that $\ell_{0}=x_{n-r}, \ldots, \ell_{r}=x_{n}$, then $A \cap L=\emptyset$ is equivalent to the condition that there are homogeneous equations $f_{i} \in I(A)$ with

$$
f_{i} \equiv x_{i}^{d_{i}} \quad \bmod \left(x_{n-r}, \ldots, x_{n}\right) \text { for } i=0, \ldots, n-r-1
$$

Thus in this case the map

$$
\phi: K\left[x_{n-r}, \ldots, x_{n}\right] \rightarrow K[A]=K\left[x_{0}, \ldots, x_{n}\right] / I(A)
$$

induces an integral ring extension $K\left[A^{\prime}\right] \hookrightarrow K[A]$ where $A^{\prime}=V(\operatorname{ker}(\phi))$.

A dimension bound

Thus in this situation π_{L} induces a finite and surjective map $A \rightarrow A^{\prime} \subset \mathbb{P}^{r}$. In particular, $\operatorname{dim} A^{\prime}=\operatorname{dim} A \leq r$.
Corollary. Let $A \subset \mathbb{P}^{n}$ be a projective algebraic set. If there exists a linear subspace $L \subset \mathbb{P}^{n}$ of dimension $n-r-1$ with $A \cap L=\emptyset$, then $\operatorname{dim} A \leq r$.

Definition. Let $A \subset \mathbb{P}^{n}$ be a projective algebraic set. We call a linear projection $\pi_{L}: A \rightarrow \mathbb{P}^{r}$ with $L \cap A=\emptyset$ with $r=\operatorname{dim} A$ a linear Noether normalization.
Corollary. Let $A \subset \mathbb{P}^{n}$ be a projective algebraic set of dimension $\operatorname{dim} A=r$. Then every linear subspace L of dimension $\operatorname{dim} L \geq n-r$ intersects A.
Proof. If $L \cap A=\emptyset$, then $\operatorname{dim} A<r$.
Theorem. Let $X, Y \subset \mathbb{P}^{n}$ be projective algebraic sets. Then

$$
\operatorname{dim} X \cap Y \geq \operatorname{dim} X+\operatorname{dim} Y-n
$$

In particular the intersection of algebraic sets of complementary dimensions is always non-empty.

Proof of the dimension bound

Proof. Consider the projective space $\mathbb{P}^{2 n+1}$ with coordinate ring $K\left[x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n}\right]$ and the algebraic set $J(X, Y)$ defined by $\mathrm{I}(X)+\mathrm{I}(Y)$ where $\mathrm{I}(X) \subset K\left[x_{0}, \ldots, x_{n}\right]$ and $\mathrm{I}(Y) \subset K\left[y_{0}, \ldots, y_{n}\right]$ denote the homogeneous ideals in disjoint sets of variables. The algebraic set $J(X, Y)$ is called the join of X and Y because it is the union of all lines joining a point of X and with a point of Y,

$$
X \subset \mathbb{P}^{n} \cong V\left(y_{0}, \ldots, y_{n}\right) \subset \mathbb{P}^{2 n+1} \supset V\left(x_{0}, \ldots, x_{n}\right) \cong \mathbb{P}^{n} \supset Y
$$

Clearly,

$$
\operatorname{dim} J(X, Y)=\operatorname{dim} X+\operatorname{dim} Y+1
$$

as one can see by combining linear Noether normalizations of X and $Y . X \cap Y=J(X, Y) \cap V\left(x_{0}-y_{0}, \ldots, x_{n}-y_{n}\right)$ is the intersection of $J(X, Y)$ with a linear subspace of dimension n.
Thus the intersection $X \cap Y \neq \emptyset$ if

$$
n \geq 2 n+1-(\operatorname{dim} X+\operatorname{dim} Y+1) \Leftrightarrow \operatorname{dim} X+\operatorname{dim} Y-n \geq 0
$$

by the second corollary.

Proof of the dimension bound continued

Suppose $\operatorname{dim} X \cap Y=e>0$. Let $\ell_{0}, \ldots, \ell_{e} \subset K\left[x_{0}, \ldots, x_{n}\right]$ define a linear Noether normalization of $X \cap Y$. Then

$$
J(X, Y) \cap L=\emptyset
$$

where $L=V\left(x_{0}-y_{0}, \ldots, x_{n}-y_{n}, \ell_{0}, \ldots, \ell_{e}\right)$ is a linear space of dimension $2 n+1-(n+1+e+1)=2 n+1-(n+1+e)-1$, and $\operatorname{dim} J(X, Y) \leq n+1+e$
holds by the first corollary. Thus

$$
\operatorname{dim} X \cap Y=e \geq \operatorname{dim} J(X, Y)-n-1=\operatorname{dim} X+\operatorname{dim} Y-n
$$

Remark. Using Krull's principal ideal theorem one can show for projective varieties $X, Y \subset \mathbb{P}^{n}$ that every component C of $X \cap Y$ has $\operatorname{dimension} \operatorname{dim} C \geq \operatorname{dim} X+\operatorname{dim} Y-n$.

Rational maps from smooth curves extend to morphisms

Proposition. Let C be a smooth irreducible quasi projective curve and $\varphi^{\prime}: C \rightarrow \mathbb{P}^{n}$ a rational map. Then φ^{\prime} extends to a morphism

$$
\varphi: C \rightarrow \mathbb{P}^{n}
$$

Proof. Suppose that φ^{\prime} is given by a tuple f_{0}, \ldots, f_{n} of rational functions. There are two reasons why $\left[f_{0}(p): \ldots: f_{n}(p)\right]$ might be not defined in $p \in C$. One of the rational functions might have a pole at p or all rational functions might vanish at p.
Taking $k=\min \left\{v_{p}\left(f_{j}\right) \mid j=0, \ldots, n\right\}$ and $t \in \mathfrak{m}_{C, p} \subset \mathcal{O}_{C, p}$ a generator then we see that $\left[t^{-k} f_{0}: \ldots: t^{-k} f_{n}\right]$ is defined at $p \in C$ and coincides φ^{\prime} where t has no zeroes or poles.
Remark. The proposition is not true for a higher dimension source: The morphism

$$
\mathbb{A}^{2} \backslash\{o\} \rightarrow \mathbb{P}^{1}, p \mapsto[x(p): y(p)]
$$

has no extension to \mathbb{A}^{2}. Instead the closure of the graph is the blow-up of $o \in \mathbb{A}^{2}$.

